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ABSTRACT

The multiquadric method of interpolation has been used to generate surfaces
from irregularly distributed points of geophysical data, and has proven to be a
successful means of mapping such data. There are four stages involved in the
implementation of the method (Saunderson,1994): (1)solution of a system of
simultaneous, linear equations; (2) interpolation of new z values, for a number of
locations within the x,y area of an initial sample space of points; (3) plots of ail
the z values at their respective locations, using colour graphics instead of
contouring; and (4) plots of the partial derivatives of z with respect to x and with

respect to y.

This thesi> uses drumlin data from two Canadian drumlin fields to test the
applicability of Hardy's method of multiquadric interpolation by generating surfaces
of sections of those fields. Contoured multiquadric surfaces are generated and
compared to test surfaces derived from orthophoto maps. A working example leads
the reader through the exact methods used, resulting in the final xyz and partialx
and y plots. Drawbacks, such as the limited number of initial data points that can
be used, as well as advantages, such as the unique nature of the methodology for

drumlinized landscapes are outlined.
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CHAPTER ONE

INTRODUCTION

1.1 Drumlin Research

Drumlins have fascinated researchers over the past decades duc primzrily to
the mystery surrounding their genesis. Of all landscape features, d.umlins are
perhaps one of the most suitable for morphometric analysis. Their characteristic
shapes : 'd forms facilitate identification as well as data collection. Such analyses
become evidence to test hypotheses of origin. In fact, one might go so far as to
state that a geomorphological characterization of drumlin assemblages may be
indicative of the glacial paleodynamics and suggest genetic hypotheses concerning
drumlinization in relation to the local and regional environment (Coudé, 1989). A
drumlin field may be considered a continuous surface, being the end result of one
or several glacial advances and retreats. This thesis will use data collected from the
Lunenburg, Nova Scotia, and Peterborough, Ontario drumlins tc map such surfaces.
Drumlins from sections of these drumlin fields will be used to test Hardy's method

of multiquadric interpolation as a potential means of computationally mapping
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drumlin fields. They will also be used to test Saunderson's (1994) programmes, and

are the application for a discussion detailing the use of these programmes.

Drumlins were recognized and given their name in 1867 by M.H. Close in
Ireland, the name being derived from the Gaelic "druim", a hill (Charlesworth,
1957). No generally accepted theory exists as to their mode of origin. The ideal
drumlin has been likened to "the inverted bowl of a spoon” (Heidenreich, 1964).
Charlesworth (1957) describes them as "smooth, oval mounds or elongated ridges
possessing straight major axes and having rounded summits, steep flanks, regular
contours, and in profile double sigmoid curves". These are drumlins in their most
ideal form, with differences reflecting changes in the characteristics of the ice or
meltwater. Menzies (1979) points out that generally the steep, blunter end of a
drumlin points in the up-ice direction and the gentler sloping, pointed end faces the
down-ice direction, these two ends being respectively known as the stoss and lee
sides. Drumlin orientations would therefore be indicative of the direction of
movement of the agent which created them, It would seem, then, that although the
exact mode or modes of their formation are not precisely known, drumlins are

good indicators of the characteristics of the glacial forces which created them.
1.2 Spatial Interpolation

“Interpolation, using a computer, is the
performance of a numerical procedure
that generates an estimate of functional
dependence at a particular location, based
upon knowledge of the functional



dependence at some surrounding locations.
It is only an informed estimate of the
unknown." (Watson, 1992, p.101)

There are many spatial interpolation techniques, and theoretically, with
sufficient precise data, any interpolation procedure will give good resuits because
the sampied surface is known so well. It has been found, however, that some
techniques work more accurately and efficiently than others (Shaw and Lynn,

1972; Franke, 1982). Features such as domes, basins, ridges, saddle points, and so
on, may be poorly specified by sparse data collection, and most interpolation
techniques would not be able to infer their presence (Watson, 1992). Unsatisfactory

results may therefore be due either to the inappropriateness of the method for that

application, or the data collection methods of the researcher.

Comoputer interpolation of topographical data can be obtained by two
methodologically different approaches; fitted functions and weighted averages.
Interpolation begins with the idea that a topographical measurement is a unit of
information that describes that particular location and, with less certainty, a limited
section of the surrounding area. This proximal region has been termed the keinel of
influence. The surface represer.-it - 1 set of topographical data is therefore a

collection of these kernels.

Comoputer interpolation methods are techniques to determine the sum of

these influences, at particular locations. The difference between one method and



another refers to the manner in “.hich the influence of a datum is assumed to
decline for more distant interpolation points, and the computational maneuvers
necessary to process the elected influence function (Watson, 1992). Interpolation
methods can be classified as those that first determine the parameters of an analytic
bivariate function, then use the parameters to evaluate the height of the
representative surface (fitted function methods), and those that directly sum the

data influences (weighted average methods).

1.3 Origin of Multiquadric Interpolation

Multiquadric interpolation can be classed as a fitted function method. There
are a number of other fitted function techniques, such as minimum curvature
splines and kriging. The multiquadric method has been classified as a collocation
procedure (Watson, 1992), which refers to two surfaces that are coincident at
specific locations. If one were describing the variation of a spatial function by a
representative surface which corresponds to the observations, this general surface
would be said to collocate the data. The method has also been classified as glotal,
as opposed to a local method of interpolation (Franke, 1982). The interpolant in a
global method is dependent on all data points, and addition or deletion of a data
point, or a change of one of the coordinates of a data point, will propagate
throughout the domain of definition. A local method, on the other hand, is typically
thought of as meaning that addition or deletion of a point, or a change in one of

the coordinates of a datum , will affect the interpolant only at nearby points, and



the interpolant will be unchanged at distances greater than some given distance.

The multiquadric method may now be discussed in greater detail.

Multiquadric interpolation was developed by Dr. Rolland Hardy of lowa
State University (Hardy 1971, 1972). In the multiquadric method the surface model

can be written as:

z=£_; c;lQ(x,y, %4, ¥74) ] (1)
where @ represents any quadric basis function, ¢, is the associated coefficient, and
z is the observed quantity at x, y.

As a case for his muitiquadric method, Hardy (1971) pointed out that there
existed problems involving such map uses as determining unobstructed lines of
sight, volumes of earth, and minimum length of surface curves. Fourier and
polynomial series approximations have been applied to both surface and subsurface
trend analysis in geologic mapping, but Hardy noted that these methods were not
entitely efficient. Accuracy could be reached, with enough data points; however,
with relatively few data points, the ordinary collocated Fourier series oscillates,
with large variations between data points. The ordinary collocated polynomial
series, limited to a few data points, was also found to be unmanageable in
representing the sometimes rapid and sharp variations in real topographic surfaces

(Hardy, 1971). There was a real need « improve efficient convergence on real



6
topographic surfaces, which led to the development of variations of the Fourier and
polynomial series approaches by many investigators. The frustrations of trying to
use various harmonic and polynomial series to represent topography from relatively
few data points led Hardy to search for a new series to represent this phenomenon.

This search led him to discover the multiquadric method of interpolation (1971).

The construction of any irregular, continuous surface involves the
interpolation of a large number of points (Saunderson, 1994). The control points
may be sample locations with known x,y coordinates where some quantity at that
location, z, has been observed. The method is therefore applicable to any
continuous surface with "xyz" information. The known xyz data may then be used

as a basis from which to interpolate new z values for any number of locations.

1.4 Mathematical Basis of Multiquadric Interpolation

In order to further explain the multiquadric method, the mathematical basis
as it will apply to this research will be presented. In this case, locations in the
drumlin field (x,y) and the height data (z) will provide input to a multiquadric
system of equations (Hardy 1971, 1972, 1990) using a cone model with constant
C=0. From a geometric point of view "C" simply changes the sharpness of each
cone. If C is small, the cone could be described as "sharp-nosed". If C is large the
cone could be described as "broad-nosed” (Hardy, 1990). Expansion of the

equations generates a series of intersecting cones, producing an interpolated



surface, approximating the original location of the data points as well. The
following equations show the matrix (Lancaster and Salkauskas, 1990) and

algebraic (Hardy 1971, 1972, 1990) forms.

