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Abstract 
Wesson obtained a limit on quantum and gravitational mass in the universe by combining the 

cosmological constant , Planck’s constant  , the speed of light c, and also the gravitational constant G.  

The corresponding masses are 62100.2  kg and 54103.2  kg respectively, and in general can be obtained 

with the help of a generic dimensional analysis, or from an analysis where the cosmological constant 

appears in a four dimensional space-time and as a result of a higher dimensional reduction.  In this paper 

our goal is to establish a relation for both quantum and gravitational mass as function of the information 

number bit N.  For this reason, we first derive an expression for the cosmological constant as a function of 

information bit, since both masses depend on it, and then various resulting relations are explored, in 

relation to information number of bits N.  Fractional information bits imply no information extraction is 

possible.  We see, that the order of magnitude of the various parameters as well as their ratios involve the 

large number 10
122

, that is produced naturally from the fundamental parameters of modern cosmology.  

Finally, we propose that in a complete quantum gravity theory the idea of information the might have to 

be included, with the quantum bits of information (q-bits) as one of its fundamental parameters, resulting 

thus to a more complete understanding of the universe, its laws, and its evolution. 

 

Key words: Cosmological constant, quantum mass, gravitational mass, information bit, fractional 

information bit, large number hypothesis. 

 

1. Introduction 
Observational data from galaxies and gravitational lensing of high z quasars and cosmic microwave 

background radiation, suggest that the 99% of the universe material consists of dark matter (Overduin, 

and Wesson, 2003).  Therefore the density of the vacuum contributes a high fraction of the corresponding 

dark matter, whose energy density is given by: 
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where  is the cosmological constant, c is the speed of light and G is the gravitational constant.  Today’s 

data indicate that 30100.6  g/cm
-3

 and therefore 5210117.1  m
-2

 (Krauss and Starkman, 1999), 

which makes that the distance to the horizon approximately is 261070.1 HR m (Krauss and Starkman, 

1999).  It is now common knowledge that the cosmological constant of general relativity is a parameter 

derived out of higher-dimensional theories in a four dimensional reduction, in an effort to unify gravity 

with particle physics (Weston, 1999).  Some of these theories include 10D supersymmetry, 11D 

supergravity and 26D string theories.  The aforementioned theories should present the natural ground 

where the quantum of action   should naturally appear.  In particular, theories like the basic extension of 

4D Einstein theory and the low-energy limit of higher-D theories constitute the modern incarnation of 

(non-compact) 5D Kaluza-Klein theory.  This has been intensively studied recently, under the names 

induced-matter theory (Wesson, 1992) and (Mashhoon, et al., 1998), and membrane theory (Randall, 

Sundrum, 1998) and (Arkani-Hamed, 1998).  Both theories predict the existence of a fifth force, which 

might be the force via with particles can interact (Youm, 2000).  Therefore and as a result it might be 

possible to detect massive, and massless or photon like particles as well as photons particles in the 

spacetime. 

 Following Wesson (2004) two different mass scales can be formed.  First, a quantum mass scale 

given by: 

 62100.2
3




c
mqu


kg,        (2) 

where and  is the cosmological constant,   is Planck’s constant, and c is the speed of light.  This is the 

scale for the minimum quantum mass in the universe.  Similarly, the gravitational mass scale is given 

according to the equation (Wesson, 2004): 

 54
2

103.2
3


G

c
mgr kg,        (3) 

where G is the constant of universal gravitation.  Our goal is to introduce the idea of information as a new 

potential parameter in many of today’s natural phenomena.  In particular, this contribution, investigates 

Eqs (2) and (3) given in Wesson’s original paper and their relation to the number of information bits, via a 

relation that relates the cosmological constant   to the number of information bits N.  Next, we further 

investigate various resulting expressions and their relation to the number of information bits N.  As an 

example, Planck’s length P  is expressed in terms of the quantum particle’s Compton wavelength and 

the number of information bits N.  Next, the number of information bits N involved in both particle 

masses as defined by Wesson is derived.  Finally, using the Margolus-Levitin theorem, we calculate the 



number of operations performed by the two particles at time t equal to the age of the universe as a 

function of the number of information bits. 

