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Dynamics and Stability of the Two Body Problem with Yukawa Correction
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NOVA, Department of Mathematics,
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(Dated: January 6, 2020)

We explore the dynamics and stability of the two body problem by modifying the Newtonian poten-
tial with the Yukawa potential. This model may be considered a theory of modified gravity; where
the interaction is not simply the kepler solution for large distance. The stability is investigated
by deriving the Jacobian of the linearized matrix equation and evaluating the eigenvalues of the
various equilibrium points calculated during the analysis. The subcases of a purely Yukawa and
purely Newtonian potential are also explored.
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I. INTRODUCTION

Many of today’s theories predict corrections to the the-
ory of Gravitation. The Yukawa Potential has been stud-
ied by a number of researchers as a model to describe de-
viations from Newton’s inverse square law. Theories like
Scalar-Tensor-Vector Gravity Theory (Moffat, 2006) pre-
dict a Yukawa-like fifth force. In (Iorio 2007) the author
finds constraints on the range of the Yukawa interaction
λ by comparing corrections to the Newtonian-Einsteinian
secular rates of the perihelia of Mercury. (Brownstein &
Moffat, 2006) studied the Yukawa potential as a modifica-
tion to Newton’s constant G, introducing a distance vary-
ing gravitational acceleration corrected by the Yukawa
force. In (De Laurentis et al. 2018) the authors solve the
geodesic equation of a particle subjected to a Yukawa
corrected gravitational field.

In this contribution we explore the effect of a Yukawa
correction to the gravitational force over large distances
(binary star-like orbits). In particular, we are able to
study the stability of the closed orbit solutions, and com-
pare them to the classical kepler problem. In particular,
we are able to prove using Bertrand’s theorem that closed
orbits exists for appropriate values of r. This models
is interesting as the simplest correction to gravity over
large distance that one can imagine; future astrophysi-
cal experiments will ultimately dictate the validity of the
model.

This paper specifically builds on work from (Haranas et
al 2011), (Haranas et al 2016) (Haranas & Ragos 2011)
in which the authors calculate various celestial orbital
properties under the correction of a Yukawa term. In
particular in (Haranas et al 2011) the authors compute
the correction to the anomalistic period, in (Haranas et
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al 2016) the authors calculate the corrected mean motion
and in (Haranas & Ragos 2011) the authors study the ef-
fects of the Yukawa correction on the orbits of satellites.
( E.G. Adelberger et al 2009) and (Borka et al 2013)
were also important papers for confining the range (or
coupling) of the Yukawa force for short and large range
distances respectively. (Borka et al 2013) is of particu-
lar importance as the authors study star-like orbits, and
show through numerical simulations that closed orbits
are a possible solution for a mass in a Yukawa corrected
gravitational potential.

The Yukawa force is particularly valid as a long range
force, as early estimates of its range λ from (Brownstein
& Moffat 2006) and (Haranas & Ragos 2011) indicate
that λ ≥ 1015m. λ is the Compton wavelength λ = h

mc
of the particle mediating the interaction, for gravity that
is the graviton. The Yukawa potential could be used, for
example, to model the interaction between massive stars;
which are separated on average by a distance of 1012m.
Thus, we are interested in studying orbits of size relative
to the size of the Solar System; one example we study is
the orbit of two stars of mass equal to that of the Sun.
The corresponding Newtonian potential is given by

VN (r) = −Gm1m2

r
(1)

where r = (rx, ry) and G = 6.6710−11N ·m
2

kg2 is Newton’s

constant. The form of the potential studied in this report
is

V (r) = −Gm1m2

r

(
1 + αe−

r
λ

)
= VN (r) + VY k(r) (2)

Where VY k(r) is the Yukawa correction to the Newto-

nian potential, α =
kgkY k
GMm is the coupling constant of

the Yukawa force to the Gravitational force (Haranas &
Gkigkitzis 2011) and λ is the range of the Yukawa force
as previously mentioned. The results from (Brownstein
& Moffat, 2006) and (Haranas & Ragos, 2011) indicate
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that α = 10−8 for Solar System orbits. In this contri-
bution, we study the Yukawa correction to the Newto-
nian gravitational force; we also study the subcases of a
purely Yukawa potential and a purely Newtonian poten-
tial α→ 0. The dynamics of the two masses is obtained
using the Hamiltonian Formulation of Classical Mechan-
ics; a review is found in (Jose & Saletan, 1998). The two
body problem is studied extensively in (Pollard 1966).

