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Perceptual calibration of F0 production:
Evidence from feedback perturbation
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~Received 3 March 2000; accepted for publication 14 June 2000!

Hearing one’s own speech is important for language learning and maintenance of accurate
articulation. For example, people with postlinguistically acquired deafness often show a gradual
deterioration of many aspects of speech production. In this manuscript, data are presented that
address the role played by acoustic feedback in the control of voice fundamental frequency~F0!.
Eighteen subjects produced vowels under a control~normal F0 feedback! and two experimental
conditions:F0 shifted up andF0 shifted down. In each experimental condition subjects produced
vowels during a training period in which theirF0 was slowly shifted without their awareness.
Following this exposure to transformedF0, their acoustic feedback was returned to normal. Two
effects were observed. Subjects compensated for the change inF0 and showed negative aftereffects.
WhenF0 feedback was returned to normal, the subjects modified their producedF0 in the opposite
direction to the shift. The results suggest that fundamental frequency is controlled using auditory
feedback and with reference to an internal pitch representation. This is consistent with current work
on internal models of speech motor control. ©2000 Acoustical Society of America.
@S0001-4966~00!03009-5#

PACS numbers: 43.70.Aj, 43.66.Hg@AL #

I. INTRODUCTION

There are many indications that fluent speech is con-
trolled through the use of sophisticated internal representa-
tions as well as feedback processed on-line. For example,
people with postlinguistically acquired deafness often show a
deterioration of many aspects of speech production. Prob-
lems related to intensity and pitch control, as well as intona-
tion, stress, and rate of speech are commonly seen quite soon
after hearing loss. However, only after longer periods of
deafness will variability in the production of vowels and con-
sonants be observed~Cowie and Douglas-Cowie, 1992!.

The finding that the precision of vowel and consonant
production persists unaltered for a relatively long time after
deafness onset supports the existence of a well-formed neural
mapping between the motor system and the acoustic signals
for segments. On the other hand, the finding that deafness
more rapidly affects production parameters such as pitch and
intensity implies that the mechanisms involved in supraseg-
mental control may be different than those for the control of
segment production~Perkell et al., 1997!. The control of
these parameters may be more directly sensitive to acoustic
feedback. For example, speakers exposed to loud noise spon-
taneously and immediately compensate by increasing the
volume of their speech~Lane and Tranel, 1971!.

Uncovering how such a complex control system oper-
ates and determining the relative roles played by feedback
and central representations is a daunting task requiring both
empirical and modeling work. Recently, there has been con-
siderable interest in the role of feedback and ‘‘internal mod-
els’’ in motor control in general. Internal models are hypoth-

esized neural representations of the spatial~kinematic!, force
~dynamic!, and/or proprioceptive characteristics of move-
ments that could be used by the nervous system to predict
movement outcome. These predictive models could provide
internal feedback to planning and control systems without
the delays associated with natural proprioceptive feedback
@see Miall and Wolpert~1996!; Kawato ~1999! for discus-
sions of the many roles of internal models in movement con-
trol#.

Evidence for the existence of internal models comes pri-
marily from the study of arm and hand movements. For ex-
ample, Johanssen and Westling~1984! and Flanagan and
Wing ~1993! have shown that when grasping an object with
the hand, grip force changes in synchrony with changes in
load forces on the object. This synchrony could only result
from control that predicts the loads on the object and thus the
grip force needed to hold the object.

Although internal models can potentially reduce the
need for closed-loop control, feedback still plays an impor-
tant role in their acquisition and maintenance. Subjects ex-
posed to novel conditions can acquire new internal models.
Several investigators have shown that subjects exposed to an
artificial force field while making point-to-point movements
adapt and eventually make arm movements with natural tra-
jectories. For example, Shadmehr and Mussa-Ivaldi~1994!
had subjects move a robot manipulandum to targets while the
robot imposed forces. Initially, the trajectories produced by
the subjects were distorted; however, with practice, the sub-
jects produced movement paths quite similar to movements
produced prior to exposure to the force field. When the
forces were suddenly removed, the subjects showed after-
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effects in their movements for a few trials. For these trials,
subjects moved as if they were encountering the experimen-
tal force field even though it was no longer present. This
pattern of behavior suggests that subjects relearned the map-
ping between the kinematics of arm movements and the
forces needed to control trajectories. In other words, they
constructed a new internal model to accomplish the reaching
task under the novel force conditions.