 

2. Quantum and Gravitational Masses and the Number of Information Bits  

It is now a suggestion that quantum mechanics is non-local, but at the same time a fundamental 

mechanism for that is not known.  However, the holographic principle indicates a possible non-locality 

mechanism in any vacuum-dominated Friedmann universe.  To be more precise, a holographic non-local 

quantum mechanical description can be possible for a finite amount of information in a closed vacuum-

dominated universe.  Today’s theories, assume that the universe began by a quantum fluctuation from 

nothing, underwent inflation and became so large that it is locally almost flat, and that after the 

inflationary era the vacuum energy density of the universe is constant.  This is the case of the existence a 

non-zero cosmological constant  .  More information on such a universe arising a in quantum 

cosmological way is presented in Mongan (2001).  When such closed universe began it already contained 

all the information that it will ever contain.  If nothing exists outside of the closed physical universe, that 

would imply that no information can come into the universe from elsewhere either (Mongan 2001).  In the 

case of a de-Sitter metric we solve for the gravitational radius of such universe we have that: 

 0
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

,          (4) 

and the de-Sitter horizon can be easily found to be: 
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One of the most enigmatic features of de Sitter space is its entropy. That de Sitter space has finite entropy 

may be expected, based on the appearance of a horizon in pure de Sitter. This horizon is, however, 

qualitatively different from a black hole horizon.  The position of the horizon is observer dependent, and 

because of this it is not entirely clear which concepts about black holes carry over to de Sitter space.  In 

fact, the de Sitter cosmological horizon looks in many ways like the Rindler horizon in Minkowksi space.  

Let us now proceed with the derivation of how the cosmological constant  depends on the number of 

information bits N.  We start with the entropy of such black hole that can be written as according 

Bekenstein (1973) to be: 

 H

p

M A
k

S
24

           (6) 

This is the Bekenstein-Hawking area-entropy law, which says that the entropy S is associated with an 

event horizon, and where kB is the Boltzmann constant, is the horizon area AH divided by 24 p , where 
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
   is Planck’s length (Bekenstein, 1973).  This is a macroscopic formula and it should be viewed 

in the same light as the classical macroscopic thermodynamic formulae.  It describes how properties of 

event horizons in general relativity change as their parameters are varied.  Therefore the entropy of such a 

black is given by (Bousso and DeWolfe, 2002): 
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where D =4, is the dimensionality of the de-Sitter space, n represents points on n-1 dimensional sphere 

and  is the gamma function of the indicated argument. Solving for the cosmological constant  we 

obtain: 
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Taking into account that the number of information bits N relates to the entropy S in the following way is 

given (Lioyd, 2000): 

2lnNkS B  ,         (9) 

where kB is the S is the Boltzmann constant.  Substituting in Eq. (8) we obtain that: 
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where  Gcpmax //1 32   (Haranas, 2002) the maximum cosmological constant, N the number of 

information bits, p is the Planck length.  This is the cosmological constant as a function of the 

information bits associated with the cosmological horizon.  Our derived expression agrees with the 

equation given in Mongan (2007).  Next substituting Eq. (10) in Eq. (2) and rearranging we obtain that 

and equations which give the dependence of Wesson masses on the number of information bits N, we 

obtain the following expressions: 
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solving for the Planck length we can express this important constant of physics as a function of the 

information bit in the following way: 
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where cmququCom
/ is the Compton wavelength related to the minimum quantum mass scale particle in 

the universe as it is given in Wesson (2004).  Next, solving for the information bit number N related to the 

minimum quantum mass we obtain that: 
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therefore we find that the number of information bits involved in Wesson’s minimum quantum mass is 

given by the square of the ratio of its corresponding Compton wavelength over the Planck length. 

Similarly, for the gravitational mass in the universe we obtain the following information bit number N 

relation: 
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solving for the number of information bits N we obtain that: 
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where 
grmR  is the gravitational radius of the corresponding gravitational mass.  Equation (9) demonstrates 

that the number of information bits N involved in the gravitational mass mgr is equal to the ratio of half 

the particle’s gravitational radius over its wavelength Compton wavelength.  From Eqs. (7) and (9) we 

have that: 
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Let us now assume that the quantum mass qum  can be equal to the Planck mass.  This will presuppose the 

following condition on the cosmological constant .  To find the condition on lambda we equate the 

Planck mass to the quantum mass derived by Wesson (2004) and therefore we have: 
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from which we obtain that: 

 max
G

c
 3

3 3




,          (18) 

where max is the value of the cosmological constant during the Planck era (Haranas, 2002).  A 

cosmological constant =3max presupposes a time era slightly earlier that the Planck time limit, an era 



the equations of physics fail to describe.  Similarly, requesting that Plgr mm   results in the same equation 

like Eq. (18), which again corresponds to an era earlier that the Planck era. 

