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Abstract

Analyses of spatial point patterns tend to focus on deviations from
randomness by either clustering or regularity. One assumption of these analyses
implies that the point generating process is equal in all directions. However, the
association of the location of points with a process biased in one or more
directions is widely neglected due to a lack of appropriate statistical procedures.
This is surprising, since patterns generated by directional processes are important
in Geography. The purpose of this thesis is to investigate the blunt-triangle
method and the third moment method for their potential of identifying
directionality in spatial point patterns. A point process model is presented that
combines the properties of both clustering and directionality. Realizations of
this model are used with the objective of evaluating the two spatial analytical
procedures. The blunt-triangle method is based on the comparison of blunt
angles between triplets of points to theoretical blunt-triangle statistics. The
failure of these statistics to find the characteristics given in the model can be
explained by the dependence of the blunt-triangle method on assumptions of
randomness. The third moment method examines the distributions of distances
and angles between points, and is thus expected to be sensitive to a directional
bias in spatial point patterns. It is shown that if the parameters of the procedure
are chosen properly, different levels of directionality can be identified. The third
moment method can thus be recommended for empirical applications in
Geography.
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Chapter 1: Introduction

Introduction to the Topic

The description and explanation of the spatial patterns of objects and events are
two of the traditional intentions of geographic research (Harvey, 1968). The
incidence of phenomena observed in the real world can be represented on a map
by three basic geometric forms: points, lines, and areas. If the sizes of the
objects are negligible when compared to the distances between them and the size
of the study area, the objects can be represented as points (Hudson and Fowler,
1966). A spatial point pattern is then defined as a set of points distributed in a
planar region. Thus, the statistical analysis of spatial point patterns allows the
geographer to obtain a quantitative description of point pattern maps and in tumn
maps of different regions can be compared objectively. In addition, evidence
can be gained to heln identify the causal mechanisms that underlie the locations

of objects in space.

Over the past decades a number of methods for the analysis of spatial
point patterns have been developed that are now well established in geography

as well as other disciplines. The approach common to most methods of point
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pattern analysis is to examine how characteristics of a given point pattern relate
to those of a pattern generated according to a specified process (Harvey, 1968).
So far the characteristics of the point patterns examined in this way emphasize
either the distances between points or the number of points in subareas. There
has been little or no consideration of the orientation of the points with respect
to each other or to the study area. This is surprising because such characteristics
and the directional processes shaping them have long been important in
Geography. One may think about major geomorphic processes: the movement
of glaciers, the blowing of wind, and the flow of water; they clearly exhibit
preferred directions. On the other hand, the flows of people, goods, services,
and information are directional processes well known to shape the human
landscape. Some of these processes, such as the wind direction, can be
measured directly. Others that have vanished, eventually left features such as
drumlins where directional measurements can be taken. In all cases, a set of
angular data is obtainred which can be examined using directional statistics.
However, the procedures of directional statistics depend on frequency
distributions derived from individual observations and do not consider the
spatial characteristics of the pattern. Their usage in point pattern analysis is thus

limited.



Objective of the Study

From a review of present approaches (see Chapter 2) to both point pattern
analysis and directional statistics it becomes apparent that until recently "... the
detection of directionality is a virtually unexplored problem ..." (Ripley, 1979).
However, the last years have seen the emergence in statistics of new theories and
techniques, which might be appropriate to identify directional bias in spatial

point patterns.

It is the purpose of this study to critically examine two recently developed
techniques, the blunt-triangle and the third moment methods (described in
Chapter 3), for their ability to detect directionality in spatial point patterns. This
is accomplished by firstly developing an operational point process model that
permits the extent of directional bias to be manipulated in several ways. The
techniques are then examined to see how successful they are in recovering the
extent of known directionality in the various realizations of the model. In other
words, the methods are applied to simulated point patterns of known theoretical
properties. The results of tiis procedure are used to make recommendations for
applications to empirical geographical point patterns. In addition, helpful

comments on the interpretation of the results of the methods are given.



Qutline of the Study

This chapter has identified the most commonly used approaches in point
pattern analysis and in directional statistics; the objective of the study has been
identified. Chapter Two will review the techniques and applications of point
pattern analysis and directional statistics in geography and thus further justify the
rationale of this thesis. The third chapter will introduce the two techniques to
be examined. Chapter Four will present the directional point process model.
The calibration of the techniques and the results of their examination will be
outlined in Chapter Five. Finally, Chapter Six will summarize the study’s

findings and discuss the potential for further research in this area.



Chapter 2: Review of Existing Approaches

Methods of Point Pattern Analysis

The methods of point pattern analysis are comprehensively reviewed in
the textbooks of Getis and Boots (1978), Cliff and Ord (1981), Ripley (1981),
Diggle (1983), Upton and Fingleton (1985), and Boots and Getis (1988). Most
methods of point pattern analysis proceed by comparing an actual pattern to a
theoretical pattern generated from certain assumptions. The most basic
hypothesis tested is that of complete spatial randomness, which arises from the
homogeneous, planar Poisson point process. 1t is defined by the following two
fundamental properties. Firstly, the number of points in a finite, bounded planar
region with area A follows a Poisson distribution with mean AA. In

mathematical terms, the Poisson distribution can be written as

Aa
P(n;l)=ﬂ-§%e— for n=0,1,2,3, ...,

where the parameter A is called the intensity of the process which is defined as
the expected number of points per unit area, while n is considered a random
variable representing the observed number of points in the region. The second

property which can be defined as “"purely random™ or "completely random”
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(Stoyan et al, 1987, p.42), is dependent upon the conditions of uniformity and

independence. Uniformity implies that each locaticn in the region has an equal
probability of receiving a point. This means, that the study area can be regarded
as homogeneous and being thus completely undifferentiated on the one hand,
and that the point process is the same in all directions from every location
regardless of the orientation of A on the other hand. The last quality is called
isotropy, and the abstract geographical space of the homogeneous, planar Poisson
point process is thus adequately termed the “isotropic plain” by Hagerstrand
(1965). Finally, independence implies that the placement of one point does not
influence the placement of any other point, which means that there is no

interaction between points.

Obviously, patterns Figure 2.1: Three general types of point
patterns.

generated by a homogeneous,

planar Poisson point process will

hardly be observed in geographical

reality. However, by relaxing the

Clustered Random Regular

conditions of the properties of

randomness the homogeneous, planar Poisson point process can serve as a

starting point for models that approximate "geographical” point patterns more
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closely. Thus, in addition to the random point patterns two other important
general types of point patterns are frequently distinguished: clustered patterns
and regular or dispersed patterns. Regular point patterns are thought to arise if
the assumption of independence is violated in a way that the locations interact
by repelling each other. This characteristic of repulsion may then indicate that
some sort of competition or inhibition takes place. Clustered point patterns, on
the other hand, can be explained by either environmental heterogeneity, which
implies that some locations are more likely to receive a point than others, or that
groups of points form because points attract each other. Consequently, more
information about the study area is needed to decide whether the violation of the
uniformity or the independence assumption has led to the agglomerations of

points.

The most frequently used techniques to compare the properties of
empirical point patterns to theoretical models can broadly be subdivided into two
classes: quadrat analysis and nearest neighbour analysis. Quadrat analysis is
applied by subdividing the study area into a number of subregions (quadrats) and
counting the number of points in each quadrat. This information can be
summarized as a frequency distribution which can then be compared to the

expected frequency distribution of the hypothesized process. Nearest neighbour
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analysis proceeds by comparing the characteristics of the distribution of distances
between points and their nearest neighbours in the empirical point pattern with
those expected in a theoretical point pattern. This method can also be extended
to include neighbours of higher order. Other methods of point pattern analysis
include second order methods, spatial tessellations, applications of information
theory, trend surface analysis, and spectral analysis. However, it should be
noted that neither do the given theoretical point processes incorporate directional
characteristics, nor do the most frequently used techniques of point pattern
analysis attempt to detect deviations from randomness by anisotropy. This
implies that spaiial analysts tend to accept the notion of an "isotropic plain”
ignoring thus the influence of directions by assuming that the causal forces that

locate phenomena in space are equal in all directions.

The Method of Directional Statistics

The field of directional statistics arose from the need to find adequate
methods of analyzing data that are distributed on a circle rather than having the
nature of being on a linear level of measurement. An introduction to the

methods of directional statistics with an emphasis on geographical examples is
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given by Gaile and Burt (1980). The theoretical foundations of directional

statistics are laid out by Mardia (1972). Batschelet (1981) provides a
comprehensive overview about the techniques and the practical considerations
implied. Usually, a directional analysis is initiated by taking individual
directional measurements as orientations with a compass or a protractor. If the
orientation of an undirected line is of interest, such as the strike of a fault line,
the observations are called axes rather than directions. By assigning unit lengths
to the orientations they obtain the property of magnitude and hence can be
referred to as vectors. Now, the angular data can be regarded as being
distributed on a circle of unit radius. By mathematical convention, a single
observation represents the angle with the positive x-axis in counterclockwise
direction. It should be noted that in this study angles are given in degrees if
they refer to a conceptual idea, otherwise they are referred to in radians for
computational purposes. Now, a variety of descriptive and inferential statistics
can be applied. The former include the vector mean and the mean resultant
vector length from which the circular variance can be derived. Inferential
statistics of directional data include non-parametric tests as well as parametric
ones, which indicate whether the data fits a circular uniform distribution or if it
can be described by the von-Mises distribution. The latter is the circular

equivalent of the linear Gaussian normal distribution, not to be confused with the
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circular normal distribution used in Chapter 4. Thus, directional statistics are
quite helpful in fields such as palaeocurrent analysis where a set of angular data
can be obtained directly from sedimentary structures which is then used to infer
the main direction of palaeocurrents. However, the appropriateness of
directional statistics in point pattern analysis is quite questionable. Firstly,
directional statistics are essentially non-spatial in the sense that no reference is
made to the location of points or the distances between them. Secondly, there
are no general rules agreed upon how to retrieve a set of vectors from a spatial

point pattern.

Examples of Directional Point Patterns

To illustrate the importance of the directional influence in point patterns
some specific examples from both human and physical geography are examined.
These are taken from the fields of the geography of settlements and from
geomorphology. It should be kept in mind, that these point patterns are
simplified representations of complex objects on the euclidean plane, where
distances are straight lines. Consequently, additional information about neither
topography and other environmental factors, nor the physical processes or human

decisions that influence the location of geographic objects, can be expected to
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be available.

Settlements

One of the interests of human geographers is directed toward the
distribution of settlements across the landscape. With the help of the methods
of point pattern analysis it is possible to objectively classify the distributions of
settlements in different regions as more or less clustered, random, or regular.
Ia addition, hypotheses concerning central place theory can be evaluated. In
general, central place theory postulates that urban settlements form a hexagonal
network on a featureless, isotropic planar surface that represents an optimal
spatial equilibrium in a dispersed market situation with a uniform distribution of
population, income, and consumer behaviour. In otk -t words, settlements are
expected to be regularly distributed according to the assumptions of central place
theory. However, by analyzing the settlement patterns of twenty selected areas
across the United States with a nearest neighbour technique, King (1962) finds
all three general types of point patterns. One major factor identified to influence
the actual locations of settlements is the development of a transportation
network, in addition to variations in physical resources, the economic base, and
land-occupance history. Thus, clustered patterns found in Washington and Utah

(Figure 2.2 a and b) are attributed to the arrangement of towns along the major
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Figure 2.2: Distribution of settlements in a) Washington, b) Utah, c) Kansas,
d) North Dakota. (Source: King, 1962)
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rivers. Settlement patterns identified as being regular by nearest neighbour
analysis are interpreted to be influenced by geomorphological features in
Pennsylvania, where the settlements tend to be closely spaced in the northwest-
southeast trending valleys, and by major transportation routes in Texas and
Kansas (Figure 2.2c). The settlement pattern of North Dakota (Figure 2.2d),
where settlements are basically located along three major transportation axes
with an approximate east-west orientation, is identified by King as being
random.