The aftereffects shown by Shadmehr and Mussa-Ivaldi
are a form of sensorimotor adaptation similar to that ob-
served with visual and vestibular perturbation paradigms@see
Welch ~1986! for a review#. For example, Held~1965!
showed that subjects wearing prisms that displace the visual
field quickly relearned the mapping between the visual space
and the motor system. Initially, the subjects made reaching
errors in the direction of the prism displacement. After a
number of practice trials they returned to normal accuracy
and normal movement speed. However, when the prisms
were removed they made reaching errors in the opposite di-
rection to the prism displacement. These data have been in-
terpreted as evidence for a learned mapping between the
movement and perceptual systems.

Similar experiments have been conducted in speech pro-
duction research addressing the learned mappings between
vocal tract movement and the resulting acoustics. The con-
siderable variability that exists in vocal tract morphology
means that talkers must learn the unique acoustic character-
istics of their own vocal tract in order to produce the sounds
of their language. In formal models of acoustic-articulatory
mappings~Guenther, 1994; Hirayamaet al., 1994; Jordan,
1990, 1996; Kawatoet al., 1987! acoustic feedback plays a
number of possible roles:~1! For speech sound development
in children and adults and for learning new vocal tract ar-
rangements, acoustic feedback provides the primary informa-
tion about target achievement and thus is the vehicle for
learning.~2! For fine motor control, the sound of the speak-
er’s voice is used in closed-loop control of articulation.~3!
For motor planning and control, the vocal acoustics provides
an ongoing calibration of internal models of the speech mo-
tor system.

In this paper we explore the relative importance of the
third role: the use of acoustic feedback in calibrating an in-
ternal model for the control of speaking fundamental fre-
quency~F0!. F0 is determined partly by individual anatomy
and physiology and partly by a control system that relies on
feedback to achieve a pitch ‘‘target’’~Titze, 1994!. The bio-
mechanical and physiological contributions to the fundamen-
tal frequency of vocal fold vibration include the mass of the
folds, the subglottic lung pressure, and tension on the folds
from a network of muscles such as the cricothyroid and vo-
calis muscles. These biophysical factors are controlled by a
complex network of cortical and brainstem centers~Larson,
1988! as well as proprioceptive~Kirchner and Wyke, 1965!
and auditory~Sapiret al., 1983! reflex mechanisms.

During normal conversation, the pitch of the voice var-
ies as a function of speaking intensity, prosodic pattern, emo-
tionality and speaking rate, but for any given individual this
frequency range varies around an ‘‘habitual’’ vocal pitch
~Zemlin, 1981!. In this paper we test the extent to which this

habitual pitch is controlled by an internalF0 target. As oth-
ers have previously, we use a modified feedback approach.
Several studies have demonstrated that when subjects hear
their F0 feedback suddenly raised or lowered artificially,
they compensate by shifting their pitch in the opposite direc-
tion ~e.g., Burnettet al., 1998; Kawahara, 1995!. In the pro-
tocol used in this experiment, vocal pitch feedback was
slowly shifted up or down in frequency without subjects’
awareness. Our primary aim was to demonstrate adaptation
to modified pitch feedback following return to normal feed-
back conditions.

There are relatively few reports of auditory adaptation in
speech production research. Houde and Jordan~1998! gave
speakers real-time auditory feedback in which the formants
they were producing were shifted enough to change the vow-
el’s phonetic identity. Over many trials, Houde and Jordan
found that speakers modified their vowel productions to
compensate for the ongoing feedback transformations. In ad-
dition, the modified productions persisted in the absence of
feedback, indicating an adaptive response involved in updat-
ing the acoustic-motor representation. In our experiment, if
talkers show aftereffects of modified feedback conditions
this will be clear evidence that habitual speakingF0 is con-
trolled relative to an internally represented reference fre-
quency.