 According to the Margolus-Levitin theorem, the maximum rate at which logical operation could 

be performed by a physical system with energy E is /2E  (Margolus and Levitin, 1998).  Therefore, the 

maximum number of operation that could have been performed by the masses of the particles predicted 

by Wesson in the observable universe when written as a function of the number of information bits N 

become.  For the quantum mass mqu limit we obtain: 
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where tu = 1/H0 is the age of the universe, and H0 = 
3


c  (Islam, 1992) is Hubble’s constant.  We see that 

Eq. (19) proves to be independent of the number of information bits N.  Similarly, for the gravitational 

mass mgr we obtain the following total number of operations that the gravitational mass can perform in a 

time equal to the age of the universe to be: 
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which, in terms of the number of information bits N, the number of operations 
grmn becomes: 
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Next, following Faus (2010) and using an expression that connects the cosmological constant to the 

Hubble parameter we can derive an expression of how the Hubble parameter relates to the information bit 

number N.  Equating Eq. (10) to 
2
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 (Faus, 2010) and (Islam, 1992) we obtain that 
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We obtain an N
-1/2

 dependence of the present value of the cosmological constant on the information bit 

number N.  Using the time dependence of the cosmological constant as it is given by Faus (2010) we 

derive the dependence of information number bit N on cosmic time t, and therefore we obtain the 

following expression: 
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where tp =   445 1039.5/ cG s is the Planck time.  Similarly, with reference to Hajduković 

(2010) the mass of the pion   3/12 /GcHm   (Hajduković, 2010) we obtain that the mass of the pion 

m  depends on the number of information bit and time in the following way: 
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where   2/15/ cGtP  is the Planck time, and G is the gravitational constant.  Therefore we find that the 

following pion mass dependences on the information bit N and time t are 3/12/3   tNm .  Next, with 

reference to Santos (2010), and using his derived expression for the predicted by him gravitational density 

given by the equation Santos (2010): 
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where 3
0 3/4   can be written as function of information bit N in the following way 
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And therefore we find that the gravitational density as derived by Santos (2010) depend on the 

information bit N and time t are 21   tNgrav . 

 

3. Discussion and Numerical Results 

To evaluate our findings let as use 62103.2 qum (Wesson, 2004) kg and from that we obtain the 

following Compton wavelength to be 1910756.1 
Comqu m, or equivalently 81090.1 

Comgr Runi, and 

9710527.1 
Comgr m therefore we obtain that the ratio of the quantum to gravitational Compton 

wavelengths is: 
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Similarly, the corresponding number of information bits related to the quantum and gravitational mass 

scales are given by: 

 10710228.2 
q umN  bits,         (28) 
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The corresponding relation between the numbers of bits numerically becomes: 
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Furthermore, numerical values for the values of information bits involved in various resulting scenarios 

are calculated.  We first calculate the amount of information bits involved in today’s value of the 

cosmological constant.  Using, the density of the vacuum to be 30100.6   g/cm
-3

 (Krauss and 

Starkman, 1999) and the distance to the horizon to be approximately 261070.1 HR m (Krauss and 

Starkman, 1999) we obtain, that the cosmological constant in the present era is 5210117.1  m
-2

. 

Therefore substituting for  we obtain that the number of information bits involved in the present value of 

the cosmological constant   is: 
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Our predicted number agrees with that given in Funkhouser (2008).  Similarly in the case where 
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which corresponds to an entropy of approximately S  9.28 kB.  Eq. (32) indicates a fractional number of 

information bits N.  Since information bits can only take values of zero and one fractional information bits 

would imply no information extraction.  Therefore taking the ratio of 
mac

NN  /  we find that: 
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Finally, to find the number of information bits that the de-Sitter horizon contains we write Eq. (5) in 

terms of the number of information bits N via the cosmological constant  in the following way: 
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First, in the case where the quantum mass qum  predicted by Wesson (2004) becomes equal to the Planck 

mass Plm , the cosmological constant  , is independent of the Planck length and involves a specific 