Clustering of settlements in Gippsland, a rural area in Australia, is shown
by Norcliffe (1969) using a quadrat method. However, a visual inspection of the
distribution of towns (Figure 2.3) suggests a close association of their location
with the major roads which follow an east-west direction. Another example of
clustered settlements is presented by Dacey (1968) who examined the
distribution of houses in Puerto Rico. However, it is stated that the apparent
clustering can not be completely explained by the given theoretical cluster
process using a quadrat method. This may suggest that directional factors,
which are unknown to the researcher, are influencing the clustering of houses in
this example. A general explanation for the clustering of settlements is provided
by central place theory by relaxing the assumption of a uniform population

distribution. Now, settlements are expected to be clustered in sub-regions with
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high population density. This leaves clustering as an alternative hypothesis

which can readily be evaluated by the traditional means of point pattern analysis
Directional properties are introduced to central place theory by relaxing the

assumption of isotropy. One approach includes the traffic principle which

Figure 2.3: Distribution of towns in Gippsland (Source: Robinson and
Fairbairn, 1969)
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implies the assumption that important towns are aligned on traffic routes. This

results in an elongation of the hexagonal market areas along the routeways and

an overall distortion of the regular pattern.
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The interpretations of directionality mentioned above are based on
geographical intuition rather than quantitative inquiry. More quantitative
approaches toward the identification of a directional bias in settlement patterns
are suggested by Hudson (1969) and Rayner and Golledge (1972). Hudson's
(1969) pattern recognition approach consists of finding a type of pattern in
search regions until the basic pattern changes. Rayner and Golledge (1972)
applied spectral analysis to settlement patterns in Pennsylvania, North Dakota,
and Oregon. In contrast to King (1962), they find the Pennsylvania settlements
to be clustered, however they can confirm the southeast-northwest orientation
quantitatively. A strong directional bias attributed to the development of
transportation routes is identified in North Dakota and Oregon. In this respect
it should be noted, that Gould (1967) clearly states that a well developed
transportation network is likely to have only a weak orientation, whereas less
developed transportation networks may exhibit a strong directional bias which
becomes apparent in the distribution of settlements. This hypothesis is
confirmed by Haynes and Enders (1975) and Upton (1986) upon the examination
of settlement patterns in the time interval from 1914 to 1960 on a plain in
Argentina. By using nearest neighbour methods regularity is detected in the
1914 pattern: however, a directional analysis of the angles between nearest

neighbours reveals the directional bias which is focused on the source of
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colonization. The 1960 pattern, however, shows new settlements that arose
around the initial centres with a pattern tending more toward randomness or even
clustering. Since the transportation network has now matured, the directional
bias is no longer found between nearest neighbours. This shows, that a method
with the ability of identifying directional properties of spatial point patterns
would be most beneficial in cases, where little or no information about the

transportation system is available such as some historical settlement patterns.

Sinkholes
Interest in point pattern analysis is also displayed by geomorphologists
concerned with the phenomenon of karst. Their attention is particularly focused
on an explanation of the development and growth of the distribution of closed
depressions in limestone areas. With this in mind, point pattern analysis has
been used to examine whether subsurface solution and subsequent cavern roof
collapse or near-surface corrosion can be identified as the process predominantly

responsible for the distribution of sinkholes in a region.

Using quadrat analysis McConnell and Hom (1972) found the distribution
of karst depressions in Indiana being the reflection of two mutually independent

random processes representative of the processes mentioned above. Ford and
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Drake (1972) identified the clustered pattern of sinkholes in the Mendip Hills,

England, to be the combination of two generations of features using both quadrat
and nearest neighbour methods. This multigeneration theory is supported by
Kemmerly (1982), who found a clustered distribution of 25000 depressions in
Kentucky and Tennessee. Different conclusions are drawn by Williams (1971,
1972a, 1972b) and Day (1976). Williams(1971, 1972a, 1972b) applied nearest
neighbour analysis to a number of cockpit karst areas in New Guinea finding
them to be distributed between randomness and regularity. An interpretation of
these distributions is that initial stream-sinks are either located at intersections
of joints with a relatively regular joint system or that neighbouring depressions
are in a state of balanced competition for space. A complimentary directional
analysis of depression long-axes as well as the axes between nearest neighbours
showed, that all karst features examined are to some extent aligned with features
of geological structure. On a regional scale, the general slope corresponding to
tectonic dip and master joints are identified as major directional factors. On the
local scale the strike of the bedding plane assumes greater importance. Putting
the evidence of point patterns analysis and directional examination together,
Williams (1971, 1972a, 1972b) concludes that superficial chemical erosion is the
major process in cockpit karst areas. His observations are confirmed by Vincent

(1987), who analyzed the same data with a more refined nearest-neighbour
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procedure which incorporates edge-effects. Similar observations to those in New

Guinea are made by Day (1976) on karst features in Jamaica using identical

techniques. Here, however, the possibility of subsurface solution and resulting

collapse is not ruled out.

Other noteworthy attempts to

prove the alignments of karst

depressions with the associated

geological structure are the pioneering
studies of LaValle (1967) and
Matschinski (1968). LaValle’s (1967)
approach includes estimating the
percentages of solution depressions
whose long axes are aligned with
structural lineaments or with joint

planes respectively. In addition, a

Figure 2.4: Distribution of dolines in

south-west

Germany.

Matschinski, 1968)

(Source:
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mean elongation ratio is caiculated. The approach of Matschinski (1968) bears

some resemblance to the blunt-triangle method discussed in this thesis.

He

proceeds by finding the local orientations of aligned dolines in Germany

(Figure 2.4). Maxima in the frequency distribution of the local orientations are
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found to coincide with the adjoining regional structures rather than with the

immediately underlying beds.

Cirques
Geomorphologists and glaciologists are often interested in identifying the
most important factors that control mountain glaciation. Among these factors
are the pre-glacial relief, geological structure, glacial history, and the regional
climate. One approach to infer the significance of these factors is by the study

of the distribution and the orientation of cirques.

The distribution of cirques in Scotland is analyzed by means of quadrat
analysis and nearest neighbour statistics by Robinson et al (1971). Robinson
(1972) applied nearest neighbour statistics to the distribution of cirques in
Tasmania (Figure 2.5). This method was also used by Unwin (1973) to examine
the pattern of cirques in Wales, and by Trenhaile (1975) analyzing cirques in the
Canadian Cordillera. All four studies find the distribution of cirques to be
clustered, which indicates that the factors producing cirques favour certain parts
of mountain ranges, which might themselves be clustered. However, Andrews
and Dugdale (1971) show that the orientation of the cirque long axis is a more

important variable for the explanation of glaciological conditions than the spatial
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L . Figure 2.5:  Distribution of cirques in
distribution of cirques. Thus, asmania. (Source: Robinson, 1972)

the analysis of the orientation
of cirque long axes, which is

dependent upon prevailing

wind direction, general
topography, exposure to

sunlight, and bedrock structure

(Vilborg, 1977) has been an

integral part of several studies

of cirque geomorphometry,

including Andrews (1965), Sugden (1969), Andrews et al (1970), Evans (1972),

Unwin (1973), King (1974), Trenhaile (1976), and Gordon (1977).

Drumlins
Some of the most remarkatle signs of Pleistocene glaciation are the low,
streamlined hills known as drumlins. Although geomorphologists have observed
and examined drumlins for some time, no consistent theory has yet been derived
to explain their origin and formation. However, the distribution of drumlins as

well as their spacing and orientation are considered important variables for the



21

evaluation of hypotheses leading to a theory of drumlin formation, and for the

comparison of drumlin fields.

An early attempt to quantitatively
examine the origin of a drumlin distribution is
the study of Vernon (1966), who observed an
of "...bands

arrangement drumlins  in

perpendicular to ice pressure with a weaker

alignment parallel to ice flow...” in a drumlin
field in Ireland (Figure 2.6). He substantiates
this observation by contouring the density of
drumlins and by calculating the mean distance
between drumlins parallel and perpendicular to
the flow of ice which is represented by the
orientation of the drumlin long axes.

Jauhiainen (1975) compared the distribution and
orientation of drumlin fields in seven areas in
north-eastern Europe.

By applying nearest

neighbour analysis he finds drumlins to be

Figure 2.6: Distribution of
drumlins in Ireland. (Source:;
Vernon, 1966)
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clustered in five areas and to be randomly distributed in two of the areas under
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investigation. With regard to the directional characteristics of the drumlins
examined, it is found that the mean orientation differs in each of the study
regions. A theory for the explanation of drumlin formation is examined by
Smalley and Unwin (1968). This so-called dilatancy theory postulates that
drumlins are the result of both erosional and depositional processes. The most
important variable for the formation of drumlins is identified as the variation of
properties in the available glacial till, which vary randomly. Thus, a non-random
distribution of drumlins would not be expected. This hypothesis was in turn
tested by Smalley and Unwin (1968) for drumlins in Ireland using nearest
neighbour analysis, and with quadrat methods by Trenhaile (1971, 1975) for
drumlin fields in Ontario (Figure 2.7), Gravenor (1974) for a drumlin field in
Nova Scotia, and King (1974) for drumlin fields in England and New York.
Their findings indicate that drumlins are distributed between randomness and
regularity which suggests a confirmation of dilatancy theory. Additional
analyses of the orientations of the drumlin long axes undertaken in the studies
show normal distributions about a mean value, which indicates an even
movement of the ice sheet while variations can be explained by local factors and

short term changes in the direction of ice movement.

Although the results of the above researchers seem consistent and their
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Figure 2.7: Distribution of drumlins in Ontario. (Source: Trenhaile, 1971)
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conclusions logical, weaknesses and limitations with regard to the usage of point
pattern analysis can be identified. These weaknesses are not limited to analyses
of drumlin fields, they are equally valid for the examples of sinkholes and
cirques mentioned earlier, since similar procedures of data acquisition and
analysis are involved.

One problem particularly apparent in the point pattern analyses of
drumlins mentioned above is identified by Hill (1973) as the neglect of patterns
on different levels of scale. If for example the population of drumlins in
Southern Ontario is inspected by eye, clusters of "drumlin fields" are obvious
which can be associated with the "bands of drumlins” observed by Vernon
(1966). Trenhaile (1971, 1975), however, follows the approach common among
drumlin researchers to focus merely on the distribution of drumlins within
distinct clusters rather than investigating the overall pattern or taking a random
sample. With this in mind, Hill (1973) proceeded to analyze the distribution of
drumlins in a large area in Ireland with a variety of point pattern techniques. He
concludes that non-randomness can be observed on three levels of scale: on a
regional level a decline in the density of drumlins from the centre towards the
margins of the drumlin field is observed. A second scale of non-randomness
consists of several alternating bands of high and low drumlin density

perpendicular to ice movement. Finally a less strongly clustered pattem on a
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local level is indicated.

Another problem inherent in the analysis of the distribution of sinkholes,
cirques, drumlins, and other features stems from the reduction of a three
dimensional object to a zero dimensional point (Boots and Burns, 1984). This
creates artificial longer distances between the points resulting in an inhibition
effect which biases the pattern towards regularity.

The third problem is associated with the precision of geomorphometric
measurements. Frequently, measurements on geomorphic objects are taken from
aerial photographs or from topographic maps rather than surveyed directly in the
field. Rose and Letzer (1975) show that data derived from topographic maps
with a scale as large as 1:25,000 are inaccurate when compared to direct field
measurements and thus yield misleading results when further analyzed. These
inaccuracies result from the accumulation of errors in the steps from the initial
survey by non-geomorphologists over the interpolation of contourlines to the
final measurements on the map. Problems of the accurate identification of
geomorphic features are further increased by the fact that different researchers
tend to define the variables that describe these features in different ways. For
example Vilborg (1977) states that “...there does not seem to be any generally

accepted definition of the orientation of cirques...”.
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With regard to the issues addressed in this thesis it becomes obvious from
the geographical examples chosen, that apparent directional properties are neither
picked up by quadrat methods nor by nearest neighbour methods which are the
most popular point pattern techniques. It can also be seen that orientation
measurements taken from individual geomorphic objects are hampered by
problems of identification and definition and furthermore do not contribute to an
understanding of directional characteristics between points and the study area.
A notOeworthy exception to merge point pattern analysis and directional statistics
are the attempts to examine the orientations between nearest neighbours
(Williams, 1971, 1972a, 1972b, Haynes and Enders, 1975, Day, 1976, Upton,
1986). However, by restricting the focus on directional properties between
nearest neighbours, directional characteristics on a regional scale that might be
present between neighbours of higher order are neglected. Thus, in a
geographical context the above technique can not be recommended in general,

while the need for more comprehensive approaches is obvious.
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Chapter 3: The Methods

It has been shown in the previous chapter that the most frequently used
methods of point pattern analysis are unable to detect directional properties of
spatial point patterns, and that the traditional techniques of directional statistics
do not account for the spatial characteristics of the pattern. This chapter presents
two methods to be examined later in this thesis, that are expected to pick up
directional information in spatial point patterns and thus complement the
traditional approaches of point pattern analysis. The first technique, here
referred to as the blunt-triangle method, has been developed by D.G. Kendall
and his co-workers at the University of Cambridge. Technique number two,
here called the third moment method, has been suggested by J. Ohser and D.