II. HAMILTONIAN FORMULATION

We can assume the form of the Hamiltonian H = T+V
where T is the kinetic energy of both masses and V is the
Gravitational potential energy.

H =
p21

2m1
+

p22
2m2

− k

|r2 − r1|2
(

1 + αe−
|r2−r1|

λ

)
(r2−r1)

(3)
Where pi = mivi is the momentum of each mass and k =
Gm1m2. Note that pi = (pix, piy) and ri = (rix, riy); the
bold font indicates a vector. Changing to the centre of
mass frame gives

H =
p2

2µ
− k

r

(
1 + αe−

r
λ

)
(4)

Here we have defined µ = m1m2

m1+m2
as the reduced mass of

the system and r = |r|. Next we must switch to polar
coordinates; this procedure yields

H =
1

2µ

(
p2r +

p2θ
r2

)
− k

r

(
1 + αe−

r
λ

)
(5)

Following (Goldstein, 1980) given that the Hamiltonian is
cyclic is θ (i.e the Hamiltonian does not depend explicitly
on θ) we can write Hamilton’s equations for θ as:

θ̇ =
∂H

∂pθ
=

pθ
µr2

(6)

ṗθ = −∂H
∂θ

= 0 (7)

And so pθ = l is constant. Given that Hamilton’s equa-
tions have this form we can write our Hamiltonian as

H =
1

2µ

(
p2r +

l2

r2

)
− k

r

(
1 + αe−

r
λ

)
(8)

Where l is the angular momentum of the binary system.
Hamilton’s equations for r become

ṙ =
∂H

∂pr
=
pr
µ

(9)

ṗr = −∂H
∂r

=
l2

µr3
− k

r2

(
1 + α

(
1 +

r

λ

)
e−

r
λ

)
(10)

It can be shown thatH(t) = H(t0) = h is constant during
the motion of the masses; see (Pollard,1966) for example.

FIG. 1. The Reduced Potential Given Fixed Initial Energy

Since p2r ≥ 0 we have that the total energy of the system
is bounded by

h ≥ l2

2µr2
− k

r

(
1 + αe−

r
λ

)
(11)

Here we have defined the reduced potential which is com-
mon to the Kepler problem (with the Yukawa correction).

Vr(r) =
l2

2µr2
− k

r

(
1 + αe−

r
λ

)
(12)

We can graph the function for fixed h giving us the
permissible regions of motion. The graph is shown in
figure 1. Note that µ > 0, λ > 0 and α > 0.

In figure 1 we have graphed the reduced potential for
a given fixed initial energy h measured in joules (J), i.e
equation (11). The dotted line refers to the kepler prob-
lem, the dashed line is a purely Yukawa potential and the
solid line refers to the Newtonian plus Yukawa correc-
tion. Points that lie above the graphs represent possible
unbounded motion for a massive body with given initial
energy and distance from the central body. For small r
it is clear that bounded motion can exist.

III. THE LINEARIZATION MATRIX

Following (Meiss 2007), to determine the stability of
the equilibrium points of the system, we must form a
matrix differential equation using the equations of motion
of the system (Hamilton’s equations for r); given by (9)-
(10). The linear system has the form

d

dt

(
r
pr

)
=

[
∂f
∂r

∂f
∂pr

∂g
∂r

∂g
∂pr

](
r
pr

)
(13)

Where f(r, pr) = pr
µ and g(r, pr) = l2

µr3 −
k
r2

(
1 + α

(
1 + r

λ

)
e−

r
λ

)
; i.e the RHS of (9)-(10). Given
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that λ = 1015m for orbits of size comparable to solar sys-
tem dimensions (Brownstein & Moffat, 2006), (Haranas
& Ragos, 2011). We assume r