A<c=2, )
with solution:

c=A"z, @)

and matrix form:

0 b-pl... b-phi
bz-pll o ... bz-p,,l AR

J0 e (4)

lp,-p,| . ce. 0 RS

where A is the matrix of terms calculated from the sampled x- and y- coordinates,
c is the solution vector of coefficients ¢j and z is the right-hand-side vector of

sampled data (i.e. height), and



bi-p, =16 -x)+ -y 1% ®)

The equation of a cone may be expressed as:

[&?+ytan® o] =z ®

where z is the elevation of the vertex of the cone above the xy plane and the tanec
is the slope of the surface of the cone (Saunderson, 1994). A series of multiquadric
equations may also be set up from the known elevations of a sample of points (the

vertices of a series of cones) at known locations, giving

jz; i, -xj)2 +y, -yj)2 +C’]°5=zl Y]

where x, y are the Cartesian coordinates (sampled locations) of the vertex of each
cone, z is the information (i.e. height) which has been collected from that location,
and ¢j is the coefficient. zp values from intermediate locations (of the initial data

input), xp, yp may then be interpolated from

3 ekt 0,9+, ®



Once the column vector (¢j) has been determined, a surface is plotted from the z

values evaluated in equation (8).

The texture of the surface depends on the number of points plotted per unit
area of the surface, the points being the vertices of a large number of cones

(Saunderson, 1994). The variation of slopes on the surface may also be generated
by evaluating the partial derivatives of z with respect to the x and y axes (Hardy,

1971). These partial derivatives are obtained by differentiation of equation (8),

yielding

O =3 =5+ 3)1 o) ®
and likewise

a2p=-3. cfts5) 40,3103 0

1.5 Applications of Multiquadric Interpolation
Hardy's method of multiquadric interpolation has been used for terrain

mapping (Hardy, 1971), computational fluid dynamics (Kansa, 1990), and mapping
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of fluid speeds in river cross-sections (Saunderson, 1992) to name but a few
applications. The process of generating irregular, continuous surfaces is often
necessary in geography and related sciences. Some of the specific applications

which have used Hardy's method will be described in order to show the versatility

as well as the viability of the method.

Hardy discovered the multiquadric approach, and tested it (1971).
Contoured multiquadric surfaces were compared with topography and other
irregular surfaces from which the multiquadric equation was derived. A model of
simple fictitious topography was first used to test the feasibility of multiquadric
analysis, with favourable results. Another model of fictitious topography, adjacent
to the initial model, was then used to investigate the feasibility and accuracy of
joining map edges, the result being a good fit along the common boundary between
the two blocks. Hardy went on to determine a multiquadric equation of a fictitious
contour model. This model was visualized as a subsurface problem, where the data
points were selected on the basis of unillustrated surface conditions. Again, the
results were favourable, with Hardy concluding that a random scanning mode will
work reasonably well for an uncomplicated subsurface case (1971). A final test
was based on a topographic model from a 9x10 grid sample of a part of a U.S.
Geological Survey quadrangle map of McClure, Pennsylvania. A deficiency in this
test was concluded to be mainly a result of poor elevation choices for representing

the hills and saddles.
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Hardy (1972) presented an application of multiquadric equations to
surveying and mapping problems. In this paper, Hardy reiterated the first

application of multiquadric analysis in representing topographic surfaces
analytically in Cartesian coordinates. A later application of multiquadric analysis
involved the determination of an equation of the world's topographic and
bathymetric surface from a limited number of data points (Hardy, 1974). Further
applications of the method are mentioned by Hardy, such as Shaw and Lynn's
(1972) comparison of multiquadric analysis with the bi-cubic spline function as a
method of representing areal rainfall. (The results of this study will be described in
the following section comparing multiquadric interpolation to other surface fitting
techniques). Hardy goes on to present the idea that traditional problems

determining terrain corrections in gravimetric surveys may be overcome.

Schiro and Williams (1984) used an adaptive application of multiquadric
interpolants to model large numbers of irregularly spaced hydrographic data. The
authors note the need for a precise method for such an application, since a
hydrographic survey is a basic component of a nautical chart, which is used for
safe navigation. An accurate model of a hydrographic survey would therefore serve
many practical and useful needs in nautical chart production. The three greatest
areas which Schiro and Williams point out are survey reduction, survey
verification, and the generation of accurate depth contours for nautical charts.

Seven test areas were chosen for the iterative application of the multiquadric
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method in this study. The first five of the test areas came from hydrographic
surveys of Swar Point to Dahlgren, Maryland, Virginia, and the Potomac River,
the areas being chosen as representative of the majority of hydrographic surveys.
The last two areas were surfaces defined by mathematical functions, as it was
desired to test the multiquadric method on real and generated data. To briefly

conclude their results, Schiro and Williams found that this method performed well

when tested with a large set of real data and some common mathematical test
surfaces. The multiquadric model "acceptably approximated the original
mathematical surfaces even in areas in which the original data was not present.
This approximation was done using only 50 percent of the original data. Hence, the
tests show that the method can produce good results and be reasonably efficient,

even with rather strict error criteria" (p.380).

Kansa (1990) published a paper presenting the application of multiquadrics
to computational fluid dynamics. The first part of the paper investigates the new
numerical technique of curve, surface and body approximations over an arbitrary
data arrangement. The second part uses such techniques to improve parabolic,
hyperbolic and elliptical partial differential equations. Kansa observed that
multiquadric analysis is excellent in regions whose surfaces have gradients that are
not too small. Two test functions were evaluated on the vertices of a uniform 5X5
grid, involving the interpolation of functions from a coarse grid onto a finer grid.

The next set of experiments dealt with the problem of scattered data, involving a
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plot of 60 points over a unit square, resulting in the exact surface and the

multiquadric surface being indistinguishable from one another. Kansa goes on to
apply the extended Hardy scheme to fluid dynamics, hoping to uncover the
underlying unknown continuous behaviour so that values of a variable anywhere in
the domuin may be predicted. Kansa found Hardy's multiquadric method to be very

promising for such an application.

Saunderson (1992) applied multiquadrics to interpolating fluid speeds in a
natural river channel. The paper describes the application of the method to the
magnitude of fluid vectors taken from a meander. Known point speeds were
reproduced accurately, and several thousand others were interpolated with good
results. Saunderson points out that in many cases where new values of z, are
interpolated, there is still a need for a final contouring process to interpolate
isolines. In this case, the colour coding of a closely-spaced set of points makes this

final contouring process unnecessary.

Saunderson and Brooks (1994), researched multiquadric sections from a
fluid vector field. Having already determined fluid speeds to be a viable
application, these authors went on to show the distribution of fluid vectors by
mapping the vectors observed at different locations in the flow through a river

bend, and by plotting the vectors using the multiquadric method. It was concluded,
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through comparison of the isometric and multiquadric views of fluid vectors from
the tested river bend, that the multiquadric method has considerable promise for the
visualisation of vector fields in sinuous and meandering currents. It is pointed out
that the full potential of this aspect of the method needs to be clarified by further

research.

It seems appropriate to end this section by noting an article by Hardy
(1990) which discusses the past twenty years of discovery in theory and application
of the multiquadric method. The author makes subheadings of applications into
those dealing with hydrology, geodesy, photogrammetry, surveying and mapping,
geophysics and crustal movement, geology and mining, topography, and
hydrography. The variety of these applications suggests that there are many others
which have not been specifically mentioned in this thesis. Hardy makes the
concluding remark that with the acceleration of attention by mathematicians to the
study of the muitiquadric method, other interesting discoveries will be made in the

future, in theory as well as in practise.

1.6 Comparison with other Techniques

Perhaps one of the most detailed comparisons of scattered data interpolation
techniques was conducted by Franke (1982). This extensive article evaluated 29
different algorithms for the scattered data interpolation problem on a variety of

known data surfaces. Franke graded the various techniques according to the
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following criteria: accuracy, visual aspect, sensitivity to parameters, execution time,
storage requirements, and ease of implementation. The methods he tested may be

classified into the following groups: (1) inverse distance weighted methods, (2)

rectangle based blending methods, (3) triangle based blending methods, (4) finite
element based methods, (5) Foley's method, and (6) global basis function methods.
Franke concluded that "In terms of fitting ability and visual smoothness, the most

impressive method included in the tests is the multiquadric method, due to Hardy"

(p.191).