Stoyan from the Bergakademie Freiberg.

Finding Blunt Triangles

Conceptual Framework

The blunt-triangle method, also referred to as alignment method, was first
applied by Broadbent (1980) to test whether 52 megalithic stones in Lands End,

England, had been set out purposely to be aligned (see Figure 3.1). He proceeds
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by forming (3) triangles out of n points. The next step involves the
determination of the number of blunt triangles whose maximum angle is greater
than or equal - €. The angle € is called tolerance, it is considered an unknown
nuisance parameter which arises from the accumulation of errors by imprecisely
setting up the stones, surveying them, and

finally reading their locations from a Figure 3.1:  Positions of 52

megalithic stones, Lands End,

generalized map. With a tolerance angle of England. (Source: Kendall, 1989)

30 minutes, 81 blunt triangles are found out .
of the total of 22100 triangles formed from
the set of megalithic stones (see : ..
Figure 3.2). A method for the evaluation .
of € is developed by Kendall and Kendall
(1980) which seems appropriate if one is . E -

concerned with alignments. According to |* .o

the nature of the point patterns generated in

the simulations and to the situation in
Geography, where point patterns evolve from rather complex processes, one
would not expect points to be perfectly aligned by purpose. Instead, the term
"blunt angle” can be perceived in broader terms rather than being limited to an

approximation to collinearity. Hence, in the utilization of the blunt-triangle
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method for the detection of anisotropy larger tolerances may be required and

thus the estimation of € in this case is another subject of the study.

The number of observed blunt triangles can finally be compared to the

expected number of blunt triangles and its
variance to test the hypothesis of align-
ment/anisotropy in the point pattern. In
general, these values can be obtained by
assuming that a point pattern has originated
from a given probability distribution. If a
known theoretical distribution is selected,
the number of blunt triangles can be
considered a random variable, and its mean
and variance be either approximated by
simulation or ideally be derived

analytically. The development of the blunt-

Figure 3.2: 81 blunt triangles
with a 0.5° tolerance from the
megalithic stones. (Source:
Kendall, 1989)

triangle method originated from a general framework which is known as the

“statistics of shape" (Kendall 1984, 1989, Small 1988). In this framework a set

of three points is defined as a shape which can be represented as a shape-point

in the complex shape-space, if the effects of the rigid motions of euclidean
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geometry, i.e. translations, rotations, and scalings, are removed. An examination
of the distribution of shape-points projected on the unit sphere reveals properties
of the shapes such as bluntness, that can not be easily recovered from the
original distribution of points in the euclidean space. However, the mathematical
concepts of this framework are rather involved and thus further discussion is

well beyond the scope of this study.

Calculation of the Mean and the Variance of Blunt-triangles

In order to evaluate the general idea of the blunt-triangle method, a
Poisson-cluster distribution or the Normal distribution would be appropriate
models to calculate the mean and the variance of the number of collinear
triangles, since these models are used to generate the point patterns used for
examination of the methods in this thesis (see Chapter4). Unfortunately, the
model of randomness had to be chosen, since explicit formulas for calculating
the variance of the number of e-blunt triangles are only available for point
patterns obeying the assumptions of independence and uniformity (Kendall and
Kendall, 1980, Small, 1982). The calculation of the expected number and the
variance for a number of €-blunt triangles (N(€)) depends on the form of the
convex hull of the point pattern. In the context of point pattern analysis, the

convex hull is defined as the minimum convex set that contains a given set of
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points. Here, it may be approximated by either a square, a rectangle, a circle,

or an ellipse. Thus, it is important to consider the Broadbent-factor

B=(s+sHr

for representing the stretch of the convex hull. The parameter s is estimated as
the ratio of the principal component standard deviations, which are derived as
the square roots of the two Eigenvalues from the variance-covariance matrix of
the coordinates of the point pattern to be analyzed. For the case of the
megalithic stones a value of s=1.661 is derived which leads to a Broadbent-
factor of about 1.1315. Now, the expected number of blunt triangles which are

blunt at € radians can be obtained by

E(N(g)) = BGne(l+e)

where 1) is called the first collinearity constant which is given by Kendali and
Kendall (1980) as 1/3 for a square convex hull and 1/r for a circular convex
hull; e is an error term which is negligible for tolerances up to 10°. With given
parameters, the expected number of blunt triangles for the megalithic stones is

about 73 with a 30 minute tolerance angle. Considering a standard deviation of
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about 12 (see formula below), the 81 blunt triangles found in the data set are not
enough to reject the null hypothesis of no alignments. The formula for the

variance is given as

Var(N(€))=ENE©))(1 - Bn) + 3QXCD)M - B + (D)0 - MPB)?))

where | and v are the

: —

elliptical rectangular

| 1w, |o1103275111 | 0.1160346836
| |0.0075052729 | 0.0032940654
Giventhe constantterms | | v, | 0.1801265487 | 0.1896296296

of Table I, the second [ Vg 0.0600421829 0.0553058642

second and third

collinearity parameters.

and ‘hird collinearity .
Table I: Constant terms of the second and third
parameters are defined | Collinearity parameters for the corresponding
convex hulls in the blunt triangle method (after

by Kendall and Kendall, 1980).

i =B, - 1o and v = Bu; - v,
It should be noted that the formulas and values given above are derived
analytically under the assumption of randomness by Kendall and Kendall (1980).
However, these assumptions are rarely if ever met in reality. In fact, the
occurrence of clustering as one deviation from randomness is observed quite

frequently in the selected examples and thus emphasized in the simulations of
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this study.

To overcome the problem of clustering, Kendall and Kendall (1980)
suggest a "randomization” procedure whereby the points are dislocated within
a given distance. Broadbent (1980) indicates, that adding randomly simulated
points to the observed ones, or subdividing the area into rectangular subregions
with uniform point distributions might mitigate the problem. In the framework
of this study, however, it seems more appropriate to examine the violations of
the assumptions of uniformity and independence systematically with an emphasis
on directionality and, hence, validate the adequacy of the blunt-triangle method

for geographic point patterns.

Examination of the Third Moment Properties

The second method to be tested in this thesis is an extension of the
second moment measure, which is well established in point pattern analysis. It
is based on the properties of a point process: The first moment measure A is
called the intensity of a point process, it is considered equivalent to the mean of

a random variable and is usually defined as the number of points per unit area.
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The reduced second moment measure K(r) is equivalent to the variance of a
random variable and can be approximated by the distribution of distances
between pairs of points (Ripley, 1976). Intuitively, the reduced second moment
measure can be defined as A*K(r) which is the expected number of ordered pairs
of points within distance r of a point. Similarly, AK(r) is defined as the number

of further points within distance r of a random point.

In practical applications the expected value of the second moment
measure can be calculated explicitly for a number of theoretical point processes
where the underlying distribution function is known, including isotropic Poisson
cluster processes (Diggle, 1983). With the help of simulations a confidence
band can then be constructed from realizations of the theoretical point process
(Ripley, 1977) and thus a test of statistical significance can be applied to the
values of K(r) estimated from the data set of interest. The estimation procedure
usually involves placing a disc of radius r on each point and summing up the
number of pairs of points included in each disc. By increasing r from the
smallest inter-point distance up to a maximum radius beyond which the results
are biased, a cumulative frequency distribution of pairs of points can be
established. However, since the point pattern is observed through a sampling

window and therefore a subset of an unbounded, infinite population of points,
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the point pattern will be continuous beyond its study area. Hence, if r exceeds
the distance of a point to the boundary of the study area a part of the disc will
be placed outside the study area and the estimation procedure described above
will be biased. The problem of these so called edge-effects has been studied in
depth by Ripley(1977, 1979, 1981, 1983, 1988), Ohser(1983), and Ohser and
Stoyan(1981). Various modifications to the simplistic procedure outlined above
are thus suggested by the development of estimators that not only account for
edge-effects but also determine appropriate maximum values for r. However,
it should be kept in mind that the derivation of the test statistics as well as the

estimation of K(r) relies on the assumption of isotropy in the point pattern.

In order to wuse the Figure 3.3: Illustration of S(o:r,.r,).

S a0 RD

properties of point processes for

the detection of anisotropy, a

reduced third moment measure

5(x AL, RO
;«*:

K(S(our,,ry)) is introduced which

examines the angular relationships

between two points (Hanisch, 1983, Ohser and Stoyan, 1981). In this expression
S(aur,.r,)is defined as the intersection of a closed sector with midpoint on the

origin and width o with a disc if r;=0 and r,>0, or an annulus if r,>0 and r,>r,.
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K(S(our,,1y)) is estimated as the number of points in the set S(or,,1,), by using
each point in the point pattern as the origin. To use K(S(cr,,r,)) for examination
of a directional bias, the disc or annulus is subdivided into k=2n/a sectors and
K(S(our,rp)) is estimated for each sector. Since an anisotropic bias is

symmetrical, in all point patterns i.e.
K,(S(oir,,1,)) = K . o(S(oiry,1p)) for i=l,.. .k

it is sufficient to consider the interval between 0° and 180°(= n radians) for
examination and to use k=mn/o.. The null hypothesis of isotropy can be evaluated
by testing this distribution for uniformity. An appropriate significance test is a

chi-square test of the form:

) )_ K(s(nirlazz)) )2

(Ky(S(e; 1y, 1, =

2 k
~
qu Ex-; X(S(x;ry,15))
k

for O<r,<r,<eo, i=1.....w/0.. For graphical display as a (semicircular) histogram it

seems preferable to plot the relative frequencies, which, according to Ohser and
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Stoyan (1981), form a directional distribution

K(S(e;r,,1,))

Or, (@) = K(S(m;r,,r,)) "

The modal class of this distribution as well as other major peaks in such a

histogram are clearly indicative of preferred directions. Figure 3.5 shows the
short range distribution 9,,,(10°) and the long range directional distribution
8,550(10°) of a pattern of 62 redwood seedlings (see Figure 3.4). Both
directional distributions indicate a main direction of about 150°. An obvious
advantage of this approach, when compared to the blunt-triangle method or the
second moment method, is its freedom from an underlying theoretical random
model. Thus, it is not necessary for the researcher to firstly choose a known
model and secondly go through the tedious process of fitting the chosen model

to his data.

B
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Figure 3.4: Positions of 62 redwood seedlings. (Source; Ohser and Stoyan, 1981)
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Figure 3.5: Short range and long range directional distributions of redwood s

(Source: Ohser and Stoyan, 1981)
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Chapter 4: A Model of the Directional Point Pattern

Theoretical Considerations

In the context of this study it can be seen in the selection of geographical
examples, that the issue of directionality frequently occurs in conjunction with
all three general types of point patterns. Often, however, directional point
patterns can be directly associated with either visible or invisible linear features
such as roads, fault lines, mountain ranges, or certain characteristics of glacier
flow. The point patterns associated with these features then appear as bands or
elongated clusters to the viewer. It is thus appropriate in a geographic
framework to define a directional point pattern as a distribution of points around
axes, with the density of points being a function of the distance of the points

from the lines.

In order to construct a model of a point pattern suitable to assess the
ability of methods to detect deviations from isotropy, t'he following two
properties are to be considered. Firstly, the pattern has to be variable in the
extent of clustering to account for the wide range of point patterns which can be

encountered by the spatial analyst. Secondly, various levels of directionality
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must be available to test the sensitivity of the methods.

The properties mentioned above can perfectly be met by the application
of a particular Poisson cluster process, which can also be referred to as Neyman-
Scott process. According to Diggle (1983, p.55), Poisson cluster processes can
be generally defined by three postulates:

"1. Parent events form a spatial Poisson process with
intensity k.

2. Each parent pioduces a random number n of
offspring, realized independently and identically for
each parent ~ccording to a probability distribution
{P(n), n =0,1,...}.
3. The positions of the offspring relative to their parents
are independently and identically distributed
according to a bivariate probability distribution. "
For the realization of point patterns in this study, the postulates above are
slightly modified. Pertaining to postulate one, the numbers of parent events are
externally fixed as k =1, 3, 6, 9, 12, rather than sampled from a Poisson process
for each simulation. Their locations are sampled from a rectangular random
distribution. The number of offspring in a cluster is determined by a Poisson
distribution with intensity A = 60/k, thereby being conditional on the number of

parent events. The overall intensity of points, 60, is chosen arbitrarily as a

tyipcal number of points occurring in empirical geographical point patterns.
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Finally, the choice of the bivariate normal distribution allows the introduction

of varying amounts of anisotropy into the point pattern.