II. METHOD

A. Subjects

Eighteen male speakers of Canadian English between 18
and 30 years of age~mean of 22.4 years! participated. The
participants reported no hearing, speech, or language prob-
lems.

B. Apparatus

Figure 1 depicts the experimental setup. Utterances were
recorded using a Telex PH-20 microphone. Prior to pitch
shifting, the signals were amplified~Tucker-Davis MA2 mi-

FIG. 1. Schematic of experimental acoustic feedback setup.
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crophone amplifier! and filtered~Tucker-Davis FT6-2! with a
9-kHz frequency cutoff. An Eventide Ultra Harmonizer
~H3000-D/SX! transformed the pitch of the signals. The
pitch-shift processing introduced only a small delay~3–4
ms!. Trial initiation and the pitch processor were controlled
by a computer. To reduce the amount of natural acoustic
feedback, the pitch-shifted signals were mixed with pink
noise~Grason-Stadler 901B! and multi-speaker babble~Au-
ditec, St. Louis! and then attenuated by a Yorkville reference
amplifier ~model SR 300!. The level of the masking noise
was 75 dB SPL. Subjects received the auditory feedback
through Etymotic~ER-2! earphones and through Radioear
Model B-71 bone oscillators positioned on the left and right
mastoid processes. Both the altered and unaltered signals
were recorded at 48 kHz on DAT.

The experimental sessions recorded on DAT were later
low-pass filtered~with a 5-kHz cutoff! and digitized with a
sampling rate of 11 kHz. The fundamental frequency of ut-
terances during each trial was calculated using an algorithm
incorporated in the commercial software package CspeechSP
~Milenkovic and Read, 1995!. The median frequency value
for each utterance made during the 3-s interval was used for
subsequent analyses.

C. Procedure

Each subject was seated in a small room in front of a
computer monitor. Bone oscillators were fixed to the mastoid
processes using a flexible headband. The subject also wore a
helmet that held a microphone at a fixed distance~7 cm!
from the mouth. The transducers for the earphones were at-
tached to a velcro strap around the subject’s neck and foam
inserts were positioned comfortably in the subject’s ear ca-
nals.

Depicted on a computer monitor in front of the subject
was the word ‘‘awe.’’ Below the word was a countdown
from 3 to 0 s. Subjects were asked to produce the vowel /Ä/
~represented orthographically by the word ‘‘awe’’! for the
duration of the countdown and then to click on an icon at the
bottom of the screen with a mouse to initiate the next trial.

The subjects were asked to try to produce the vowel the
same way from trial to trial. However, the experimenter
made no references to pitch or other voice characteristics and
subjects were not made aware of the nature of the experi-
mental manipulation.

D. Experimental design

There were three conditions in the experiment: a ‘‘shift-
up,’’ ‘‘shift-down,’’ and ‘‘control’’ condition. Subjects par-
ticipated in all three feedback conditions and the order of
conditions was counterbalanced across subjects. The experi-
mental sessions took place on different days to avoid vocal
fatigue.

In the shift-up condition, subjects first produced ten ut-
terances while receiving normal feedback. These ten utter-
ances were later used to establish the subject’s baselineF0
for the session. Following the ten baseline trials, subjects
produced another 100 utterances. For each successive utter-
ance, the pitch of their auditory feedback was increased by

one cent. These trials were followed by 20 trials in which
feedback was maintained at 100 cents above the subjects’
true F0. Finally, subjects performed ten trials in which the
feedback they heard was normal, that is, unaltered. From the
subject’s viewpoint, 140 trials were recorded without inter-
ruption. The stages of the experiment were implemented
without any formal indication of changes in the feedback
conditions.

The shift-down condition was conducted in exactly the
same manner as in the up condition except subjects were
exposed to decreasing pitch feedback to a maximum of
2100 cents after the initial ten baseline trials. The pitch of
their auditory feedback was decreased by one cent on each of
100 trials. Subjects were then exposed to 20 trials in which
feedback was maintained at 100 cents below their trueF0.
These were followed by ten trials in which normal feedback
was given.