Shaw and Lynn (1972) evaluated two surface fitting techniques. They

compared multiquadric analysis with the bicubic spline function as a method of
representing areal rainfall, noting that the bi-cubic spline function is limited to grid
data. Since rainfall data is seldom acquired this way, their studies focused on
multiquadric analysis, which has the flexibility of allowing the use of non-gridded
data. Although the computation time for the multiquadric method was somewhat
longer than for the bi-cubic spline, it was concluded that in applications involving
changing networks and variable distribution of data the method of multiquadric

analysis would be invaluable.

1.7 Thesis Objective: Application of Multiquadric Interpolation to Drumlin Fields

The multiquadric method has been used for a wide variety of applications,
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and is very accurate, with advantages over many other surface fitting techniques
(Franke, 1982). These advantages include improved accuracy, visual aspects, and a
shorter computation time. This thesis will use drumlin data from two historically
different drumlin fields to test their applicability to the multiquadric method of
interpolation, and Saunderson's (1994) programmes, based on this technique, will

be evaluated, and discussed.

Computational methods of mapping, such as the multiquadric method of
interpolation, have not typically been used to map drumlins. This thesis will be the
first to use drumlins as an application of Hardy's method. There are other benefits
to conducting such a thesis, beyond being a new test of the multiquadri: equations.
It is believed that drumlin research may also substantially benefit from using such

a method of mapping for several reasons.

Measures of the area of a drumlin have been traditionally calculated by
measuring length and width from a topographic map and then using the traditional
cquation (A=I*w) to calculate the value. There are a couple of problems with this
calculation (with regards to drumlin area). Human errors may be made in cither the
collection of the length or width or both values, resulting in an incorrect value.
Even if these values are correct, the equation being used may be questioned, since
drumlins have an elliptical, not rectangular, form. All of this is of significance to

drumlin morphology since area is used in calculating Chorley's k-value (1959), a
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value which is used to describe the character of drumlin morphologies and quantify
their differences. The multiquadric method would overcome this problem. By using
height values alone as z values, surfaces would be generated portraying true
drumlin form, with boundaries between drumlins being at some of the locations

where 9z/0x and 0z/3y = 0 (the other zero values being the tops of drumlins).

The ability to use such a means of mapping drumlin morpholcgies will also
aid in this area of research. Instead of qualitatively describing differences across a
drumlin ﬁe:ld, the multiquadric method, which has proven advantages over other
methods, will allow sections of drumlin fields to be quantitatively mapped. This
would result in colour graphics of variations in drumlin morphologies. Such

graphics will be created for both the Lunenburg and Peterborough drumlin fields.

Above all, the value and applicability of drumlins to this procedure
(outlined in the following chapter) of Hardy's multiquadric method will be
evaluated. Where necessary, drawbacks as w s advantages of the method will
be pointed out for this application. It will be pointed out that there are a number of
factors which will influence the final results, such as the size and shape of the
sample area, the method of sampling, the number of points sampled, and the scale

used for producing the final image, among others.
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CHAPTER TWO

REGIONAL APPLICATION AND METHODOLOGY

Two drumlin fields were chosen ror this research project. These are
the Lunenburg drumlin field in Nova Scotia, and the Peterborough drumlin field in
Ontario. These two drumlin fields were chosen for a number of reasons. The
Lunenburg drumlin tield was chosen because of some previous data collection and
a knowledge of the area {Schroeder (Conrad), 1993). It was also chosen because of
the complexity of drumlin orientations in the area. The Peterborough drumlin field
was chosen because it is located near to the study of research, and because it is
such a large field, with maps available to easily observe and collect data from the
drumlins. It was also chosen because the glacial history is very different than that
of Nova Scotia. Not only will this show different results for each field, but it will
also mean that Hardy's method will be used for twu different areas, and testing the

method for more than one drumlin field.
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2.1 The Lunenburg Drumlin Field

Nova Scotia has a number of drumlin fields, of which the Lunenburg field,
situated 80 kilometres southwest of Halifax, is the largest (Fig.2.1). Some of the
largest "classic” drumlins in Nova Scotia are found here, with the slate areas of
Lunenburg County forming "typical” drumlin country. The glacial history of Nova
Scotia is characterized by external and local ice divides. The first ice flows were
southeastward, then southward across Nova Scotia from external centres and
divides (Stea and Brown, 1989). Very little can be said about the past drumlin
research in Nova Scotia. Some general work was conducted by Gravenor (1974)
although this work was aimed specifically at the Yarmouth field. Stea and Brown
(1989) conducted research on the Lunenburg field, dealing with the complexity of

drumlin onentations.

2.2 The Peterborough Drumlin Field

The Peterborough drumlin field is located approximately 110 kilometres
northeast of Toronto. It covers 900 km? on a Paleozoic limestone plain and is one
of the largest drumlin fields in southwestern Ontario (Fig.2.2). It is situated in a
depressional area between the Algonquin upland to the north and the Niagara
Escarpment to the southwest (Sharpe, 1987). Erosion of the limestone plain
provided sediment in the overlying glacial drift. This drumlin field lies to the north
of a major late Wisconsinan moraine system, the Oak Ridges moraine, that

comprises large masses of stratified glaciofluvial/ glaciolacustrine sediment
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(Duckworth, 1979). Sharpe (1987) believes that the drumlin field may be a

transitional set of landforms to the Oak Ridges moraine, stemming from a
hypothesis that drumlins are but one landscape feature in a transitional series

having been formed beneath an ice sheet. Gravenor (1957), however, believes that
the Peterborough drumlin field was formed by erosion to the north part of the

moraine.

2.3 Lunenburg Drumlin Field Data Collection

Drumlin data were collected using 1:10 000 orthophoto maps produced by
the Nova Scotia Land Registration and Information Service. It is believed that data
collected from these map sheets are accurate, due to the fact that the scale is
relatively large, and the contour interval of 5 metres is well suited for the purpose.
Most similar studies which have obtained drumlin data from maps have been those
with 1:25 000 scales or smaller (Jauhianen, 1975; Rose and Letzer; 1975, Coudé,
1989). Such studies have also used aerial photographs in order to obtain more
accurate information. Rose and Letzer tested the reliability of data derived from
1:25 000 scale topographic maps. They concludéd that

"...topographic maps [of this scale]
fail to give information at the precision

level required for the analysis of this
type of glacier bedform." (1975, p.361)

It is believed that the Lunenburg data collected in this study are as accurate and

detailed as possible for two reasons. First, they were obtained from large-scale map



S

-p
F, g:&‘-’::t' 2 .
SNSRI o
R 3
: 0%
&
. _'.1:‘:2:,::;1"
Ki? YAt Xy
GUELPH " Ga7 /%t
Pac? -
3 :

b
~a

314

(R 3%
3
o
(o]
o
w
-
o
o
S

V3 Niagara escarpment

I
., '9 -
R A
ﬂ' )
. "
ALGONGQUIN
UPLAND

o L %
NE_—<TI0E
M'(?Rél :-p'_,.:-‘\w' b bl
. ! Vel . "%
. .;.! . .‘.O‘u'-"

LAKE
ONTARIO

22

Figure 2.2 Location of the Peterborough and other major drumlin fields in southern
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sheets with consistent criteria for data collection. Second, orthophoto maps, rather
than topographic maps, were used. Orthophoto maps are produced from an
assemblage of overlapping air photos which have been constructed to show natural
features in their true planimetric positions. Precise measurement of distance can be
made directly on the orthophoto map because the original photos were assembled

to match a network of ground control points.