The usefulness of the bivariate normal distribution as a generator of
directional bias is emphasized by Hudson (1968) and Kendall (1984). Ohser and
Stoyan (1981) exemplified an application of the third moment method using a
Poisson cluster process with a bivariate normal distribution. Also known as
elliptical normal distribution (Johnson and Kotz, 1972), the bivariate normal
distribution is characterized by three parameters which determine its shape: the
correlation coefficient @ and the standard deviations ©,,6, of the two variables
respectively (see Figure 4.1). The ratio of the standard deviations determine the
elipticity of the distribution, and all three parameters define the angle of the

major axis with the x-axis:

1 2po,0,
b= t .
.Zarc an(_!__..,c1 ey )

With a correlation coefficient of 0 and equal standard deviations the bivariate
normal distribution is called circular normal, which is approximately isotropic.
To account for different degrees of directionality, ratios of 1 : 1,3 :1,and 5 :

1 for the standard deviations appeared to be reasonable to distinguish between
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Figure 4.1: Contours of equal density of bivariate normal distributions. (Source:

Johnson and Kotz, 1972)
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Figure 4.2: Algorithm for the directional point process.

(START)

INPU
standard deviations: ¢1.02
angle of rotation: & p=0
number of clusters: k

|
[ntensily per cluster: A= 60/k
Initialize counters: c=1, m=0

)1
Sample the number n of points in cluster ¢
from a Poisson distribution with intensity \.

Sample 100 x/y-coordinates from a bivariate-
normal distribution with given parameters.

mple the centroid of cluster NM from a
uniform distribution with -125<N M<1285.
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{ Select a pair of x/y - coordinates. }-

1
[Rotate the point by ¢, translate by N,M. |

|y

ranslate and scale
all points o a
window of unit size
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isotropic, medium anisotropic, and strongly anisotropic point patterns

respectively. The correlation coefficient is initially kept at O.

The Generation of Points

CLUSTER ) Number

Ellipticity 1 3 6 o |1
1:1 | 120:120 | 100:100 | 80:80 | 60:60 |40:40
3:1  } 108:36 | 90:30 | 6923 | 48:16 |30:10
S:1 1 100:20 | 80:16 |60:12 | 40:8 [20:5

Table II: Standard deviations in the initial simulations, g=0.

In practice the algorithm for simulating the particular Poisson cluster
process proceeds as follows (see Figure 4.2). First, the coordinates of a cluster
centre are sampled as random numbers in the range from -125 to +125 standard
deviations. This range was chosen after a number of trial and error runs as
being suitable to allow some overlapping of the large clusters on the one hand
while on the other hand ensuring that even a large number of small clusters can
be distinguished . Then, the number of points n for a cluster is generated by

IMSL subroutine RNPOI, their locations determined by IMSL subroutine
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RNMVN. In order to account for the variability of direction and thereby
correlation, each point is subsequently rotated by an angle ® varying
systematically for each simulation in a range from 0° to 180° in 20° increments,
and translated by the coordinates of the cluster centre. Finally, a point is
accepted for the point pattern under the conditions that its location is not yet
occupied and that it is within a sampling window of size 420*420 standard
deviations. This larger final sampling window is necessary for maintaining the
properties of clusters whose centres are placed close to the edge of the initial
sampling range. Thus, artificially generated edge-effects which might cause
biased results in the final outcomes are made negligibly small from the first.
This procedure is repeated until the given number of uniformly distributed
elliptical clusters is reached. To maintain A as an overall intensity all points are
finally rescaled to an area of unit size. Scatterplots of realizations of each of the
directional scenarios summarized in Table II are provided in Figure 4.3 through

Figure 4.17.



Figure 4.3: 1 Cluster, 1 : 1.
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Figure 4.6: 3 Clusters, 1 : 1.
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Figure 4.9: 6 Clusters, 1 :
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Figure 4.12: 9 Clusters, 1 : 1.
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Figure 4.15: 12 Clusters, 1 : 3.
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The Introduction of Scale

Although quite complex directional point patterns can be generated under
the assumption of being distributed about parallel axes, most geographers would
agree that this assumption is too simplistic. In fact, at this point the model
accounts for a directional process operating at the regional scale, such as the
prevailing wind

direction, the general

flow direction of ice or CLUSTERS Local
water, or the direction Regional 2 4 8
_ ) 1(100:20) + 60:12 | 45:9 | --ee
of colonization in the +
3@®06) | 357 25.5 20: 4

examples chosen.

Hence, in order to make | Iable IIL: Standard deviations for the local-
scale clusters.

the model more realistic,
directional forces operating on a local scale have to be considered as well. With
respect to the examples these local directionalities are exemplified by local
bedrock structure, locally varying glacier flow direction over time, or local links
between the major transportation routes. In addition, a second level of scale not
only represents local links between the major regional linear features in a spatial

context, but also illustrates the evolution from a simple distribution to a more
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complex distribution in a ternporal manner.

Scale dependent complexity in the model can be accomplished by
considering the sample to be drawn from the union of a "regional” set Ar
generated by the procedure above and of a "local” set Al generated in a similar
fashion but with different parameters. The simulations of the point patterns
evolve as successive generations of locations and follows this algorithm: First,
a single-scale point pattern is generated according to the rules laid out in the
sections above. Then, points are selected randomly as centres for the second-
scale clusters, and, hence, serve as nodes of a network. The next step involves
sampling of points from a bivariate normal distribution. These are in turn rotated
by an angle orthogonal ' to the direction of the primary point pattern, and
translated to the selected node. An overall intensity of 100 was accomplished
by adding the intensity of the local pattern, which was arbitrarily chosen to be
40, to the intensity of the regional pattern. Points on the regional scale were
generated for the one and the three-cluster cases with the same standard
deviations as outlined in Table II for the 5 : 1 ratio. These regional clusters
were joined by 2 and 4, and 2,4 and 8 local clusters respectively (see Table III).

Realizations of these point processes are shown in Figure 4.18 to Figure 4.22.

An angle ot 90 between the regional and the lccal direction i1s chosen for
ease ot distinguishing the appropriate modal classes in the third moment analysis.
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With respect to geographical examples, one can now more easily associate
apoint pattern generated by this method with settlements or retail establishments
distributed around the major roads in a transportation network. In physical
geography, the association with the distribution of sinkholes or epicentres of

earthquakes around fault lines would be appropriate.

In order to assess the power of the two methods the number of successful
identifications of directionality out of a minimum of 100 simulations for each
point process will be counted. Thus, the percentage of rejections of the null
hypothesis of isotropy can be ascertained for each of the methods to be tested.
In addition, the deviation of the direction predicted by the third order method
from the given angle of rotation ® can be measured and an average directional
deviation be established. This approach follows the method frequently applied
for fitting models to real-life data sets (Boots and Getis, 1988, Ripley, 1977).
In this manner, the two methods for the detection of directionality can be
evaluated with regard to the potential to identify a major directional trend and
its concentration. Furthermore, the ability to distinguish between regional and
local directionality is also required so that the methods can be recommended for

applications in Geography.



Figure 4.18:

1 regional cluster, 2 local clusters.
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Figure 4.19: 1 regional cluster, 4 local clusters.
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Figure 4.20: 3 regional, 2 local clusters.
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Chapter 5: Results

This chapter presents the results of the examination of the blunt-triangle
method and the third moment method gained by their application to realizations
of the directional point process introduced in the previous chapter. The results
are preceded by sections illustrating the determination of parameters necessary

to optimize the performance of the methods examined.

Blunt Triangles

Examination of the Tolerance Angle

The first step in the evaluation of the blunt-triangle method is the
examination of the behaviour of the tolerance angle in order to account for a
broader definition of "bluntness” required for applications in Geography. Both
Kendall and Kendall (1980) and Broadbent suggest choosing the tolerance angle
as a small value (<1°). Itis also clearly stated that the distribution of the largest
angles are approximately uniform between 170° and 180° in a rectangular
uniform point pattern (Broadbent, 1980), as well as in a Gaussian point pattern

(Kendall and Kendall, 1980). This suggests examining the distribution of the
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largest angles in the Poisson cluster process applied in this study for tolerances

up to 10°.

Evaluating the Figure 5.1: Acceptance areas for the null hypothesis of
isotropy between +/- two standard deviations from the
tolerance was mean for a circular and a square convex hull.

accomplished by Acceptance Areas

. . . for the Convex Hulls
increasing € in 6

. . —
minute increments Reertion
% 2000
Crauor
from 0° to 10° and | & 150k 2R
E Both
.
counting the number g 1000 Saue
. . 5001~
of triangles in the

point pattern with an

angle greater or equal
n-€. The resulting cumulative frequency distributions appeared to be perfectly
linear for all kinds of point patterns examined. Since the expected value and the
variance for the uniformly distributed largest angles also increase linearly with
the tolerance, it seems appropriate to consider the entire iaterval between 170°
and 180° as a tolerance domain for tests of isotropy. Thus, instead of choosing
arbitrary values for €, the slope of the cumulative frequency distribution for the

largest angles can be computed for each empirical point pattern as well as the
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slope of the appropriate function of the standard deviations (the square root of
the variance). On this basis, the null hypothesis of isotropy can be accepted
with about 95% confidence, if the slope value for the cumulative distribution
function (abbreviated: c.d.f) of the largest angles is within the range of the slope
values of +/- two standard deviations about the expected number of blunt
triangles. Figure 5.1 illustrates the linear behaviour of the parameters of the
number of blunt triangles for random distributions of points in circular convex
hulls and in square convex hulls with an increasing tolerance angle. For each
of the convex hulls an area of 95% confidence of acceptance of the null
hypothesis of isotropy is displayed as being filled. It is obvious that the
acceptance areas for both convex hulls are largely overlapping, with the square
acceptance area exceeding the circular one by about 10 blunt triangles per degree
of tolerance. If the c.d.f. of blunt triangles of an empirical point pattern is
plotted into this figure and its line is above an acceptance area, the null
hypothesis could be rejected by reason of too many blunt triangles. On the other
hand. the line of an empirical c.d.f. falling below an acceptance area could be
interpreted as either "not enough” blunt triangles or, in other words, as an
overprediction of the number of blunt triangles. It is not clear, however, how

a point pattern with "not enough" blunt triangles could be defined or visualized.
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Discussion
The results of the examinations of the blunt-triangle method over 500
stmulations for each of the standard deviation ratios displayed in Table II are
presented in Table IV for the collinearity parameters of an an elliptical convex
hull, in Table V of a rectangular convex hull. Thus, the percentages in the rows
from left to right correspond to an increasing number of clusters, while stronger

directionality is represented down the columns.

Using the collinearity constants for an elliptical random distribution yields
values for the rejection of the null hypothesis of isotropy from 10% to 45%.
The highest rejection rates appear for the point patterns with a standard deviation
ratio of 1:1. Hence, anisotropy is detected in over one third of 500 simulated

point patterns, where no directionality is built in. In addition, the rejection rate

CLUSTER -_E\Iumber )
Ellipticity 1 3mT 6 9 12
1:1 . 42| 38 | 38 e
301 f 19 | 27 | 34 2 | 31
5:1 ¢ 10 | 33 a1 43(1) | 4503
Numbers in brackets = overpredictions in percent.

Table IV: Percentages for the rejection of isotropy of the elliptical
model.
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drops sharply from a circular normal pattern to a highly directional pattern in the
one-cluster case. For the cases of 3, 6, and 9 clusters the overall rate of
rejection increases only slightly with the number of clusters. There is no
evidence for a relationship between the increase of directionality and the
rejection rate. Only for the case of 12 clusters, a coincidence is found between
the increase of directionality and the rejection of isotropy. Nevertheless, ideally
one would expect the percentage to range from about 5% for the circular normal
pattern to about 95% for the anisotropic pattern. The range from 32% to 45%
is thus unsatisfactory for a method supposed to be able to detect directionality.
It should also be noted that the null hypothesis is rejected for 3% of the highly
anisotropic 12-cluster patterns because "not enough” blunt triangles are found.
This fact further weakens the acceptance of the blunt-triangle method for

applications with clustered point patterns.

Table V presents the results for the blunt-triangle method using collinear-
ity constants of the rectangular model and shows slightly better, but still
unsatistactory results. The rejection rates of 12% to 16% for the non-directional
patterns indicate improved performance of the rectangular approach when
compared to the elliptical approach. The rate of rejection of the null hypotheses

generally increases with the number of clusters in the directional point patterns.
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Less directionality is found by the blunt-triangle method in the more directional
1 and 3 cluster patterns. For the 6,9, and 12 cluster cases the predictions follow
the built-in directional properties. Similar to the elliptical model, an increasing

percentage of rejections is generated by overpredicting blunt triangles for cases

with high clustering and high directional bias.