number of information bits that is just a numerical constant.  Furthermore, in the case where the quantum 

mass qum  predicted by the above theories is equal to the Planck mass Plm  the cosmological constant   

involves a specific constant number of information bits that is independent of the Planck length and it is 

equal to: 
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Here again fractional information bits correspond to now information.  Similarly, for the ratio of 

gravitational to the quantum mass as predicted by Wesson (2004) we obtain that: 
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In terms of the number of information bits N, Eq. (26) can be written as: 
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and therefore, the gravitational mass scale predicted by Wesson relates to the quantum mass scale in the 

following ways: 
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or equivalently in terms of the information bits N the two mass scales relate in the following way: 
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Similarly, the ratio of the mass of the universe to that of quantum mass as predicted by Wesson (2004) 

becomes: 

 1211020.6 
qu

uni

m

M
.         (40) 

Finally, the numerical value of the total number of operations performed in the age of the universe by a 

gravitational particle is: 

 12210574.0 
g rmn ,          (41) 

Therefore the their ratio is 

 12210365.0 

qu

gr

m

m

n

n
.         (42) 

The number 10
122

 appears in an ensemble of pure numbers naturally produced from fundamental 

cosmological parameters that might constitute a new-large number coincidence similar to that postulated 

by Dirac.  These numbers constitute a compelling, new large number coincidence problem (Funkhouser, 

2008).  In this paper, we demonstrate that new large number coincidence also exist in the relations 

involving the information bits N, and number of operations n , in its relation to the fundamental mass 

scales predicted by Wesson (2004), and also their relation to the cosmological constant .  All these are 

possible after a relation relating the cosmological constant   to the information number bit N is derived.  



The involvement of the cosmological constant in many of today’s cosmological relations introduces a 

direct relation of the cosmological parameters to the information number bit N.  Certain cosmological 

scenarios involve fractional number of information bits, which implies no information extraction is 

possible.  Our result is in agreement with Faus (2011).  Few authors have given various explanations, for 

example, Funkhouser (2008) has demonstrated implicit physical pure number relations that result from 

the standard cosmological model.  Our main interest is to express the basic relations in this paper as 

functions of the number of information bits N.  Thus we have found that the minimum quantum mass and 

its corresponding Compton wavelength scale as 2/1N , where the number of information bits involved in 

the minimum quantum mass scales as the ratio of the quantum Compton wavelength over the Planck 

length squared.  Similarly, the gravitational mass scales as 2/1N , where the corresponding number of 

information bits is equal to the half of the gravitational radius of the gravitational mass divided by 

Compton wave length of the gravitational particle.  It might be important that the number of information 

bits N enters Wesson’s definition of two different mass scales through the dependence of the 

cosmological constant   that itself depends on the information bit N.  Therefore the “gravitational 

information bit” and also the quantum of information bit also called the q-bit that is itself a microscopic 

system, such as an atom, or nuclear spin, or photon (Capurro and Hjørland, 2003), might be the 

corresponding units at these extreme scales of operation of nature’s phenomena, where quantum gravity 

operates.  It can be of a great interest to examine the quantum spacetime fluctuations from an information 

point of view, and try to place information boundaries on the ultraviolet cut off, but this will be our next 

paper.  Thus an ultimate information theory might find its place at the heart of this quantum gravity 

theory, as well as in all the other theories mentioned above.  In a universe that expands the number of 

information bits required to define a particle increase, and therefore the total amount of information also 

increases.  If the cosmological constant varies as 2/1 t , this would result in an increased number of 

information bits, as the entropy of the universe increases.  Therefore, at much later times in our universe a 

very large amount of information bounded by the light cones would be necessary to describe its evolution. 

 

4. Conclusions 

We have used the results predicted by Wesson in order to investigate the dependence of the minimum 

quantum and gravitational masses in a vacuum dominated Friedmann universe on the number of 

information bits N.  The number 10
122

 appears in an ensemble of pure numbers naturally produced from 

fundamental cosmological parameters.  Using our derived expression of the cosmological constant as a 

function of the information bit, we have found that the minimum quantum mass involves an N
-1/2

 

dependence on information bits, where the gravitational mass scale has an N
1/2

 dependence respectively.  



Finally, we propose that a complete quantum gravity theory might have to include the quantum bit of 

information as one of its fundamental parameters for a more complete description of the universe, its 

laws, and its evolution. 
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