For the purpose of this study, drumlins were recognized by parallel groups
of elliptical contour patterns. Once the drumlins were identified, height values were
collected for each drumlin. Height was easily determined, due to the fact that spot
heights were located at the highest point of each drumlin, as well as spot heights at
the swales between drumlins. Following an extensive initial set-up of several test
sections, it was determined that a certain criteria for selecting heights surrounding
the drumlins would need to be foliowed. This meant that heights were consistently
selected between adjacent drumlins, whether horizontally or vertically. This would
ensure that the drumlin forms could be depicted. Without selecting heights at low
elevations between drumlins would result in images that would not depict the
drumlin forms. This was exactly what happened when the heights were initially

non-systematically selected.
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2.4 Peterborough Drumlin Field Data Collection
Drumlin data were collected using 1:10 000 topographic maps from the

Ontario Ministry of Natural Resources Ontario Base Map series. The data collected
from these maps are also accurate, again due to the fact that the scale is quite large
and the contour interval is 5 metres, an appropriate number, given the heights of
the drumlins (average height = 200m). The contours are distinctively visible, and
data were casily obtained from the maps. Unfortunately, orthophoto maps do not
exist for this area, and therefore could obviously not be used. It is believed,
however, that the Ontario Base maps were sufficient to collect accurate data due to
the quality and clarity of the cartography, contour interval, and scale. Height values

were collected consistent to those methods described for the Lunenburg field.

2.5 Computational Methodology

The computational methods in this thesis are adapted from Saunderson
(1994). The first step in this computational process is to obtain samples with xyz
information. As it was noted, this application will be using gridded x and y
locations for drumlin z heights. The program, matrx!.c (Saunderson, 1994) formats
the sampled data, and then takes as input two data files, the first containing the x
and y coordinates of the samples, and the second containing the sampled values for
z. The square roots of the left hand side of equation (7) are calculated from the x,y
coordinates and then printed, with the z values, to an output file called matrx/.dat,

which is then used as input to the numerical recipe called "singular value
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decomposition with back substitution” (Press et al.,1988). This is also used to solve

the column vector ;.

A second program, xyzpart.c, (Saunderson, 1994) is used to obtain new,
interpolated values. The program uses the x,y coordinates as input from which a
large number of interpolated locations (xp,yp) are generated. These locations are
determined by setting a for_loop, with a standard increment, which will change the
x and y coordinates. The output from the singular value decomposition routine
(Press, et al.,1988) is in a file called cvec, containing the column vector c;. This
program opens cvec and uses ¢; to perform row-by-column multiplication to obtain
the interpolated values for z, of equation (8).The interpolated z values are then
stored together with the x and y coordinates in a new file (xyz). In addition to
interpolating new z values, xyzpart.c also calculates the partial derivatives of z with
respect to x and with respect to y using equations (9) and(10). The dz,/0x values
are stored in the output file partialx and the z,/dy values in partialy (Saunderson,
1994). Both the xyz files and the partialx and y files can be split easily into
smaller files for input to the plotting routines xyzplot.c and prtiplx.c or prtiply.c

respectively.

A third program (xyzplot.c) takes blocks of 16 000 numbers from the xyz
file as input files (a small awk program splits xyz files into smaller files). The

input file names need only be typed as arguments to main() in order for the
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coloured graphics to emerge on the screen (ex. xyzplot xyzd1 xyzd2 xyzd3). The
program draws a border and legend, establishes a real coordinate mode instead of
the physical (default) system of coordinates, and plots the z values at their
specified coordinates (Saunderson, 1994). Specific colours are assigned to each z

value and are displayed within the border.

A fourth and final program (prtipix.c or prtiply.c) takes either the values of
0z,/0x from partialx or 0z,/0y from partialy as input. Like xyzplot, the numbers
are input as sets of 16 000. The plots of the partial derivatives provide information
on local gradients on the surface generated by xyzplot.c and on the directions of

those gradients parallel to the x and y axes (Saunderson, 1994).

The following chapter will discuss the specific procedure that was
undertaken to obtain both xyz and partial derivative plots using one example from

the Lunenburg drumlin field.
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CHAPTER THREE

WORKING EXAMPLE

In order to understand the process of deriving interpolated xyz and partial
derivative plots from the multiquadric method, an example from the Lunenburg
drumlin field will be worked through in its entirety. This sample area was chosen
due to the accurate nature of the maps. The methodology follows that of

Saunderson (1994).

The sampled section of the Lunenburg field, which will be outlined, is
located in the eastern portion of the drumlin field (Figure 3.1). Drumlins were
identified, based on the criteria outlined in the previous chapter, and spot heights
for those drumlins were collected. In order for the interpolated images to even
remotely resemble the actual landscape, heights surrounding the drumlins needed to
be collected. These heights were collected between drumlins in most cases, and
lowest elevations were chosen. Without a geomorphological background, the best
heights to chose in order to get the best resulting images would not have been

known. Figure 3.2 shows the exact locations of the data points (heights) which
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were initially collected.

These data were then entered into the computer, using QuickC for DOS
(Tables 3.1 and 3.2). As the origin of the plot was placed at the upper right corner
of the study area, the x,y coordinates are negative, x being the east-west distance
across the drumlin field, and y the north-south distance down the field. Saunderson
(1994) points out that users with a preference for positive numbers could place the
origin at the lower left comer and make small changes to the programs. Once these
two files were set up, the computational methodology that was outlined in Ghapter

two could begin.

The program, called matrxi.c , is the first in a series of four which result in
the final, plotted products. The only change to this program was the definition of
"N" (the number of records) to whatever the number of data points there are. In
this case, N was changed to 51. Matrxl.c could then be compiled on a command
line and run using this command;

matrx] Ltest2xy.dru Ltest2z.dru
Ltest2xy.dru and Ltest2z.dru were the names of the two input files fcr this
application. These would change depending on whatever the user called his/her

files.

The output created from this is called matrx].dat. A number of numerical



0.1 -0.1
-0.5 -0.6
-0.2 1.4
-1.1 -0.7
-1.2 -0.8
-1.3 0.7
-1.6 -0.5
-1.6 -1.1
-1.4 -1.3]
-1.3 -1.4
-1.8 -1.6
-2.7 -0.4
-2.5 -0.8
-2.3 -1.1
-2.5 -1.5
-2.4 -1.6
-2.5 -1.9
-2.5 -2.2
-3.1 -0.5
-3.5 -0.4
-3.6, -1.3
-3.5 -1.7
-3.5 -0.8
-4.2 -0.5
-4.1 -0.3
-4.5 -0.6
-4.8 -0.7
-6.1 -C.9
-4.2 -1.3
-4.4 -1.4
-4.1 -1.9
-4.1 -2.2
-5.4 -0.5
-5.7 -0.6
-5.5 -1.§
-6.1 -0.4
-6.4 -0.5
-6.2 -0.7
-6.8 -Q.7
-6.3 11
6.2 -1.3

-8 -1.5
-6.2 1.9
-8.7 1.5
7.2 -0.4
-7.6 -0.7
-7.9 -0.5
7.3 S
-73 -1.7
-73 -1.9
78 1§
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Table 3.1 Raw data file Ltest2xy.dru containing x,y coordinates of sampled

points in the Lunenburg drumlin field.
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Table 3.2: Values of z in file Ltest2z.dru which are actual heights in metres,

collected at the coordinates in Table 1.
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recipes (Press et. al.,1988) were then used, inputting matrx/.dat, and then
outputting the column vector c;. In the numerical recipes xsvbksb.c, svdcmp.c, and
svbksb.c were then compiled with nrutil.h and pythag.c. Output to cvec could then
be accomplished by simply typing;

xsv > cvec

at the dollar sign ($) prompt.

A number of changes were then made to the program xyzpart.c. Again, N
needed to be changed to 51, and then the length and width of the study area were
changed to fit this application. A final change made to this program was the
memory allocation function malloc(). This function was used in a multiple "for"
construct to overcome the 64k limit to the size of data segments in large arrays
(Saunderson, 1994). The numerical value of malloc() was therefore required to be

changed to 192 to suit this application.

Once these changes had been made, the program could be compiled on the
command line. The program could then be run using the original xy data file as
input:

xyzpart Ltest2xy.dru
Depending on the speed of the hardware on which this software is being used,
running xyzpart.c could take from a couple of hours to a couple of minutes to run.