CLUSTER J Number

Ellipticity § 1 | 3 6 9 12|
1:1 § 13| 1 15 15 16
3:1 L 13 | 15 2 26(1) | 2802)
5:1 1 9 | 12 0(1) | 373) | 40(6)

Numbers in brackets = overpredictions i %.

Table V: Percentages for the rejection of isotropy for the rectangular
model.

The obvious failure of the blunt-triangle method for the one-cluster case
can clearly be attributed to the use of different models for the generation of
geographic point patterns on the one hand, and the derivation . the test statistics
on the other hand. In particular, one could assume that the non-uniformity of
point distributions evolving from the circular normal generator might bias the

outcome of the evaluations. [t seemed therefore reasonable to supplement the
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previous analyses with a subsequent evaluation of the blunt-triangle method
applied to approximately random point patterns. The additional applications of
the blunt-triangle method to 100 patterns of 60 points distributed by the IMSL
random number generator in a 250*250 rectangle yielded 7% of rejections with
the use of an elliptical convex hull, and 3% of rejections for the statistics under
the assumption of a rectangular convex hull. These acceptable results confirm,
that particularly in the one-cluster case the changing density of points from the
centre to the edge of the cluster influences the number of blunt triangles in a

manner unforeseeable by the test statistic.

Finally, the results of 400 applications of the blunt-triangle method to
simulated point patterns with directionality induced on two levels of scale are
summarized in Table VI. For either of the rectangular or the elliptical model
the rejection rates decrease when further local clusters are added. As for the
influence of the number of regional clusters, the highly directional point patterns
with one regional cluster yield reasonable results in the range of 87% to 97%.
However, the drop to a range of 32% to 48% for highly directional point
patterns with three regional clusters, with up to 5% rejections induced by
overpredictions, is clearly beyond acceptability. It should be noted, that these

results coincide with the percentages attained for the monodirectional point
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patterns with six or more clusters.

All in all, the blunt-triangle method performs poorly in most of the cases
considered. For non-directional patterns, the null hypothesis is generally rejected
far too often. Not even 50% of rejections are reached for highly directional

point patterns. Exceptions,

where the blunt-triangle

CLUSTERS
Regional | 2 4 8

method shows an acceptable

behaviour are limited to “ 1 97 91

random point patterns and

95 87
4265) | 355 32(4)57J_|

highly directional point i
3
patterns with one regional Llumbers in brackets=overpredictions 1n

¢
4
I
t
t
:
1

cluster and some local | Table VI: Percentages for the rejection of
the null hypothesis of isotropy for
clusters with an orthogonal anisotropic point patterns on two levels of
scale. Upper part: elliptical convex hull,
orientation. In all other cases lower part: rectangular convex hull.

where the blunt-triangle method was evaluated not enough coincidence was
found between the properties built into the patterns and the outcome of the
analyses. It can thus be concluded that the blunt-triangle method with the
application of collinearity constants for elliptical and rectangular random models

is unsuvited for Poisson cluster processes. Since it is likely thai Poisson cluster
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processes represent a larger subset of point patterns observed in geographic
reality than homogeneous random processes do, it is hoped, that blunt triangle
statistics based on Poisson cluster processes will be available sometime in the

future.

Third Moments

Determination of Parameters

The first issue arising in the application of the third moment measure is
the choice of appropriate values for the angle of a sector as well as the radii.
If one is interested in second moments, the use of all inter-point distances as
radii is an elegant way to handle the latter problem (Boots and Getis, 1988).
However, in the examination of anisotropy the choice of particular distance
intervals is beneficial since this leads to a way to observe variations of
directionality on different levels of scale. In addition, it will be seen later how
variations in the density of points in different annuli are helpful in the

identification of clustering and in the determination of the size of the clusters.

The choice of the sector size, on the other hand. determines the proper
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identification of the orientation of the directional bias. If the sector size is too
small a significant mode will be hard to identify, with increasing class width less
precise directional information will be given. An additional constraint on
minimizing the annulus and the sector sizes is the requirement of the chi-square
test, that the expected value of the distribution to be tested (here: K(S(m:r,.r;))/k)
should not be less than 5. With this in mind, it seemed appropriate to run a

number of trial and error analyses in order to calibrate the parameters.

For the radii, the initial configuration was the maximum inter-point
distance subdivided into equidistant intervals as annuli. It became obvious that
the outer annulus as well as the inner disc did not receive enough points to
qualify for the chi-square test. Thus, several improvements became necessary.
Firstly, the maximum radius had to be limited to avoid biased results. Most
researchers using the second moment method define the maximum radius as a
value which depends upon the size of the study area. In particular, the
circumradius (Boots and Getis, 1988) and the diameter (Ohser, 1983) of the
study area are values chosen frequently in accordance with the estimation
procedure. In the context of this thesis, however, it was felt that considering the
process generating the point patterns a maximum radius dependent only on the

relative locations of points would be more appropriate. One solution is to
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choose the convex hull of the point pattern as an unequivocal “natural” border,
and deriving the circumradius from the eigenvalues computed previously for the

blunt angle method as:

Toae = VEy + B,
where E, and E, denote the first and the second eigenvalue respectively.
Another improvement was accomplished by subdividing the maximum disc into
annuli of equal area, making thus the different K(S(m;r,,r,)) proportional to

relative densities of points in the annuli.

With respect to the class width, initial values of 2° were chosen as sector
angles. However, this high degree of precision is not needed since for the more
clustered patterns misclassifications from the given direction of up to a
magnitude of 15 classes were observed. Hence, a maximum class width of 15°
is still considered appropriate for maximizing the probability of the modal class

to receive the "correct” direction.

Finally, the following experimental designs were set up to each carry out
100 analyses for the standard deviation ratios shown in Table II. The first set
up implied the subdivision of the maximum radius into a disc and an annulus of

equal area. and a sectoral angle of 10° Thus, K(S(10%0.R,)) and



67

K(S(10%R,,R,)) were to be estimated in the first experiment with radii calculated

as:

Experimental set ups two and three were defined by an increase to three and
four distance intervals, and sectoral angles of 12° and 15° respectively. In each
experiment the K(S(os;r,.1,)) were estimated and absolute frequency distributions
as well as a chi-square value for each distance interval were cbtained. Then the
chi-square value was compared to an appropriate tabulated value to test the null
hypothesis. If the null hypothesis was rejected the modal class was determined
and its deviation from the given angle of rotation ® measured. This procedure
repeatedly carried out over 100 simulations for each standard deviation ratio thus
yielded accumulated percentages of the rejections on the 0.05 significance level

and additional average misclassifications for each of the distance intervals.

Findings
Figure 5.2 to Figure 5.10 illustrate the resuits for the application of the
third moment method to the point patterns generated with the standard deviations

from Table II. The vertical axis in each figure displays the total number of
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simulations as 100%. Each bar in the figures thus portrays the percentage of
rejections of the null hypothesis of isotropy on the 0.05 significance level, in
addition to the percentage of cases where the minimum number of expected
class frequencies is less than 5 and thus, the assumption of the chi-square test
is violated. On top of each bar the average misclassification, based on the class
width in the directional distribution, of the detected modal class to the given
direction is displayed. The horizontal axis shows the character of the
simulations with the number of clusters in ascending order. To each number of
clusters there are assigned three bars according to the strength of directional bias.
The first bar in each group is representative of an isotropic pattern (1:1 standard
deviation ratio) where no directionality is given and, hence, a misclassification
can not be determined (N/A). The second and third bars in each group are
representative of medium directionality (3:1 standard deviation ratio) and high

directionality (5:1 standard deviation ratio) respectively.

Figure 5.2 and Figure 5.3 depict 100 third moment analyses with
parameters set to a sector width of 10° and the maximum radius subdivided into
a disc (Figure 5.2) to describe short range directionality and an annulus
(Figure 5.3) suggesting long range directionality of equal area. For the patterns

generated by an approximately isotropic process, rejection rates varying



69

Figure 5.2: Single Scale Model, 0 - Radiusl, Sector Width=10°.
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Figure 5.3: Single Scale Model, Radiusl - Radius2, Sector Width
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unsystematicaily between 5% and 17% are observed in both figures. A clear
contrast between short and long range directional distributions can be seen for
the medium directional point patterns: The rejection rates increase from 40%
to 62% with an increasing number of clusters and decreasing cluster size in
Figure 5.2, while the rejection rates drop from 92% to 55% in Figure 5.3. A
less clear picture is exhibited for the highly directional point patterns, where the
rejection rates in both figures are between 80% and 100%. Undefined
percentages are indicative for analyses where the requirements of the chi-square
test are not fulfilled. They occur increasingly from the six-cluster case to the
twelve-cluster case in the long range directional distributions. This effect is
accompanied by increasip 2 average misclassifications of the modal class in the

analyses where the nuil hypothesis of isotropy is rejected.

The influence of a change of parameters on the outcome of third moment
analyses is illustrated in Figure 5.4, Figure 5.6, and Figure 5.5. Here, a sectoral
angle of 12° was chosen and directional distributions in the short (Figure 5.4),
middle (Figure 5.5), and long (Figure 5.6) range are examined. Similar to
Figure 5.2 and Figure 5.3, the rejection rates for the isotropic patterns generally
vary about 10% for all radii. A strong conirast is apparent for the medium and

high directional point patterns between the short range distributions on the one
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Figure 5.4: Single Scale Model, 0 - Radiusl, Sector Width = 12°,
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Figure §.5: Single Scale Model, Radiusl - Radius2, Sector Width = 12°,
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Figure 5.6: Single Scale Model, Radius2 - Radius3, Sector Width = 12°.
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hand, and the middle and long range distributions on the other hand. The former
exhibit a trend of raised rates of rejection with an increased number of clusters,
whereas the latter two show a tendency of declining rejection rates with a
decreased cluster size. They also indicate the tighter grouping of points in the
smaller clusters. In addition, this tendency is accompanied by an increasing
nercentage of analyses where the requirements of the chi-square test are not
fulfilled, while, when the null hypothesis can be rejected, the modal classes are
increasingly misclassified from given orientations. These tendencies are stronger
in the long range directional distributions than in the middle range directional
distributions. First conclusions can be drawn from the results exhibited in
Figure 5.2 to Figure 5.6. Firstly. as one would expect, it is indicated that in the
highly clustered patterns short distance relationships are more representative of
directional properties. Secondly, the high misclassifications beyond the short
range are indicative of the influence of interactions between the clusters on the
location of the modal class in the directional distribution. Thirdly, the impact
of void spaces unoccupied by points between the clusters becomes important in
the middle and long range directional distributions. They may lead to a violation
of the requirements of the chi-square test and, hence, a null hypothesis can

neither be accepted nor be rejected.
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Although the examination of short, middie and long range directional
distributions give some indications about the general behaviour of the third
moment method when applied to clustered monodirectional point patterns, it
becomes necessary to subdivide the disc of the maximum radius into four equal
area zones in order to capture more of the complexity built into the patterns.
Figure 5.7 to Figure 5.10 depict the results of applications with radii calculated
according to the rules suggested above and a sector width of 15°. In general,
the same trends as in Figure 5.2 to Figure 5.6 are displayed, yet individual
observations for each case of directional clustering can be made. The bars for
the simulations generating only one cluster show an increase of the rejection rate
for directional patterns with increasing distance. This effect, which is
particularly obvious for the medium directional point patterns, indicates that the
consequences of anisotropy in & simple, one-cluster pattern become increasingly
important when the angular ielations of points more distant to each other are
examined. The influence of clustering is already picked up for the three-cluster
case as the figures attest. Indicators are raised rejection rates in the short range
and smaller rejection rates in the outer ranges in comparison with the one-cluster
case. Inspected by itself, the three-clustei analyses still show long and middle

range directionalities dominating over short range directionalities. An interesting
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Figure 5.7: Single Scale, 0 - R1, Width=15°.Figure 5.8: Single Scale, R1-R2, Width=15°.
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behaviour is depicted by the six-cluster case. Its rejection rate is increasing from
Figure 5.7 to Figure 5.8, and then drops in the outer ranges. Thus, recognizable
clustering is shown with still relatively large cluster sizes. However, the
rejection rates do not exceed the 80% mark at all, indicating that on the levels
of intermediate clustering the interactior vetween clusters may cover an
anisotropic bias contained within the clusters. The same low rejection rates are
observed for the nine-cluster case, where percentages for the highly directional
patterns are about 80% in both Figure 5.7 and Figure 5.8, then drop in the outer
ranges. This behaviour, in addition to the raised detection of void spaces
between clusters and higher misclassifications in the outer ranges show the
response of the third moment method to increased clustering and smaller cluster
sizes. Finally, the results of the twelve-cluster case reveal the ability of the third
moment method to detect the given properties built into simulated point patterns.
Figure 5.7 with a rejection rate of 99% for the highly directional patterns shows
that anisotropy is now important only in the short range. In the ranges beyond
the rejection rates drop sharply while undefined percentages and
misclassifications become more important. The medium directional distributions
parallel this behaviour on a smaller magnitude except in Figure 5.10, where

undefined percentages even exceed rejection percentages.
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Allin all, the third moment method performs acceptably well on the point
patterns with an anisotropic bias given on one level of scale. The consistent
detection of about 10% of anisotropy in the approximately non-directional point
pattemns is small enough to be neglected. The results for the highly directional
point patterns give strong evidence that while deviations from isotropy are
identified, other deviations from homogeneity such as clustering are indicated as
well. The strength of this ability is weakened if interaction between the clusters
takes place on the same range of distances which define anisotropy within the
clusters. It should also be noted that the general trends for the point patterns
generated from a higher standard deviation ratio follow those of the appropriate
highly directional point patterns on a lower magnitude. Thus, the third moment

method is sensitive to variations in the strength of a directional bias.