In addition to the experimental manipulations, subjects
also participated in a control condition in which they pro-
duced an equivalent number of trials without frequency ma-
nipulations. The condition was an attempt to control forF0
changes that may result from repeatedly producing the same
sound in an experimental setting. Because insert earphones
were used, the ‘‘normal feedback’’ condition was in reality a
small transformation of the normal auditory feedback. Pin-
nae reflections change the quality of normal airborne feed-
back but were not present in our auditory feedback through
the earphones.

The median frequency value for each utterance made
during each trial was obtained and converted to cents based
on the following formula:

Cents5100~12 log2~F/B!!,

whereF is the median frequency for the utterance during the
trial, B is the average of the median frequencies for the ten
utterances during the baseline phase at the beginning of the
experimental session.

III. RESULTS

Figure 2~a! presents the data in Hertz averaged across
subjects for the control, shift-up, and shift-down conditions.
As can be seen, when the pitch feedback is shifted down, the
subjects raised their pitch compared to when the pitch feed-
back is shifted up. When the feedback was returned to nor-
mal, theF0 in both shift conditions changed. The mean dif-
ferences between the final 20 training trials and the final 10
normal feedback trials of the experiment for the control,
shift-up, and shift-down conditions were quite small in abso-
lute terms~0.35,22.8, and 1.5 Hz, respectively! but reliable.
In the shift-up condition,F0 increased while theF0 in the
shift-down condition dropped, generating a significant inter-
action @F(2,34)58.1, p50.001#. After normal feedback
was returned for the test trials, the mean pitch for the shift-up
condition increased significantly (p50.002) and shift-down
conditions decreased significantly (p50.047).

Since the experimental sessions for each subject took
place on different days, and because the subjects could have
different baselineF0’s during the different sessions, we also
converted the data to cents for comparison within and be-

1248 1248J. Acoust. Soc. Am., Vol. 108, No. 3, Pt. 1, Sep 2000 J. A. Jones and K. G. Munhall: Perceptual calibration of F0 production



tween subjects. The conversion of frequency values to cents
served to normalize the data with respect toF0 baseline
trials produced at the beginning of each experimental ses-
sion.

Figure 2~b! shows the meanF0 in cents for the last 20
trials of the training period~i.e., F0 shifted 100 cents! and
the F0 for the final 10 trials of the experiment~i.e., with
normalF0 feedback!. As can be seen, the data in cents show
the same pattern. In the shift-up condition,F0 increased in
response to normal feedback while theF0 in the shift-down
condition dropped, generating a significant interaction
@F(2,34)56.2, p50.005#.

Figure 3 shows the pitch patterns in cents for the three
conditions during the 120 training trials. As can be seen, all
conditions show an increase inF0 with respect to their base-

line values with all conditions showing a significant linear
trend @F(1,17)59.63, p50.006#. However, the shape of
the function for each condition differed. The pitch values for
the shift-down condition diverge from the control condition
and become higher during the training than the other condi-
tions. Conversely, the pitches during the shift-up condition
diverged downward from the control condition. The pitches
produced in the three conditions reached their maximum
separation at the end of the 100 trials of training. This sepa-
ration is reduced slightly and the pitch values for the shift-up
and shift-down conditions tend to converge toward the con-
trol condition performance during the final 20 training trials
in which pitch feedback was maintained at 100 cents above
or below subjects’ trueF0. Figure 4 shows the produced and
heardF0 in Hertz for the same 120 training trials. As noted
above, theF0 shifts were intentionally small to avoid detec-
tion by subjects.

Subjects produced the vowels under loud auditory feed-
back conditions and it is possible that the observedF0
changes could have been due to shifts in speaking volume
over the course of the training period. To test for this, the
root-mean-square~rms! amplitude of the vowels was com-
puted for the initial baseline ten trials and the final ten test
trials for each of the three feedback conditions. An ANOVA
showed no effects of training time@initial baseline versus
final test trials:F(1,17)50.001, p.0.5#, feedback condi-
tion @upward, downward, control:F(2,34)50.592, p.0.5#,
nor the interaction of these two variables@F(2,34)
50.113, p.0.5#. Thus pitch changes associated with
speaking volume adjustment do not account for the observed
F0 modifications.