This work was run on a 486DX, and therefore only took about 3-4 minutes to
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excecute. This program then created three output files; xyz, partialx and partialy.
Changes were required to be made to all of these files, so they will each be
described separately, resulting in the final images which were derived from the

computed information in each file.

The xyz files store the new x and y locations as well as the z (height)
values. Using a small awk program, the maximum value of z was calculated in
order to be added into the eventual plotting program xyzplot.c. The number of
records was then determined, again using a small awk program, in order that the
xyz file could be divided into a couple of smaller files. The program xyzplot.c takes
blocks of 16 000 records from the xyz file as input files (again, by using awk). A
choice of 16 000 or less enables the program to compile within the 64k limit for
the array size (Saunderson, 1994). Once those changes were made to the xyz file, a

few changes were required of the program, xyzplot.c.

First, the maximum value was changed to 77.0 metres. The width and
length of the study area were also changed (in this case to 7.80 and 1.80) and it is
noted in a comment statement in the program for users to change this to suit their
application. The coordinates for the window within which the plot was to be drawn
also needed to be changed, and this is again noted in comment statements in the
program. A change which was required for this application (and might be for other

applications) was the intervals of the percentages of the maximum value, which
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assigned the z values to different colour classes. The interval, which was 5, was
changed to an interval of 10 to enhance the image and display the best results, this
being a trial and error process. A final change to this program was simply to

change the labels and the intervals for the legend.

Once these changes had been made, the program could be compiled and the
input file names then typed on the command line as arguments to main()
xyzplot Lun3 Lun4
(Lun3 and Lund being derived from the xyz file). The program sets and scales
VGA mode, draws a border and legend for the plot, establishes a real coordinate
mode instead of the physical system of coordinates, and plots the z values (heights)

at their specified locations (Figure 3.3).

When looking at this plot, upon comparison to the actual map of the
landscape, it can be seen that the interpolated image closely corresponds to the
actual landscape (Figure 3.4). It was an initial goal to determine whether this
specific procedure would actually map the drumlin features, and these can clearly

be observed in this image.

The next step at this stage was to plot the partial derivatives. Similar to the

xyz data, changes were made to partialx and partialy data. Once those
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Figure 3.4 Interpolated drumlin image and actual map of drumlin landscape
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changes were made, changes were required of prtiplt.c, the plotting program for the

partial derivatives, similar to xyzplot.c.

The first thing that needed to be done to both the partialx and partialy files
was to eliminate the fourth column, since this column was not required for this
application. Then, both the maximum and minimum values were determined, since
the slopes have both positive and negative values. For this example, the maximum
of partialx was (+)146 and the minitnum was (-)146, so the maximum value used
(for ease in plotting) was (+)146. The maximum slope of the partialy file was

(+)189 and the minimum slope was (-)168.

Both of these files, similar to the xyz file, were also divided into blocks of
16 000 for input to the prtiplt.c program. Once these changes had been made, and
values determined, the changes to prtipit.c could be made. Although two plots were
determined from the prtiplt.c program (one for the partialx values and one for the
partaily values), the changes to the program will only be discussed once, since the

only difference hetween the two is the maximum value.

The changes to prtipit.c are similar to those that were made to xyzplot.c.
For the partialx plot, the maximum value was changed to (+)146, and for the
partialy plot, the maximum value was changed to (+)189. The length and width

and coordinates of both plots were changed to the same values as those for the
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xyzplot.c program, since all of these values came from the same sample area. The
interval was then changed to a range of (+,-).99 to (+,-).50 and (+,-).50 to (+,-)1.
The .99 and .50 values are percentages of MAX (the maximum height), while the
(+,-)1 values are absolute. This last class ((+)1 to (-)1) was crucial in picking out
those areas where the slope is near zero. For values closer to zero to have been
used, the reduced number of points would have meant that those areas on the plot
(Figure 3.5 and Figure 3.6) would not have been visible. Once these changes were
made, the program could be compiled, and then plotted, by typing the input file
names on the command line as arguments to main,

prtiplt Lprtix3 Lprtix4 (for partialx's)

and

prtiplt Lprtly3 Lprtly4 (for the partialy's)

When initially glancing at either the partialx or partialy plot, it might be
assumed that neither corresponds to the xyz plot. Upon closer investigation and
explanation of the images, however, it may be seen that they correspond quite

nicely. The partialx plot will be explained first.

3.1 Partialx Plot
The plots of the partial derivatives provide information on gradients on the
surface generated by prtiplt.c and on the directions of those gradients parallel to

the x and y axes. The plot of the partialx derivatives shows those gradients parallel
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Figure 3.5: Plot of partialx derivatives at the same locations as interpolated

heights in Figure 3.3
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Figure 3.6 Plot of partialy derivatives at the same locations as interpolated

heights in Figure 3.3
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Figure 3.7 Interpolated xyz drumlin image and interpolated partialx image
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to the x axis. If one were to look at the xyz and partialx plots together (Figure 3.7),
moving the eye from left to right, sense can be made from the image. Green is a
positively sloping section, blue is a negatively sloping section, and purple gives an

indication of those areas where the slope flattens out.

3.2 Partialy Plot

The plot of the partialy derivatives shows those gradients paraliel to the y
axis. It is easier to visualize the correspondence o'f the partialy plot to the xyz plot
when looking at them together, turning them so that the left-hand side of the
window faces the eye (as shown in Figure 3.8). Again, those areas with a positive
slope are green and those areas with a negative slope are blue, with purple
indicating those areas where the slope flattens out. The pattern formed by the
positive and negative derivatives generally indicates the stoss and lee of the

drumlins, however the fit is not a perfect one.

3.3 Error Evaluation

In order to numerically estimate whether the interpolators are actually
calculating values that resemble the real heights, a reliability test was conducted.
Every second value from the original Ltest2xy.dru and Ltest2z.dru was eliminated
and the interpolation procedure, previously outlined, was conducted for this new

set of files. The original Ltest2xy and z.dru files contained fifty-one records. With
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every second record removed, this meant that a total of twenty-five records were
deleted, leaving the new test files with a total of twenty-six records. It must be
noted that every one of the fifty-one points in the initial files were crucial for
determining the final, accurate image. It would therefore be expected that by
removing almost half of the initial heights, substantial errors would result. Even
though this was expected, it was considered a valuable evaluation, with the desire
being an estimate of the errors. Table 3.3 (all Ltest2 error data) contains the results
of the error evaluation for these files. This table has both the observed (o) and
interpolated (i) values for elevation, as well as the relative error (expressed as a
percentage). The first and second columns contain the x and y coordinates of

sampled points, x being east-west distance and y being north-south distance.

It might also be noted that the size of the errors also depends on the range
of heights for the file, since the larger the range, the greater the expected error.
The errors also depend on the size of the file (number of records), and, as stated,
the number of records which were removed (this will be discussed further in the
following chapter). The z file (height file) from which new heights were
intepolated, had a seventy-five meter range of heights. The maximum error was
(+)40.4384 m, the minimum error was 0.0000, with the average error being about

(+,-)15.7495 m. The context of the results of these errors will be discussed with

the results of some of the other data files in the following chapter.
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With refinement of the plotting, and control of error, multiquadric
interpolation could aid in the calculation of actual drumlin area, which has been a
problem or ignored by researchers in the past. Those sections of the plot where the
purple colour is located, indicate a break in slope, which could cither be at the
actual edges or on the crest of a drumlin. An example can be seen when looking at
Figure 3.7, in the lower left-hand comner of both images. The xyz plot shows a
drumlin, and the partialx plot shows a band of purple, indicating that this may be

the flattened crest of the hill.