The Identification of a Second Direction

Since the third moment method performed well on point patterns with
directionality given on one level, the next step is taken to evaluate the behaviour
of point patterns where an anisotropic bias is given on two levels with
orthogonal orientations @ and ®+n/2. The examination of preliminary analyses

carried out on point patterns generated with the standard deviations given in
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Table III gave evidence, that the directionai distributions 8,,.(0) tend to be
bimodal with a major and a secondary modal class. Thus, the procedure
designed to find the difference between the mode and the given orientation had
to be altered in order to accommedate the secondary mode. Firstly, the two
modes have to be identified. For the major modal class, an obvious choice is
the class with the largest frequency in the directional distribution. However,
with regard to the secondary mode care has to be taken since if the number of
classes is sufficiently large, the second highest frequency may well be found
close to the major mode, as part of the symmetrical distribution about it. In
turn, a secondary mode may have a frequency quite lower than that of the
overall second highest frequency, but, since the given orientations are orthogonal
one would expect the secondary mode to be quite distant from the primary one.
Given the number of classes k, a reasonable minimum distance from the major
modal class appeared to be k/S classes beyond which a secondary modal class
can be identified. Having identified the two modal classes, the misclassifications
of the major mode to the regional orientation ® and of the secondary mode to
the local orientation ®+1/2 can be measured. A problem of misidentification
may arise if the major mode is representative of the local orientation and the
secondary mode shows the regional orientation, which is indicated by large

misclassification values. To resolve this problem and identify the maxima
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properly the following approach is taken: If both misclassifications exceed a
value of int(k/4)+1 the primary mode is defined as being representative of the
local direction while the secondary mode indicates the regional orientation, and

their misclassification values are recalculated accordingly.

After altering the classification procedure 100 analyses were carried out
for each of the 5 directional scenarios summarized in Figure 4.17. According
to the overall intensity of points and the results gained from the analyses on the
monodirectional point patterns, the parameters for the third moment method were
configured to be four radii delimiting a disc and three annuli of equal area to be
intersected by wedges with a sectoral angle of 6°. The results of these analyses
are displayed in Figure 5.11 to Figure 5.14. Compared to the figures of the
monodirectional analyses they have the additional feature to show, whether the
primary or the secondary modal class is representative of the regional direction.
Thus, each bar is composed of the percentage where a chi-square test could not
be carried out and the percentage of rejections of the null hypothesis of isotropy
on the 0.05 significance level, which itself is subdivided into the percentage

where the primary mode is indicative of the regional orientation, and the
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Figure 5.11:Double Scale,0-R1,Width=6°. Figure 5.12:Double Scale,R1-R2, Width=6°.
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percentage where the secondary mode indicates ®. On top of each bar, the

average number of classes deviating from the given orientations are given for

both modes.

On first glance, the behaviour of the monodirectional single cluster
patterns is even more emphasized by the patterns with one regional cluster. The
dominance of long distances as carriers of anisotropy on the regional scale is
clearly depicted by the increase of the rejection rates from about 22% to 95%
from the short range to the outer ranges. It seems that the second direction
incorporated into the patterns is not at all picked up since the overall rejection
rate for the minimum disc is very low and the average misclassifications for the
local directions are quite high. This observation is supported by the fact that the
increase from two to four local clusters resulted in a mere overall decrease of
2% of rejections from the former to the latter case in all four figures. A
plausible explanation for this behaviour is that both orthogonal directional trends
interfered in the short range distributions, an effect that not only made the modal

classes indistinguishable but also suggested a uniform directional distribution.

A more characteristic representation of the two levels of directionality by

the third moment method is found for the patterns with three regional clusters.
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In general, the high overall rejection rates are a first observation. They indicate
that anisotropy occurs over the whole range of distance intervals examined.
Secondly. for the short range distributions, depicted in Figure 5.11, the major
modal class is generally found to be representative of the local orientations more
often than being representative of the regional orientation. The lower
misclassification values of the local orientation in Figure 5.11 if compared to the
values in Figure 5.12 to Figure 5.14 support this observation. Concerning the
behaviour of the third moment method with regard to an increase in the number
of local clusters, one can generally see the growing importance of regional
orientations. At the same time, the local orientations represented by the primary
modal class are decreasing. While the properties of the point patterns are
reflected in the three annuli by this behaviour, the drop of the overall rejection
rates within the short range indicate that the smallest radius in about 15% of the
caseg with 8 local clusters was not small enough to permit an assignment of the

primary modal class to the appropriate orientation.

It can thus be concluded, that in addition to detect varying strengths of an
anisotropic bias in general and to indicate clustering, the third moment method
also has the ability to distinguish between at least two given orientations. This

last quality is particularly dependent upon choosing distance intervals as radii
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that somehow reflect the nature of the point pattern. Although the choice of
intervals creating a disc and annuli of equal area generally proved to be an
appropriate rule of thumb, in some cases slightly better results may be acquired
after examining the point pattern to be analyzed by eye and determining the

distance intervals empirically.

Finally, some suggestions concerning the interpretation of directional
distributions 0, ,(a) of empirical point patterns are given. In general, if the null
hypothesis of isotropy is accepted for the short range but rejected for the outer
ranges, evidence is given for directionality occurring throughout the entire point
pattern being one cluster. A similar conclusion can be drawn, if the null
hypothesis is rejected in all intervals, but the chi-square values are increasing in
the outer ranges. In this case, the modal classes of the outer ranges will be more
reliable indicators of the orientation of an anisotropic bias. If on the other hand
the null hypothesis is rejected between the origin and the first radius, while this
tendency is lessened in the outer ranges and the chi-square test eventually
becomes unfeasible in this domain, one would identify the point pattern as being
highly clustered with an anisotropic bias contained within the clusters. In this
case, the modal classes of the shorter ranges will display a more precise

representation ot the orientation. A second modal class is clearly a sign of
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secondary directionality. If the roles of the primary and the secondary mode are
becoming reversed with increasing radii, the mode being the pnimary one in the
short range distribution and the secondary one in the longer range distributions
is representative of directionality on a more local scale. It should also be noted,
that the primary mode will have a tendency to display the orientation more

precisely than the secondary modes.
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Chapter 6: Conclusions

Summary

The goal of this study was the evaluation of the blunt-triangle method and
the third moment method for their potential of detecting the directional
characteristics of spatial point patterns. This goal was accomplished by
developing an operational point process model with the capability of

incorporating varying degrees of directionality.

The design of this model was based on the observation on empirical
geographical point patterns. They indicate that directional properties are often
exhibited by the clustering of points around linear features. It seemed thus
appropriate to modify an existing stochastic cluster point process toward the
generation of elongated, elliptical clusters representative of directional
conditions. In order to control the realizations of the model the number, shape,
and orientation of clusters were taker as deterministic components in the model.
Since geographical point patterns often show varying properties on different
levels of spatial resolution, some realizations of the model added directionality

on a jocal scale to the overall regional scale directional properties. The
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outcomes of applications of the methods to variugs realizations of the model
were then examined with regard to the successful exposition of the built-in

properties.

The blunt-triangle method is based on linking all points of a point pattern
under study to form a set of triangles. Under the assumption of randomness the
mean and the variance of the number of triangles that are blunt within a given
tolerance level can be computed. If the number of triangles in the examined
pattern which are identified as being blunt exceeds the number of blunt triangles
expected with 95% confidence in a random pattern, the point pattern of interest
is identified as anisotropic. The results of applications of the blunt-triangle
method to the directional cluster point process model showed little or no
correspondence to the properties produced in the various realizations of the
model. This failure can be explained by the derivation of the blunt-triangle
statistics from assumptions of randomness; with the consequence, that
applications of ihis method to non-random patterns result in non-sensical
findings. Thus, the blunt-triangle method can not be generally recommended for
applications in Geography. If, however, a geographer suspects a point pattern
identified as random by quadrat or nearest-neighbour method to huave a

directional bias, the blunt-triangle method « "ghi be used for further exploration
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of the data set.

The third moment method proceeds by finding directional distributions
derived from the number of points counted in certain distance and orientation
intervals from each point in the pattern. Non-uniformity of these directional
distributions reveals anisotropy, while modal classes in the distributions are
indicative of preferred orientations. Throughout the applications of the third
moment method to the various realizations of the directional cluster point
process model it has been shown that the success of the method is directly
dependent upon the proper choice of the distance and orientation intervals that
underlie the directional distributions. If appropriate choices for these parameters
are made a given directional bias is revealed and its orientation identified with
sufficient accuracy. In addition, properties such as clustering and the strength
of the directional bias are indicated as well. Although some suggestions
pertaining to a rational choice of the parameters for the third moment method
are given in this study, it seems that this choice may to some extent be up to the
intuition and experience of the researcher with regard to particular point patterns.
Nevertheless, it appears that the third moment method has the potential to
become a valuable part of the spatial analyst’s toolbox, and that more can be

learned about the determination of its parameters by applications to real-world
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situations.

Future Research

This thesis has provided some insight into the nature of approaches geared
toward the identification of directional characteristics of spatial point patterns.
By evaluating two recent statistical procedures questions pertaining to the
validity of these methods for the solution of certain problems in Geography have
been answered. However, some issues relating to these problems were beyond
the scope of this study, other questions arose during the research. One limitation
of the study is given by the choice of a cluster point process as the starting point
of the directional point process model. This choice was justified by the frequent
occurrence of clustered point patterns, and by the ease of comprehending an
associated directional bias. Nevertheless, the concept of regular point patterns
is of some importance in Geography and, thus, an evaluation of the blunt-
triangle method and the third moment method based on a directional regular

point process might be valuable.

A future possibility for the directional cluster point process can be seen

in the transformation from the operational state to a theoretical state by removal
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of its deterministic components. By devising a way to estimate its parameters
from an empirical point pattern, the directional cluster point process could then
serve as part of a method to identify directionality. One may think about the
blunt-triangle method which, although intuitively appealing, was determined to
fail because of its dependence on assumptions of randomness. Deriving the
blunt-triangle statistics from a more appropriate model, perhaps by simulation,
would make this method more attractive. However, these tasks may be more
appealing to the statistician than to the geographer. Finally, the author could see
the future of the third moment method in an increased number of applications.
The nature of this method and its dependence upon the external choice of
parameters suggest its modification for implementation in the interactive

environment of a geographical information system.
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c Analysis of Directional Point Patterns

¢ This program proceeds by generating 100 directional point patterns.

¢ These point paiterns are then analysed by the blunt-triangle method and
¢ the third moment method method with parameters set to 4 radii and a

c sector width of 6 degrees. Results are summarized as percentages of the
c rejection of the null hypothesis of isotropy.

c
c written in UNIX FORTRAN 77 XLA +
c by Rolf Puchtinger, 1989.
c
c
e 0 2 3 ok 2 e 3 e ke A o e 3 e e 3 3 3 8 a3 o8 e 3 e e o 3 3 sk ok i 2 e e e 3¢ 3 ke 3 3 e 3¢ 386 2 3 ke ke k-3 e 3 o a8 e 35 e 2 3k e e e 3¢ e e e e e ok
c
Program directiontest
real rad(5),stal(2),sta2(2)
integer idiff(10,100),idif(8),ivalu(3),iperc(5,2),idev(5,2),ivoi(5)
integer nops(2),negs(2),lambda(2)
character*28 date
common /meb1/point(150,2)
common /meb2/distan(150,150)
common /meb3/freqmat(150,150)
c
¢ pnint time and date
c

call system(’date > dafil’)
open(1,file="dafil’,access="sequential’,form="formatted")
rewind 1

read(1,2)date

format(a28)

print * date

t9

¢

¢ open file to dump general results
call system (’rm condout’)
open (9.file="condout’)

(g}

¢ determine constant Pl
pi=acos(-1.)