In post-experimental interviews, none of the subjects re-
ported being aware of the gradual shifts inF0 feedback.
While all subjects were aware that something had been ma-
nipulated whenF0 was returned to normal at the end of the
training conditions, they were at a loss to explain what had
transpired.

IV. DISCUSSION

The data in this study show two related effects of feed-
back transformation onF0. During the training period sub-

FIG. 2. Average fundamental frequency in Hertz~a! and cents~b! for the
three feedback conditions~normal control, shifted up, shifted down! during
the final 20 trials of the training period and when feedback was returned to
normal.

FIG. 3. Average fundamental frequency in cents as a function of blocks of
20 trials during the training period for the three feedback conditions~normal
feedback control, shifted up, shifted down!.

FIG. 4. Average produced and heard fundamental frequency in Hertz as a
function of blocks of 20 trials during the training period for the two altered
feedback conditions~shifted up, shifted down!.
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jectscompensatedfor the pitch shifts in an apparent attempt
to maintain habitual pitch targets under feedback control.
When pitch was shifted up subjects lowered their pitch rela-
tive to a control condition; when pitch was shifted down they
raised their pitch relative to the control. The subjects also
showed evidence of sensorimotoradaptation. Aftereffects
resulted from the relatively short period of exposure to the
alteredF0 feedback. When subjects heardF0 feedback that
was higher than their trueF0, the pitch of their voice in-
creased when they were unexpectedly given normal, unal-
tered auditory feedback. The opposite effect was observed
when subjects heardF0 feedback lower than it actually was.

Multiple components must be involved in the vocal
pitch control system responsible for this behavior. Some
have suggested that there is an ‘‘optimum’’ pitch range
~Zemlin, 1981! determined by the anatomy and physiology
of the vocal mechanism. Since fundamental frequency varies
as a function of prosody, speaking volume, social situation,
emotional state, etc., a mechanism must exist for the con-
trolled modulation of this ‘‘natural level.’’ A number of
studies~e.g., Kawahara, 1995; Larsonet al., 2000! and the
present compensation data have shown that auditory feed-
back can be used in a closed-loop fashion to control funda-
mental frequency. Presumably, talkers also use kinesthetic
feedback or its perceptual concomitant, vocal effort, to aid in
this control. In addition, the present data suggest that some
type of internal model or representation plays a role in the
long-term calibration of vocal pitch. This conclusion is sup-
ported by the aftereffect or adaptation data.

The current adaptation results are analogous to those
found in classic prism experiments~e.g., Held, 1965!. Fol-
lowing a training period wearing displacing prisms, subjects
make errors for a short time in the opposite direction of the
prism displacement. This aftereffect is widely considered to
result from adaptation. The mechanism of the adaptation re-
mains controversial, but it is clear, that at some level a
remapping between retinal space and body space must occur.
In our data, the subjects acted as if a remapping between
perceived and produced pitch had taken place.

It is difficult to determine at what level thisF0 remap-
ping is taking place. It may be that a representation of a base
or neutral pitch level is modulated during the training phase.
However, habitual pitch~i.e., averageF0 from day to day!
appears to be quite variable and thus a narrowF0 target
range seems unlikely. In a study by Coleman and Markham
~1991!, habitual pitch was found to vary as much as plus or
minus three semitones or approximately 18%~cf. Titze,
1994!. On the other hand, subjects may attempt to match
pitch with perceived vocal effort or kinesthetic feedback
~Guenther, 1994!. When pitch is shifted up or down, it may
not be the absolute pitch value that drives compensation, but
the discrepancy between the kinesthetic and auditory feed-
back.