The following chapter will discuss the general results and provide an

overview of the entire research procedure.
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. 1-0/0
X Y ) () (i-0) %)

0.5 -0.6 21 9.8261| -11.1739 53.21
-1.1 -0.7 34| 19.8844| -14.1156 41.52
-1.3 -0.7 27 17.755 -9.245 34.24
-1.6 -1.1 371 12.7116| -24.2884 65.64
-1.3 -1.4 28| 15.6813| -12.3187 43.99
-2.7 -0.4 29| 29.7468 0.7468 2.58
-2.3 -1.1 38| 11.4272| -26.5728 69.93
-2.4 -1.6 8| 21.45%1 13.4551 68.19
-2.5 -2.2 23] 15.6743 -7.3257 31.85
-3.5 -0.4 26| 28.2284 2.2284 8.57
-3.5 -1.7 48| 24.0678| -23.9322 49.86
4.2 -0.5 66| 35.2494| -30.7506 46.59
-4.5 -0.6 42| 54.5253{ 12.5253 29.82
-5.1 -0.9 32! 55.2223| 23.2223 72.57
-4.4 -1.4 57| 33.5572| 23.4428 41.13
-4.1 -1.9 27 27 0 0
-5.7 -0.6 31 42.8969! -11.8969 38.38
-6.1 -0.4 31| 52.1451) 21.1451 68.21
R -6.2 -0.7 31| 45.4381 14.4381 46.57
-6.3 -1.1 58| 27.4258| 30.5742 52.71
-6 -1.5 52| 21.8879| 30.1121 57.91
-6.7 -1.5 23| 33.2605| 10.2605 44.61
-7.6 0.7 59| 18.5616| 40.4384 68.54
-7.3 -1.1 32 25.145%5 6.8545 21.42
-7.3 -1.9 32| 26.7611 5.2389 16.37

'I‘a.ble 3.3 Error evaluation for files Ltest2xy.dru and Ltest2z dru. (o) is obsereved
height, and (i) is interpolated height



Figure 3.8 Interpolated xyz drumiin image and interpolated partialy image
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CHAPTER FOUR

GENERAL RESULTS AND DISCUSSION OF RESEARCH

An example of how the multiquadric method of interpolation can work for
drumlin landscapes has been outlined. There was a long process which had to be
worked through before that viable, final working product was reached, however.
This chapter will outline that process, indicating the favourable aspects of as well

as the drawbacks of the multiquadric method in this application.

4.1 Initial Lunenburg Data Collection

Initially, eight orthophoto map sheets were used (Figure 4.1) and two
hundred and seventy-three drumlins were identified. Two hundred and eighty-eight
non-systematically selected heights between and around the drumlins (swales) were
also collected, resulting in a total of five hundred and sixty-one heights to be used.
The eight orthophoto map sheets formed the sampling sizes of the Lunenburg area
Both the actual drumlin heights as well as the random heights between the

drumlins were then divided into seventeen computer files. Seventeen xy files
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included an xy and z coordinate which locates each drumlin and its sampled
heights. Seventeen z files included the heights of the drumlins and intervening
swales. Changes needed to be made with regards to sample size, both numerically

and aenally to this initial set-up.

4.2 Initial Peterborough Data Collection

Initially, ten topographic map sheets were used and ninety-two drumlins
were identified (Figure 4.2). One hundred and eleven spot heights between the
drumlins (swales) were also collected, resulting in a total of two hundred and three
heights to be used. Drumlins and drunilin heights were collected consistently with
those methods described for the Lunenburg field. Both the actual drumlin heights
as well as the random heights between the drumlins were then divided into six
computer files. Each record in the x,y files included an x and a y coordinate to
locate each drumlin and other sampled elevations. Six z files included the
elevations of the drumlins and intervening heights. As with the initial Lunenburg

sample areas, the Peterborough sample sections needed to be revised.

There were a number of reasons as to why these sampled sections did not
work out. By not working out, this dr-.. 't mean that xyzpart.c would not run, and

images could not be produced, becauss each section generated a surface. The
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surfaces did not, however, reflect the initially sampled surfaces from the
orthophoto maps. Resampling then was done, with the goal to generate more
accurate images. Some of the reasons why the initial set-up did not work, resulting

in changes that were made for the second set-up, will be discussed.

4.3 Reasons for Errors in Initial Set-up

4.3.1 Lunenburg Study Area

It was discovered very early on that xsvbksb.c would not run if the number
of records in the xy file was greater than fifty-seven (this will be discussed more
completely at the end of the chapter). With an average number of thirty-four
drumlins in each study area, this allowed for only eleven intermittent heights to be
collected, in most cases. This was not initially discovered, however. An average of
thirty-six random heights (per study area) were collected.Each study area was then
divided in haif (through the middle, from left to right), meaning that there was an
average of seventeen drumlins and eighteen random heights per study area (now
sixteen, since the initial eight were divided). Saunderson (1994) had noted that
interpolation of new z values, using the multiquadric equation could be used for
any number of locations within the x,y domain of an initial sample space of points.
In this initial research, as pointed out, it was discovered that only up to
approximately fifty-seven data points could be used, otherwise xsvbksb.c would not
run, meaning that new z values would not be interpolated, and partialx and y

values not output.
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There was another problem with the initial sampling method used. The
intermittent heights, around the drumlins, were selectednon-systematically. Shaw
and Lynn (1972) stated that an advantage of the multiquadric method was its
suitability for dealing with nongridded (scattered) points, selected at random. This
research found that to be completely untrue for this application. Selecting random
heights meant that care was not taken to ensure that lows between drumlins were
sampled, or if a drumlin was located near an edge of the study area, care was not

taken to include a lower elevation closer to the edge of the section.

Hardy (1971) pointed cut that ambiguity in data collection can lead to the
method doing a number of unreliable things, especially if significant initial data
points are left out. Random heights were purposely selected in this initial set-up.
and a number of unreliable things, as Hardy put it, did occur. In his own terrain
analysis, Hardy discovered that when more data (including crucial points) were
added, the multiquadric surface became a reasonably good generalization of the

terrain.

Franke (1982), in his test of interpolating techniques, similarly noted that
terrain data may be sparse in certain regions, or exist in clumps. He hypothesized
(although did not test) that methods based on quadratic approximations would not

work in a reasonable fashion for this type of data. The current research found this
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to be the case, although the problem could be resolved (as will be shown in the

second set-up).

A final problem which was discovered at this stage was determining the
correct elevation interval. A trial-and-error process was used, in the event that the
xyz images from this initi;l set-up might be accurate, the problem being that the
incorrect interval was being used. After this trial-and-error process had nearly been
exhausted, and yet the images were still not correct, it was concluded that the data

would need to be resampled.

4.3.2 Peterborough Study Area

Many of the reasons why the initial Peterborough data needed to be
resampled are the same as those for the Lunenburg study area. There were reasons
specific to this field, however, and therefore Peterborough is being discussed

separately from Lunenburg.

Unfortunately, the problems which were discovered for the Lunenburg field
were not observed until after this initial Peterborough data had already been
collected. All of the data, for both fields, was collected, and then computer images
were generated. It was then that the problems were discovered. The problem of
having too many data points for each sample area was not an issue for the

Peterborough sections, since the average number of drumlins was twelve, and the
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average number of random heights was fifteen, with an overall average of twenty-
seven original data points per section. This fell well below the discovered limit of
approximately fifty-seven original data points. The original test sections were not,
therefore, divided into half, because the xyz and partialx and y files were
successfully generated from xyzpart.c. The major errors that resulted in these
images were primarily due to randomly sampling the intermittent heights, and not
systematically looking for sections of the terrain that could erroneously be

interpolated.

As with the Lunenburg sections, it was discovered that there had been a
problem with the data collection. This was discovered when the xyz data was
plotted and looked absolutely nothing like the actual drumlinized landscape. The
ranges for the percentages of MAX (the maximum drumlin heights for each image)
were changed, again using trial and error, until it was concluded that the data

would have to be more systematically collected.

4.4 Revised Lunenburg Data Collection and Results
Although the initial test sections did not work out, they are not regarded as
having been a waste of time. Without the entire process of failure, success could

not have been reached.
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New sections were set up within the same study area as the initial samples
(Figure 4.3). Eighteen sample areas with approximately two hundred and fifteen
drumlins and six hundred and eighty-eight systematically sampled heights
surrounding the drumlins were then set up. These new sample sizes were chosen,
with the number of drumlins within each in mind, so that the number of
intermittent heigh:s could be optimized. This means that the sections had to be
small enough to allow for a large number of heights around the drumlins to be
collected (keeping in mind that more than fifty-seven values would not run). The
heights (excluding drumlin heights) were strategically chosen this time. Lowest
elevations between drumlins were collected, and more heights were therefore
collected in areas where there was a cluster of drumlins. Data was then entered
into the computer, creating xy and z files of information, similar to that outlined in

Chapter three.