2}
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¢ input parameters
read * lambda(l),stal(1),sta2(1)
read *,Jambda(2),stal(2),sta2(2)
c
c initialize the counting arrays
do 76.iclo=1,10
do 78,icli=1,100
idiff(iclo,icli)=999
78 continue
76 continue
data nops,negs/0,0,0,0/
2 o abe 20 s e e e b e ke e e 2je 0 20e 0 sl e e 2 a8 e dk ke e ke e b ol 3 b 3k e e 2k 2 e 3k 3K 5 e 3¢ 3 ke i e s 2 e e sl i ol e e sl s e sk sk b sk ok e ol S e o sk e
c
¢ loop through the 100 simulations with rotation of the
¢ point patterns increasing by 20 degrees
g**********************************************************ﬂ************
c
isim=0
do 901 ,nrot=0,180,20
do 909,isam=1,10
isim=isim+1
write(9,*) ’loop,no’,isim
C
¢ sample the point pattern
call sampo(lambda,stal,sta2,numact,nrot,pi)
write(9,*)’points: ’,numact
c
¢ create the distance-angle matrix
call corconv (numact,pi)
c
¢ determine the broadbent-factor
call broadb(numact,brofa,rad)
write(9,*) 'brofa:’,brofa,” radi’,rad
c
¢ perform the alignment analysis
call alignm(numact,brofa,pi,maxn,nops,negs)
write(9,*) 'alignment’,maxn,nops,negs
c
¢ test the orientation of blunt triangles
call orient(numact,maxn,pi.ivalu,nrot)
write(9,*) ‘orientations’ ivalu
idiff(1,isim)=ivalu(l)
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1diff(2,isim)=ivalu(2)

¢ perform a third moment analysis

8
c
909
901
c

call thirdord(numact,pi,idif,nrot,rad)
write(9,*) ’thirdord: ’,idif

do 8,i=3,10

idiff(i,isim)=idif(i-2)

continue

continue
continue

% ok e ok s o o s b kol 3 3 b e ok ke ok o o o o kS k3 S e e a3k sk e 3 S ke e b o e e s s ke ae e ol sk ok sl o ok ok ke ke ke ol e e ok ok ke ke

¢ summarize the results

c

49

jan=0
do 47, ian=1,9,2
jan=jan+1
ian3=ian+]
iperc(jan,1)=0
iperc(jan,2)=0
idev(jan,1)=0
idev(jan,2)=0
ivoi(jan)=0
do 49,ian2=1,100
if (idiff(ian,ian2).eq.777) then
ivoi(jan)=ivoi(jan)+1
goto 49
endif
if (idiff(ian,ian2).ne.999) then
if (idiff(ian,jian2).ge.8.and.idiff(ian3,ian2).ge.8) then
idev(jan,2)=idev(jan,2)+(15-idiff(ian,ian2))
idev(jan,D=idev(jan,1)+(15-idiff(ian3,ian2))
iperc(jan,2)=iperc(jan,2)+1

else
iperc(jan,1)=iperc(jan,1)+1
idev(jan, =idev(an, 1)+idiffan,ian2)
idev(jan,2)=idev(jan,2)+idiffrian3.ian2)
endif
endif
continue

ntoper=iperc(jan.1)+iperc(jan,2)
dev(jan. D=ndevitidev(jan,1).ntoper)
idev{jan.2)=ndevi(idev(jan.2).ntoper)
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C

continue

c*****************************************************#**********‘i******

c output the resuits

C

&

&
172

189

155

LR

179

’

print 172, regional clusters= ’,lambda(1),” std1=
stal(1),” std2= ’,sta2(1)
print 172,’local clusters= ’Jlambda(2),” stdl= °,
stal(2),” std2= ' sta2(2)
format(1x,a25,i3,212,f4.0,a12,f4.0)
print *
print *
print *,’.ENDALLS METHOD OF BLUNT TRIANGLES"’
print *
print *’ elliptical  rectangular’
print *triangles exceeding 2 standard deviations:”,nops(1),nops(2)
print *,’triangles less than 2 standard deviations:’,negs(1),negs(2)
print *
print *
print *’ORIENTATION OF TRIANGLES > 170 DEGREES’
print *
print 155,iperc(1,1),idev(1,1),iperc(1,2),idev(1,2)
print *
print *
print *,"THIRD MOMENT ANALYSIS’
print *
print *,’radii deviations’
numpsi=0
do 189,nco=2,5
print *
numpsi=numpsi+1
print *,”Annulus no. ’,numpsi
print 155,iperc(nco,1),idev(nco,1),iperc(nco.2).idev(nco.2).ivoi(nco)
print *
continue
print 9
format(’1’)
format(1x,’Scalel: i3, Misclass: .12,

8x.’Scale2: ’,i3," Misclass: .12,

8x,’undefined: °,i2)
format(1x,a7,3(3014/7x),10id)
close(9)
stop
end
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C
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¢ subroutine to transform x/y-coordinates into a matrix

¢ with distances in the upper triangle and angles in

¢ the lower triangle

C e a2 e 2k e ol bk de ol ke ale ok ke 2 3 3 e e ok o b ak ke e e ke e ol e e ak ke 3 2 e e ok a3 ke e e e 2 e ok s 3k e e e e o 3k s 3k 3k 3 ke ke ok ok a3k ok e sk
subroutine corconv(na,pi)
common /meb!/p(150,2)
common /meb2/angmat(150,150)

(g}

¢ reset the distance/angle matrix
c

do 32,iset=1,150
do 42,nset=1,150
angmat(nset,iset)=0
42  continue
32 continue
do 45,j=1,(na-1)
angmat(j,j)=0.0
do 56.,k=(j+1),na

xval=p(j,1)-p(k,1)
yval=p(j,2)-p(k.2)
if (yval.eq.0) then
angmat(k,j)=pi
goto 68
endif
angvalu=atan(xval/yval)
angmat(k,j)=pi/2-angvalu
68 angmat(j,k)=sqrt(xval**2+yval**2)
56  continue
45 continue
return
end

(g%

0 3 e 3 e 6 3 3 b ok ok 6 3 3 e e e ok e sk ot e e sk ke 3 ok e 2 sl A 3k ke 3 3k v 3k sk e 3 ke i e e e Rk k3K K ke e e e sk ok Sk R ok ke ek ek

(2}

subroutine to determine the broadbent-factor

and the radii for the third moment method
¢ 3 3k 3 3k 3k ok e 3k 3 3K 2k 3 3 3 3 8 2k i e ol 3k ke ke A 3K ok 3k ok Ak 3k oK e ok ik e Sk ik i 3 8 K 3 k R s e Ak 3K 3K 3 3K e e K e ok Kk K K K Nk

[ o2 o

subroutine broadb(na,b.radu)
real radu($
common /mebl/p(150.2)
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¢ generate the variance-covariance matrix

varl=0

corl=0

var2=0

cor2=0

covar=0

do 10,j=1,na
varl=varl+p(j,1)**2
corl=corl+p(j,1)
var2=var2+p(j,2)**2
cor2=cor2+p(j,2)
covar=covar+p(j,1)*p(j,2)

10  continue
varl=(varl-corl**2/na)/(na-1)
var2=(var2-cor2**2/na)/(na-1)
covar=(covar-(corl *cor2)/na)/(na-1)

c
¢ determine the broadbent factor from the eigenvalues of
¢ the variance-covariance matrix

c
rtex=sqrt((varl-var2)*(varl-var2)+4.*covar*covar)
aval=varl+var2
b=0.5*(sqrt((aval+rtex)/(aval-rtex))+sqrt((aval-rtex)/(aval +rtex)))

c

¢ compute radii for the third moment analysis

c

radu(1)=0.

do 177,i1x=2.,5

radu(ilx)=sqrt((ilx-1)*aval*0.25)
177 continue

return
erd
c ek R Aok ke ok Mok kR Rk kR Rk R kR kR kR kR kk kR kAR Rk Rk Rk kR kb ok kK Rk ko
¢ function to compute factorials
c
double precision function fact(n,m)
fact=1.
do 12,i=n,m
fact=fact*i
12 continue
return
end
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¢ subroutine to perform an alignment analysis using distances

¢ from the distance\angle-matrix
C e s e 2 e o i a3 e e e o e ol ak s 3l ke g 2k o ke dle sk dke abe e ake ae e ok aje ke b afc abe e s a3k e e ke afe e 3 e s e o sl e 3 e e 3¢ e sk o sk ke e ek

c
subroutine alignm(na,br,pi,maxnum,npos,nneg)
common ;meb2/distang(150,150)
common /meb3/freqdir(150,150)
integer icol,irowl,irow2,npos(2),nneg(2)
double precision fact

c

¢ compute combinatorials
comb(n,m)=fact{(n-m+1),n)/fact(1,m)
¢
maxnum=0
do 46,kval=1,150
do 118, klop=1,150
freqdir(klop,kval)=0
118 continue
46  continue
degtorad=pi/180.
C
¢ initialize the computation of the standard deviations
c
trinu=comb(na,3)
epsilon=10.*degtorad
¢
¢ elliptical convex hull
c
zlambda = br/pi
zlambsq = zlambda*zlambda
expr3=comb(na-3,2)*3.*((br**2*0.1103275111-0.0075052729)-zlambsq)
exprd=comb(na-3,1)*3.*/(br**2*(0.1801265487-0.0600421829)-zlambsq)
expec=epsilon*trinu*zlambda
ergeb=2*sqrt(abs(expec +epsilon**2#(-zlambsq+expr3+exprd)*trinu))
posel=expec+ergeb
meel=expec-ergeb
¢
¢ rectangular convex hull
¢
zlambda = br/3.
zlambsq = zlumbda~zlambda
expri=comb(na-3.2)*3.%((br**270.1160346836-0.0032940654)-zlambsq)
exprd=comb(na-3.1)*3.*((br**2*0.1896296296-0.0553086420)-zlambsq)



expec=epsilon*trinu*zlambda
ergeb=2*sqrt(abs(expec +epsilon**2*(-zlambsq+expr3+exprd)*trinu))
posre=expec+ergeb
mere=expec-ergeb
c
¢ loop through all distances
C
do 10,icol=1,na-2
do 20,irow1=icol+1,na-1
do 30,irow2=irowl+1,na
¢ find the longest distance
if (distang(icol,irow1).gt.distang(icol,irow2).and.