λ is a small number we can

taylor expand and ignore terms of O
(
r2

λ2

)
. The expan-

sion about the point r
λ = 0 gives

e−
r
λ ≈ 1− r

λ
+O

(
r2

λ2

)
(14)

And thus g(r, pr) = l2

µr3 −
k
r2

(
1 + α

(
1 + r

λ

) (
1− r

λ

))
and

so the Jacobian matrix takes the form:(
ṙ
ṗr

)
=

[
0 1

µ

− 3
µr4 + 2k

r3 (1 + α) 0

](
r
pr

)
(15)

Where again, we have ignored terms O
(
r2

λ2

)
. The equi-

librium points are points (a, b) such that f(a, b) = 0 and
g(a, b) = 0. Thus we can choose b = pr as one coordinate
of our equilibrium point. For the value of the equilibrium
r coordinate (i.e req = a) using (10) we have

l2

µr3
− k

r2

(
1 + α

(
1 +

r

λ

)(
1− r

λ

))
= 0 (16)

l2

µr3
− k

r2

[
1 + α

(
1− r2

λ2

)]
= 0 (17)

And so ignoring higher order terms the equilibrium points
are determined by solving

l2

µ
− kr(1 + α) = 0 (18)

Solving this equation gives us equilibrium solution:

req = a =
l2

µk (1 + α)
(19)

We can now test for stability by choosing values of µ,
α, k, l and λ and finding the eigenvalues of the Jacobian
matrix (15) after substituting the equilibrium solution
found above. Recall that the eigenvalues β1, β2 are found
by solving the equation

det|J − βI2x2| = 0 (20)

Here I2x2 refers to the 2x2 identity matrix. The charac-
teristic equation (the eigenvalue equation) becomes

β2 − µ2k4 (1 + α)
4

l6
= 0 (21)

The stability is given by the sign of the eigenvalues (Meiss
2007). For example, if β1 > β2 > 0, than the equilibrium
is unstable. If β1 < β2 < 0 then the equilibrium is stable.
Imaginary eigenvalues are also stable if for β1,2 = a± ib
we have that a < 0 (otherwise it is unstable). In the case
when a = 0; the equilibrium is called a centre (and is
stable) (Meiss 2007). Stability refers to how the solution

behaves near the equilibrium point; unstable solutions
grow to infinity, stable solutions tend to zero and the
imaginary cases are the ones which give bound, orbital
solutions (specifically the centre case, whereas the stable
and unstable imaginary cases are bound solutions tending
towards or away from zero).

IV. STABILITY & BERTRAND’S THEOREM

We first note that we can study the case for a purely
Newtonian Potential by letting α→ 0. Similarly we can
study the purely Yukawa potential by ignoring the term
derived from the Newtonian potential; the characteristic
equations become

β2 − µ2k4

l6
= 0 (22)

β2 − µ2k4α4

l6
= 0 (23)

These expressions take into account the fact that our new
equilibrium points are

aN =
l2

µk
(24)

aY K =
l2

µkα
(25)

Where (a, pr) are the equilibrium points of the systems
studied.

We now proceed to evaluate (19), (20) and (21) with
the equilibrium solutions to determine the stability of the
equilibrium points. Evaluating (19) gives us eigenvalues:

β = ±i (1 + α)
2
k2µ2

l3
(26)

Similarly for the Newtonian and purely Yukawa cases:

βN = ±ik
2µ2

l3
(27)

βY K = ±iα
2k2µ2

l3
(28)

And thus the equilibrium points for the purely Yukawa,
Newtonian and the Newton + Yukawa Potential remain
centre solutions. This would imply that motion is
restricted to ellipses about the equilibrium point; and
so we could have orbits near the equilibrium point
(further away from the equilibrium point we would
have unbounded solutions, which can we seen in figure
1). This proves that for small r we have stable, closed
orbits. However, Bertrand’s theorem says the only
potentials which allow closed and bounded solutions
are the Newtonian and Harmonic oscillator potentials.
Thus, we confirm that for small r our equations obey
the conditions of this theorem. We also derive the orbit
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equation for each case.