Of the eighteen sets of data that were collected, fourteen successfully ran,
and had xyz and partialx and y files created. All of the four that did not run had
more than fifty-seven records of data, as a second attempt. Of those fourteen, there
were five that were especially worked on to see if the best possible results could
be reached, and they were. This does not mean that the other nine sections could
not generate successful results, but that five were quickly determined to exhibit

accurate results. This was also a workable number of sections for getting the
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Figure 4.3 Revised Lunenburg study area
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optimal results. By changing the intervals of the drumlin height classes, the results
for each of these sections was a close approximation to the actual landscape, and

drumlins could easily be picked out on the images.

It might seem like this has been a long process to get to this stage, but once
the criteria for data selection were understood, the computational steps were quite
successful. The only obvious limitations were the trial and error process for getting
the best interval for optimal image results and the fact that no more than fifty-
seven points of original data could be used. As Franke (1982) discovered, the more
original data points used, the more accurate the image. An original one hundred
point sample, in his study of the multiquadric method, interpolated an actual image

almost exactly.

4.5 Revised Peterborough Data Collection

New sections were set up within the same study area as the initial samples
(Figure 4.4). Four smaller sample sections were set up, with approximately thirty
drumlins and one hundred systematically sampled intermittent heights collected. All
four of these sets of data ran, and had xyz and partialx and y files created. Of
these four, one was especially successful. This again meant several attempts at

getting the best drumlin height class interval to make the inage resemble the actual
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Figure 4.4 Revised Peterborough study area
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landscape. This was successfully completed, and the section was a close

approximation of the actual landscape.

In general, these final five Lunenburg sections and one Peterborough
section interpolated images that very closely approximated the actual landscapes.
Although time was concentrated on these sections, it was because the images
generated from them were accurate representations. It is possible that with more
time, better results could have been generated for the other sections as well. It
might be questioned why these sections were interpolated so accurately, however,
while others did not. Given the fact that the method of sampling the heights for all
of the revised sample sections was consistent, all or no images should have
accurately turned out. Hardy (1971) concluded in his research that the deficiency in
size and shape of the hills resulted mainly from poor elevation choices for
representing the hills and the saddles between them. In this case, several elevation
choices for each section were tested, and the image was not abandoned as
unsuccessful until many ranges had been applied. For those images that were
successful, a variety of elevation choices were tested. If only one elevation interval
had been used for every section, it is likely that no succzssful test areas would
have been determined. Therefore, Hardy is correct in stating that the size and shape
of landscape features can depend highly on the best elevation choices; it is believed
that those study sections (for this research) which did not resemble the test

landscape, were not a result of poor elevation choices. There are many other
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reasons why the images did not resemble the test surfaces, however. The surfaces
which Hardy tested were not as complex as the ones in this study, which would
mezn that more initial data points would need to be included for the images to
sufficiently resemble the test surfaces. Unfortunately, only fifty-seven points could
be used. Also, those initial sections which were tested resuited in poor images due
to the method of randomly selecting the data. Once the data was selected, with

geomorphological thought going into that selection, the images being generated

were much better.

Even though the heights were consistently collected during the revised data
collection, for both the Peterborough and Lunenburg fields, the terrain was
different for each of those sections, and therefore each test area would have had
initial data points in different patterns within the section. For example, a section
with a number of drumlins together would have meant that several intermittent
heights would have been coliected around all of these drumlins, resulting in a
number of data points. In his terrain analysis, Hardy (1971) noted that a few
additional points on the hilltops would have helped form elliptical rather than
circular contours. It could be that in those sections where more data was collected
around the drumlins, the images turned out to better resemble the actual
landscapes. This suggests that if the multiquadric method could perhaps be adapted
for use as a local interpolator, rather than just a global interpolator, the resulting

surfaces might be better.
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Franke (1982) discovered that the more initial data points that were used,
the more accurate multiquadric }nterpolaﬁon worked out to be. It was determined
that the average number of initial data points for the most successful sections was
48, while the average number of initial heights for the other sections was 45. It is
believed that this is not significant, however. Franke conducted his test with
twenty-five, thirty-three, and one hundred points of data, with the best results
coming exclusively from the one hundred point initial data sample. Hopefully, the
fifty-seven point limit may be overcome and then more initial data points can be
used to see if this holds true. A possible way of doing, this in the future might be
to use the multiquadric method as a local interpolator, enabling one to integrate the

results over the entire surface.

4.6 Comparison of Multiquadric Sections

Without exception, all of the images that were generated (for both the
Lunenburg and Peterborough fields) from the initial set-ups were poor. There was a
number of reasons for this, which, once realized, will allow images that resemble
the actual landscapes to be generated much quicker. It has already been mentioned
that heights surrounding the drumlins are required to be systematically collected,
with low elevations around all drumlins to be included, for a good representation to
result. This was not done in the initial set-up. In the subsequent data collection,
more intermittent heights were collected, with drumlin shapes visible in the

resulting images, in the locations where they would be expected. Of the images in
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the second set-up, there were not ones that were substantially better than others. In
order to make these images even closer to the actual landforms, however, would

require the collection of even more initial heights.

Another problem with the initial study sections for both drumlin fields was
the size of the study areas themselves. Not only were they too large to allow for
more detailed data collection (due to the N=57 limit), but the sizes and shapes did
not plot well with the programmes as they exist. The legend is located at given
coordinates, and with larger plot sizes and shapes, the legend would either need to
be left out or the programmes substantially modified. This was not realized until
the initial plots had been tested. In the second set-up this problem was overcome
by making sure that the sizes of the study area would fit above the legend and that

the x axis was approximately four times as long as the y axis.

In general, the initial study sections of both the Lunenburg and
Peterborough drumlin fields were not successful due to the size, shape, and data
collection methods used. By following those methods in the second set-up,
however, the study sections were all successful, in that the drumlin forms could
easily be seen, in locations that correspond to the map sheets from which the data
was collected. By following this method, it is believed that accurate representations
of a given surface can be generated. It is also believed that even more accurate and

more detailed surfaces may be generated by collecting more data for smaller
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sample areas.

4.7 Error Evaluation

Although evaluation of interpolated errors could be a thesis in itself, a brief
discussion of interpolated errors is considered to be useful for this analysis. As
with the working example in the previous chapter, an error evaluation was
conducted for many of the xy and z files, in order that some of the resulting errors
could be quantified. Fourteen of the re-tested Lunenburg sections (including the
working example), and two of the re-tested Peterborough sections were evaluated,

by removing every third value from the original files (Table 4.1).

Table 4.1 gives observed (o) and interpolated (i) values,and average values
of elevation errors. Range of height, number of records, and number of records
removed, are also included, so that an overall analysis of the errors could be
conducted. One might easily assume that by looking for that set of files with the
largest mean error, the greatest inaccuracies in interpolation would be found, and
therefore this set of files would generate the most inaccurate image. There are a
number of factors which need to be considered, however, since each set of files is
not being generated with the same conditions. The range of heights, the number of
records, as well as the number of records removed from each set of files, are all
factors which should be taken into consideration. It would be expected that the best

interpolated heights (those files with the lowest mean errors (i-0)) would be
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derived from those files with the lowest range of heights, the largest number of

records, and the smallest number of records removed.

The smallest mean error (+,-12.6225), however, comes from files with only
an average number of records and quite a large height range (100.0 m). The largest
mean error (+,-20.2930), was derived from files with one of the smallest (but not
the smallest) number of records, but the height interval was less than that for the
files which generated the lowest mean error. The files with the smallest number of
records (19) generated a relatively low mean error. The files with the largest
number of records (38) generated an average mean error, but these files also have
a large height range; therefore it is possible that the advantage of a large number
of records could have been offset by the large range of heights. Those files with
the largest height range (114.0 m) generated quite a large mean error, while those
files with the smallest height range (43.0 m) generated one of the smallest mean

C€rrors.