& distang(icol,irow1).gt.distang(irow1,irow2)) then
bigdist=distang(icol,irow1)
sdist=distang{icol,irow2)
tdist=distang(irow1,irow2)
mecol=icol
merow=irow1

elseif (distang(icol,irow2).gt.distang(irow1,irow2).and

& distang(icol,irow2).gt.distang(icol.irow1)) then
bigdist=distang(icol,irow2)
sdist=distang(irow1,irow2)
tdist=distang(icol,irow1)
mecol=icol
merow=irow2

else
bigdist=distang(irow 1 ,irow2)
sdist=distang(icol,irow1)
tdist=distang(icol,irow2)
mecol=irowl
merow=irow?2

endif

c
¢ determine the blunt angle under consideration of rounding errors
c
if (sdist+tdist.le.bigdist) then
bigangle=pi
goto 44
endif
brex=(sdist**2+tdist**2-bigdist**2)/(2*sdist*tdist)
if (brex.gt.l.or.brex.It.-1) then
bigangle=p1
goto 44
endif
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bigangle=acos(brex)

¢ determine the number of triangles between 170 and 180 degrees

C
44

— D
[N oo

(o]

[ ST S o

,

r,

sysangle = pi1 - epsilon
if (bigangle.ge.sysangle) then
maxnum = maxnum +1
freqdir(mecol,merow)=freqdir(mecol,merow)+1
endif

continue
continue
continue

if (maxnum.gt.posel) npos(1)=npos(1)+1
if (maxnum.lt.rneel) nneg(l)=nneg(1)+1
if (maxnum.gt.posre) npos(2)=npos(2)+1
if (maxnum.lt.rnere) nneg(2)=nneg(2)+1

return
end
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subroutine to test for orientation of the blunt angles
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subroutine orient(nb,maxnum,pi,ipass,nrot)
integer ipass(3).icount(30)

common /meb2/ angmat(150,150)
common /meb3/freqdir(150,150)

nu=30

radtodeg = 180./pi

classify angle

klasi=klas(nu.nrot)
if (nrot.le.90) then
mozz=klas(nu,nrot+90)
else
mozz=klas(nu.nrot-9M
end 1f

¢ imtiahze the frequency vector
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do 123.ini=1l,ny
icount(ini)=0
123  cortinue

sinsum=0.
cosum=0.
nasu:-\)
157 do 76, jlol=1,(nb-1)
do 78, jlo2=(jlo1+1),nb

c
if (freqdir(jlo1,jl02).eq.0.) goto 78

sinc=" in(angmat(jlo2,jlo1)*2.)
cosc=cos{angmat(jlo2.jlo1)*2.)

c
sinsum=sinsum+sinc
COSUM=COSUM+Cosc
nasu=nasu+1

¢

¢ classify the number of angles

c

index =0
do 135, inlp=6,180,6
index = index+1
angle=angmat(jlo2,jlo!)*radtodeg
if (angle.le.inlp.and.angle.gt.(inlp-6))
& icount(index) = icount(index) + 1

135 continue

78  continue

76  continue

c

¢ compute chi-square statistic
bignum=0.

c
expe=real(nasu)/real(nu)
incr=0
chisq=0.

do 891,is=1,nu
chisq=chisq+(((icount(is)-expe)**2)/expe)
8901 continue
c
¢ find the modal classes and their deviations
¢
it (chisq.1e.d42.357) then
ipass(1)=999
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ipass(2)=999
goto 895
endif
call findmod(nu,icount,mod1,mod2)
ipass(1)=idiffer(nu,klasi,mod1)
ipass(2)=idiffer(nu,mozz,mod2)
write(9,*)’'modes’ ,mod1,mod2,'diffs ’,ipass,’angles: ’klasi,mozz
write(9,*)icount
write(9,%*)
c
C compute summary statistics
¢ based on the mean vector and the Rayleigh-test (zstat)
c
895 amean=atan(sinsum/cosum)
if (cosum.lt.0.) then
amean=(pi+amean)*0.5
else if (cosum.gt.0.and.sinsum.gt.0.) then
amean=amean*0.5
else
amean=amean*0.5+pi
endif
amean=amean*radtodeg
vectlen=sqgri(sinsum*sinsum-+cosum*cosum)/nasu
zstat=vectlen*vectlen*nasu
ipass(3)=abs(nrot-int(amean))
if (ipass(3).g1.90) ipass(3)=180-ipass(3)
if (zstat.1e.6.91) ipass(3)=999

return
end
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third moment analysis

(4 directional distributions, sector width = 6 degrees)
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subroutine thirdord(na,pi.ndif,nrot,radi)
real pinum(4),chis(4),expe(4),radi(5)
integer ndif(8),frq(4,36),nren(36)
common /meb2/dira(150,150)
parameter (nbar=30)

degtorad=pi/180.



¢ initialize frequency vectors
c
do 252. init=1,4
do 600,init2=1,nbar
frq(init,init2)=0
600 continue
252 continue

c
¢ classify rotation angle
c
klasi=klas(nbar,nrot)
if (nrot.1e.90) then
mozz=klas(nbar,nrot+90)
else
mozz=klas(nbar,nrot-90)
end if
step=pi/real(nbar)
c
¢ derive directional distributions
c
do 255, Ipl=1,(na-1)
do 257, Ip2=(lp1+1),na
do 253, incra=2,5
c

do 603,nang=1,nbar
ang=nang*step
if (dira(lp1,lp2).gt.radi(incra-1).and.dira(Ip1,ip2).le.

& radi(incra).and.dira(lp2,lp1).le.ang
& .and.dira(lp2,lp1).gt.(ang-step))
& frq(incra-1,nang)=frq(incra- 1,nang)+1

603 continue
253 continue
257 continue
255 continue
c
¢ determine the maximum number an? chi-square
c
do 378,loopx=2,8,2
loop1=int(loopx*0.5)
pinum(loop1)=0.
do 604,loop2=1,nbar
pinum(loop1)=frq(loop1,loop2)+pinum(loopl)
604 continue
if (pinum(loop1).it.nbar*5) then
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ndif(loopx)=777
ndif(loopx-1)=777
expe(loopl)=0
goto 378
endif
expe(loop!)=pinum(loop1)/real(nbar)
378 continue
c

¢ calculate the distribution functions
c
do 605,ilopx=2,8,2
ilopl=int(ilopx)*0.5
if (expe(ilop1).eq.0.) goto 605
chis(ilop1)=0.
bigval=0.
C
¢ inner loop
c
do 607,ilop4=1,nbar
chis(ilop1)=chis(ilop1)+(frq(ilop1,ilop4)-
& expe(ilop1))**2/expe(ilop!)
c

nren(ilop4)=frq(ilop1,ilop4)
607 continue
C
¢ find the mode and the second peak
C
if (chis(ilop1).1e.42.557) then
adif(ilopx)=999
ndifilopx-1)=999
goto 605
endif
call findmod(nbar,nren,modl,mod2)
write(9,*)'modes ’.mod1,mod2.klasi
write(9,%)nren
ndif(ilopx- 1)=idiffer(nbar klasi,mod1)
ndif(ilopx)=idiffer(nbar,mozz,mod2)
write(9,%)ndif,” no: ’,ilopx-1.ilopx
605 continue

retumn
end
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¢ subroutine to determine the two modal classes
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c
subroutine findmod(n,ndis,mol,mo2)
integer ndis(36),mofi(2),mose(2),most(2)
c
¢ determine the buffer-size around a mode
c
id=nint(n/5.)
iu=n-id
c
¢ initialize intermediate variables
c
mofi(1)=0
mose(1)=0
most(1)=0
mofi(2)=0
mose(2)=0
most(2)=0
¢
c
do 831,lo=1,n
nva=ndis(lo)
if (nva.lt.mose(1)) goto 831
c

if (nva.eq.mofi(1)) then
if (lo-mofi(2).gt.id.and.lo-mofi(2).1t.iu) then
mose(1)=nva
mose(2)=lo
else
if (n-lo.gt.mofi(2)) then
mofi(2)=lo+nint((n-lo+mofi(2))*0.5)
else
mofi(2)=mofi(2)-nint((n-lo+mofi(2))*0.5)
end if
end if
else if (nva.gt.mofi(1)) then
most(1)=mofi(1)
most(2)=mofi(2)
mofi(1)=nva
mofi(2)=lo
if (mofi(2)-most(2).gt.id.and.mofi(2)-most(2).1t.1u) then
mose(1)=most(1)



mose(2)=most(2)
end if
else if (nva.eq.mose(1).and.(lo-mofi(2).gt.id.

& and.lo-mofi(2).1t.iu)) then

831

844

C
C

¢ tunction to determine the difference between a given class and

if (lo-mose(2).lt.lo-mofi(2)) then
mose(2)=mose(2)+nint((lo-mose(2))*0.5)

else
if (n-lo.gt.mose(2)) then
mose(2)=lo+nint((n-lo+mose(2))*0.5)
else
mose(2)=mose(2)-nint((n-lo+mose(2))*0.5)
end if

end if

else if (nva.gt.mose(1).and.(lo-mofi(2).gt.id.
and.lo-mofi(2).1t.iu)) then

mose(1)=nva

mose(2)=lo
end if

continue

if (mofi(2)-iu.ge.mose(2)) then
mose(1)=0
mose(2)=0
do 844, lott=mofi(2)-(iu-1),mofi(2)-(id+1)
if (ndis(lott).gt.mose(1)) then
mose(1)=ndis(lott)
mose(2)=lott
end if
continue
end if
mol=mofi(2)
mo2=mose(2)
if (mol.eq.0) mol=1
if (mo2.q.0) mo2=2

return
end

¢ another class in a frequency distribution

¢
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C

104

function idiffer(numb,nang,mode)
idiffer=iabs(mode-nang)

if (idiffer.gt.(numb*0.5)) idiffer=numb-idiffer
write(9,*)'diffi ’,idiffer

return

end

c*******************************************t****************#*********
¢ classification of the rotation angle

C

C

function klas(nbar,nrot)
if (nrot.eq.0) then
klas=1
return
endif
clawi=180./real(nbar)
if (mod(nrot,nbar).eq.0) then
klas=int(nrot/clawi)
else
klas=aint(nrot/clawi+1)
endif
return
end
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c

c

function ndevi(l,m)
if (m.eq.0) then
ndevi=888
else
ndevi=int(l/m)
endif
return
end

c ¢ 3 3 3k 38 3 e s ¢ N vk 3 36 3k 3 2 e e 3 3¢ 3 e ke 3 e 3k ¢ 3¢ e k3 3 e R e e 3¢ sk e e e sk e e sk e A e kA ok A ke ok o ok sk e e ok K Ok K

¢ Directional clustered point pattern
c generated from a poisson-bivariate normal process

¢ with two scales
c a5¢ ke 2k 3 3k 3¢ 20 i 36 e ok 3K ¢ 3k 3k 3k 3¢ e 39 ok 3k 3K e ke Ak 3k e e e 2k 3 e ok e e 0k e e ale e a5 ik A Ak 3k e a3 ko e ke e e dbe e e e e i A b ek ok dkk

c

subroutine sampo(lambda,std1.std2,iobs,irot,pix)
common /mebl/p(150,2)
integer lambda(2)
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real cov(2,2),rsig(2,2),rval(300,2),std1(2),std2(2)
external rnset,mopt,munf,mpoi,chfac,rnmvn,amach
tol=100.*amach(4)
call mset(0)
call rmopt(2)

¢ reset the coordinate array (p)
do 21,i=1,150

p(i,1)=0
p(i,2)=0
21  continue
iobs=0
c
¢ set parameters for regional pattern
c

roto=irot*pix/180.
theta=60./real(lambda(1))
lambx=lambda(l)
isc=1
nscal=1
stal=std1(1)
sta2=std2(1)
C a3 3 3 3k 3 3k e b e 33 e s 3k o 3 e ke ke o e 2k sk 3k s S e e s 3k 3 ke e 3 ok ok 3 s e ik 3k 3 3k e e 3k ae ok 3k e ek a3 ale e e 3 e e e ok e e e Sk e ke Ak e Kok
¢ main section of point generation
c
¢ generate the variance-covariance matrix
c
15 cov(1,2)=0.
cov(l,1)=stal**2
cov(2,2)=sta2**2
cov(2,)=cov(1,2)

c
roco=cos(roto)
rosi=sin(roto)
¢
¢ loop through the number of directional clusters

(o}

do 65.iclu=1,lambx
81  call mpoi(l,theta,ir)
if (ir.eq.0) goto 81

i

¢ determine the center of the cluster
C

if (isc.eq.1) then
xcen=aint(249*rnunf()-125)



C

ycen=aint(249*rmunf()- 125)
else if (isc.eq.2) then
insec=aint(nscal*rmunf())
xcen=p(insec,1)
ycen=p(insec,2)
endif

call chfac(2,cov,2,tol,irank,rsig,2)
call mmvn(300,2,rsig,2,rval,300)

¢ rotate and *ranslate the points

C

C

ncount=0
do 19,l00p=1,300

xrot=(rval(loop,1)*roco-rval(loop,2)*rosi)+xcen
yrot=(rval(loop,1)*rosi+rval(loop,2)*roco)+ycen

¢ check if point already exists

c

111

C

if (xrot.ge.210.or.xrot.le.-210.or.yrot.ge.210.or.yrot.le.-210)
& goto 19

do 111, icheck=1,iobs

if(p(icheck,1).eq.xrot.and.p(icheck,2).eq.yrot)goto 19

continue

¢ check if number of points is reached

C

C

ncount=ncount+1
1obs=iobs+1

¢ sample the point

c

c
19
65

c

p(iobs, 1 )=xrot
p(iobs,2)=yrot
if (ncount.eq.ir) goto 65

continue
continue

¢ set parameters for second scale

C

if (lambda(2).eq.0) isc=2
if (isc.eq.1) then
roto=roto+pix*0.5

106



C

nscal=iobs
theta=40./real(lambda(2))
lambx=lambda(2)
stal=std1(2)
sta2=std2(2)
isc=2
goto 15

endif

c translate the origin to the lower left corner
¢ and rescale area to unit size

C

199

do 199,l0=1,10bs
p(lo,1)=(p(lo,1)+210)/420.
p(l0,2)=(p(lo,2)+210)/420.

continue

return

end
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