In this study, there was a tendency for subjects to gradu-
ally increase their pitch during the experimental session in-
dependent of the feedback condition~see Fig. 3!. Since we
did not ask subjects to maintain a particular loudness level
one possible explanation for this pattern is that subjects in-
creased their speaking volume during the session, causing an

increase in pitch~Gramminget al., 1988!. However, there
was no significant difference between the rms amplitudes of
the utterances during the sessions. It is also possible that the
increased pitch is related to vocal fatigue developed over the
session. Unfortunately, there is no established method for
assessing vocal fatigue from the acoustic record~Titze,
1994!. It should be noted that the tendency for vocal pitch to
increase even when there is no feedback manipulation under-
scores the value of the control condition. If only one shift
condition had been tested with no control group, the effect
size of the feedback manipulation could not be determined.

While this trend for pitch to increase is controlled for, it
obscures the sensitivity of subjects to the pitch shifts. None
of the subjects was consciously aware that the pitch feedback
was being modified but their control systems ultimately re-
sponded to the changes. TheF0 patterns in each training
condition could be used to test at what size of pitch shift the
F0 control system began to compensate. Figures 3 and 4
show that for small shifts at the beginning of the training
period all three conditions show a similar function and only
with larger shifts do the experimental conditions diverge
from the control. For upward shifts, the subjects diverged
from the control condition earlier than for the downward
shifts. Unfortunately, all conditions were tested on different
days, so the conditions producing the gradual increase may
not have been constant across days. This question must await
further study.

Klatt ~1973! has shown that subjects can make quite fine
perceptual discriminations~between 0.3 and 0.5 Hz! in the
F0 of synthesized vowels with flatF0 contours. When the
vowels were synthesized with linearly decreasingF0 or as a
diphthong with a naturalF0 contour, the discrimination
threshold rose above 2 Hz. Since the final pitch shifts in the
experiment were small and in this range, our subjects may
have been operating at their perceptual limen. However, evi-
dence from visual-motor control~e.g., Milner and Goodale,
1995! indicates that there can exist perceptual systems for
the control of action that are separate from the perceptual
system used in categorical judgements. A recent magneto-
encephalography study has provided evidence that suggests
that this also could be true for the auditory system in speech.
Houdeet al. ~2000! have shown that the auditory cortex re-
sponds differently to hearing one’s own speech while pro-
ducing it versus listening to recordings of one’s own speech.
Thus the Klatt threshold data may not be relevant to the issue
of sensitivity to feedback modification.

The kind of short-term learning that was observed in this
study has been reported in many speech studies previously.
Subjects adapt to various static@e.g., bite block~McFarland
and Baum, 1995; palatal prostheses, Baum and McFarland,
1997; Hamlet and Stone, 1976, 1978; Hamletet al., 1978!#
or dynamic~Gracco and Abbs, 1986! physical perturbations
and auditory feedback transformations~e.g., Houde and Jor-
dan, 1998!. We have chosen to consider this learning in the
context of internal models. The general concept of an inter-
nal model is not a new one. Similar roles have been played
by motor programs~e.g., Keele, 1968!, efference copy~e.g.,
von Holst and Mittelstaedt, 1950! and feedforward control
~e.g., Arbib, 1981!. In proposals about speech production,
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internal models for vocal tract geometry, kinesthetic, and
acoustic mappings have been postulated. Our work suggests
that the acoustic mapping must be differentiated to include
anF0 model as well@see Kawato~1999! for a discussion of
multiple internal models#.

This suggestion is consistent with evidence from clinical
populations. Post-linguistically deafened individuals often
have difficulty producing normal intonations soon after their
hearing is lost~Cowie and Douglas-Cowie, 1992!. Perkell
and his colleagues have shown that betterF0 control is
achieved after activation of cochlear implants~Perkellet al.,
1992!. Perkellet al. ~1997! have proposed that the auditory
system uses information regarding conditions for intelligibil-
ity ~e.g., ambient noise, social context! in a closed-loop fash-
ion to rapidly make adjustments inF0 and vocal intensity.
The data in the present study suggest that in addition to this
closed-loop control, auditory feedback may also play a role
in establishing a baseline for the controlled parameters.
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