From these results it could be concluded that the errors which are generated
are a result of the complexity of a number of factors. The working example,
outlined in the previous chapter, was one of the set of files which generated one of
the best (and most accurate-looking) images. When looking at the mean error for
these files, however, it falls into the middle range, with several files having mean

errors that are smaller than this one. It might be noted, however, that given the fact
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that nine to twenty-five crucial records have been removed from original data files,

the results are quite good.

In conclusion, even though problems were discovered, the method by no
means should be over-looked, because the advantages greatly out-weigh the

disadvantages. Hardy (1990) put this nicely when he stated that

“Multiquadric...methods are not
foolproof but the mathematical
proofs that the MQ systems of
equations is always solvable,
should encourage those who may
have problems with solutions

to try again,..." (p.205)
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max (i-0) min (i-0) mean (i-0) | height range # of records
(m) removed
Ltestxy.dru | 40.6250 -0.213 19.1382 97 22 10
Ltestz.dru
Ltest2xy.dru | -40.4384 0.0000 15.7495 75 26 25
Ltest2z.dru
Ltest3xy.dru | 31.2925 -4.5635 18.6781 95 32 16
Ltest3z.dru
Ltestdxy.dru | 34.9739 0.1336 13.9895 68 35 17
Ltest4z.dru
LtestSxy.dru | -36.2068 -1.2958 14.0172 63 33 15
LtestSz.dru
Ltest6xy.dru | -18.1095 -1.2533 12.6225 100 33 15
Ltest6z.dru
Ltest7xy.dru | 49.6887 1.2447 15.550 104 38 19
Ltest7z.dru
Ltest8xy.dru | -47.674 -4.9113 17.5751 114 31 15
Ltest8z.dru
Liesrx.dru -33.1697 -6.0773 20.2930 93 29 14
Ltest] 12.dru
Ltest]2x.dru | 48.0438 -1.1921 18.9143 95 32 14
Ltestl2z.dru
Ltest!3x.dru § -47.4622 1.8414 18.1439 109 26 13
Ltest!3z.dru
Ltestl4x.dru | -26.3843 -1.2884 14,2556 92 28 13
Ltestldz.dru
Ltestl Sx.dru | -40.2720 -0.312 12.8947 65 34 16
LtestlSz.dru
Ltestl6x.dru | -45.3404 -0.3811 14.4252 86 36 17
Ltestl6z.dru
Ptestlxv.dru | 26.6535 3.8070 13.0244 43 32 15
Ptest!z.dru
Plest2xv.dru | -38.24 0.647 13.2244 78 19 9

Table 4.2 Error evaluation for several Lunenburg and P

eterborough sections
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CHAPTER FIVE

CONCLUSIONS

Hardy's multiquadric method of interpolation was used as a basis for
mapping sections of the Lunenburg, Nova Scotia, and Peterborough, Ontario,
drumlin fields. Saunderson's (1994) specific methodology was used tc test drumlin
mapping as a potential application. The method, in general, has already been
determined by several authors (Saunderson 1992,1994; Hardy 1971,1990; Kansa
1990; Krohn 1976) to be an accurate and reliable method for interpolating data,
with several advantages over other interpolating techniques. The concluding
discussion of this thesis will be based on the results of the application of data from

drumlin landscapes to Saunderson's mcdel (based on Hardy's multiquadric method).

As it was discussed and worked through in Chapter three, a series of
programs (Saunderson,1994) was modified and tested using drumlin and swale
clevations. In a similar manner to Franke's (1982) evaluation and comparison of

several interpolation techniques, Saunderson's programmes of Hardy's method will
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be evaluated based on four criteria: (1) accuracy, (2) visual aspect, (3) execution

time, and (4) ease of implementation.

5.1 Accuracy

The accuracy of this method for drumlins, based on height data, depends
highly on the initial method of data collection. The data for this study was initially
randomly collected. Upon generating images for these initial test sections, it was
quickly determined that the data would need to be collected in a different manner
if the results were even to be somewhat accurate. After the data had been re-
sampled and run in the computer, the resulting images were immediately

recognized, in most cases, to be substantially betts:,

An error evaluation was conducted (Table 4.2) with the highest overall error
being (+) 49.6887 and the lowest overall error being 0.0000. As was discussed in
the previous chapter, there was a variety of factors which contributed to the errors.
In some cases, the errors were quite large, with an overall mean error of 14.7210
for a mean height range of 86.063. The fact that there are such errors indicates a

further need for the study of errors in multiquadric interpolation.

For some drumlins, then, it may be concluded that this methodology can be
used with drumlin and swale elevations to produce relatively accurate results, but

for others, large errors may occur. Care needs to be taken in the initial sampling
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stages, in order that the best and most accurate images possible can be generated.

3.2 Visual Aspect

One of the unique features of Saunderson's methodology is the fact that his
C programs reduce the number of stages necessary in mappings of z values by
climinating the need for using a contouring routine, substituting instead a selection
of colours for classes of z values (Saunderson, 1994). The one problem which was
discovered was in determining the appropriate colour class interval. Any method of
consistently finding the most appropriate interval (i.e.the range/10) was not viable.
Therefore a trial and error process had to be used until the best image was
determined. A user who was not aware of this, mighy generate an image and
conclude that the method did not work, without realizing that the colour class
interval should need to be adjusted. Once manipulation of this is mastered,
however, it is only a process of inspecting the values until the best interval is
discovered. The resulting images are then quite elegant and unique, thereby

removing the additional step of having to use a contouring routine.

3.3 Execution Time

Franke (1982) gave the multiquadric method a B-/C- in his evaluation of
timing. Franke's testing was conducted, however, on an IBM 360/67. This research
was conducted on a 486DX (with a math coprocessor) and therefore the speed of

compiling and running the programs, and then generating an image, was greatly
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enhanced. Speed was of great importance for this research since a large number of
files were being used. If one were to use this method for only a small number of

files, a slower computer would be alright. It is safe to say, however, that without a
faster computer with a math coprocessor, this research would still be in the testing

stages.

5.4 Ease of Implementation

Since the programs are all workable, compilable programs, only minor
changes need to be made to each to suit one's specific application. Time is
required, however, for a novice in C programming to grasp all of the steps required
to reach the end result. Anyone familiar with programming will be able to

implement their application with much greater case.

It might be noted again that to date xsvbksb.c would not run with an initial
data file with more than approximately fifty-seven records. This could pose no
problem for some applications, but it would have greatly aided in getting better,
faster results for this application. One can only assume that the more initial data

points used as input, the more accurate and realistic the results will be.

To conclude, then, it is believed that this multiquadric method is a viable
and visually interesting way of generating drumlin field images. There are many

ways in which this research could be expanded. Further work on the partial
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derivatives to improve the plots, in order that calculations of actual drumlin area be

determined, is but one example.

The research outlined in this thesis has by no means been exhausted. There
is a lot of work that can and will follow from the knowledge gained from this
work. Further investigation into the problem of errors, outlined briefly in the error
evaluation noted in the previous chapters, will begin. This will be done using
several data sets, with such geophysical applications including vertical crustal and
tidal movements, ocean current directions, further terrain analysis as well as
atmospheric information. Testing may then proceed in order to overcome some of
the errors which were not only discovered in this research, but in the ensuing

research as well.

A comparison of the multiquadric method with other interpolation
procedures may be another step in further validating and understanding the
multiquadric an:il-dthcr interpolation methods. Although a study has been concucted
by Franke (1982), the technology and research has sufficiently changed to warrant
further investigation and comparison of interpolation techniques. This would
include a comparison of both local and global methods. The multiquadric method
might then be studied not only as a global procedure, but as a local procedure as

well. This alone might eliminate the problems of limited data input and undetailed

images being generated.
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The multiquadric method of interpolation, then, has by no means been
exhausted. There is a lot more research to be done, and a lot more to be
discovered. Upon future and further investigation of this and other interpolation
techniques, it is hoped that the method will become even more "user-friendly" and
may be given consideration for use by any researcher who studies geophysical

data.
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Raw xy and z Data Files
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