For the orbit equation, following (Goldstein 1980) the
orbit equation for a keplerian problem can be written as

d2u

dθ2
+ u = − µ

l2
d

du
V

(
1

u

)
(29)

where r = 1
u . This can be derived using Hamiltonian’s

equations and the fact that

dr

dt
=
dr

dθ

dθ

dt
=
dr

dθ
θ̇ (30)

where θ̇ = l
µr2 . After subsequent differentiation by r, you

arrive at the orbit equation. For our modified potential
we have

V

(
1

u

)
= −ku

(
1 + αe−

1
λu

)
(31)

for small r
λ (i.e using the approximation (14)):

d2u

dθ2
+ u = − µ

l2
d

du

[
−ku− kαue− 1

λu

]
(32)

= − µ
l2

[
−k − kα

(
1 +

1

λu

)
e−

1
λu

]
(33)

Using the approximation in equation (14) and ignoring
higher order O(λ2u2) terms we have the orbit equation

d2u

dθ2
+ u =

kµ

l2
(α+ 1) (34)

Which has solution

u =
1

r
=
kµ

l2
(α+ 1) [1 + e cos(θ − θ0)] (35)

where e is the eccentricity of the orbit. The Newtonian
and purely Yukawa cases follow respectively

u =
1

r
=
kµ

l2
[1 + e cos(θ − θ0)] (36)

u =
1

r
=
kµα

l2
[1 + e cos(θ − θ0)] (37)

Finally, to satisfy Bertrand’s theorem we must satisfy the
condition

d2Vred(r)

dr2

∣∣∣
r=r0

> 0 (38)

where the reduced potential is given by (12). After us-
ing the approximation for small r

λ (i.e (14) and ignoring

O
(
r2

λ2

)
) this condition becomes

µ3k4 (1 + α)
4

l6
> 0 (39)

which is clearing true since µ, α, l, k > 0. Similarly it can
be shown that this is true for the Newtonian (set α = 0)
and purely Yukawa cases. This shows that the Yukawa
+ Newtonian potential satisfies Bertrand’s theorem for
small rλ . A consequence of Bertrand’s theorem is that the

ratio ω
θ̇

is a rational number; where θ̇ = l
µr2 and ω = 2π

T .

In a paper to follow will show that ω
θ̇

= 1− 1
2
λ2

r2 but since

for the solar system theory predicts that λ >> req = a
and therefore for any practical purpose ω

θ̇
= 1; this num-

ber being rational implies that orbits are bounded. This
result is physically reasonable even given our approxima-
tions, as mentioned earlier λ ≥ 1015m for Solar System
orbits. So for bound orbits near the equilibrium point

req = l2

µk(1+α) , we expect r
λ to be small. For example,

to explore the dynamics of two sun-like stars orbiting
at a radius similar to the size of the Solar System; we
let m1 = m2 = Msun = 1030 kg. This would imply
α = 10−8, λ = 1015m, k = Gm1m2 = 1049 kg m3/s2,

µ = 1030

2 kg and l = mrv ≈ 1045 kg m2/s. And so

req = 2 · 1011m ≈ 1.3Au; this is comparable to the orbit
of Mars, and thus r

λ << 1 and so the approximations we
have been using during this contribution are valid.

V. CONCLUSION

We have demonstrated the dynamics and stability of
the two body problem with the Yukawa correction to
the Newtonian potential. To calculate the former we
treated the problem as a modified Kepler problem and
derived the equations of motion and reduced potential of
the system; which led us to the discussion of unbounded
or bounded motion. To demonstrate the latter, stabil-
ity, we constructed the Linearization matrix and tested
the stability of the equilibrium points of the system for
a Yukawa correction. We find that the stability of the
equilibrium point is a centre solution; which implies sta-
ble solutions near the equilibrium point. We repeated
the analysis for a purely Yukawa force and find simi-
lar results. We also confirm that our modified potential
obeys Bertrand’s theorem.
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