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ABSTRACT 

In the weak field and slow motion approximation, the general relativistic field equations are linearized, 
resembling those of the electromagnetic theory. In a way analogous to that of a moving charge generating a 
magnetic field, a mass-energy current can produce a gravitomagnetic field. In this contribution, the motion 
of a secondary celestial body is studied under the influence of the gravitomagnetic force generated by a 
spherical primary. More specifically, two equations are derived to approximate the periastron time rate of 
change and its total variation over one revolution (i.e., the difference between the anomalistic period and the 
Keplerian period). Kinematically, this influence results to an apsidal motion. The aforementioned quantities 
are numerically estimated for Mercury, the companion star of the pulsar PSR 1913+16, the companion planet 
of the star HD 80606 and the artificial Earth satellite GRACE-A. The case of the artificial Earth satellite 
GRACE-A is also considered, but the results present a low degree of reliability from a practical standpoint. 
 
Keywords: Gravitomagnetism, Lense-Thirring Effect, Anomalistic Period 

1. INTRODUCTION 

In the weak-field linearization of the general 
relativistic field equations, the theory predicts that the 
gravitational field of a rotating primary body results to a 
magnetic-type force that is called gravitomagnetic. This 
force affects secondary bodies, gyroscopes and clocks 
that move around this primary as well as electromagnetic 
waves (Schafer, 2009). Lense and Thirring (1918) worked 
on the gravitomagnetic influence on the motion of test 
particles orbiting a slow rotating primary mass. They 
particularly interested on celestial systems. They found 
that this influence, hereinafter called Lense-thirring effect, 
results to precession in the argument of the perigee and the 
ascending node of the orbits of the secondaries. 

Far from the rotating body, the gravitomagnetic field 
can be expressed as (Mashhoon et al., 2001): 
 

( ) ( )gm 3

G
ˆ ˆB r 3 r S  r S

cr
 = − �

r rr
 (1) 

where, G is the constant of universal gravitation, c is 
the speed of light, r̂  is the unit vector along the 
position vector r

r
 and S

v
 is the angular momentum 

vector of the rotating body. The field indicated by 
Equation (1) equals to that of a magnetic dipole whose 
moment is Equation 2 (Iorio et al., 2011): 
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GS

c
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r
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 (2) 

 
Then, a secondary, that is moving with a velocity 

v
r

 in this field, is affected by a non-central 
acceleration that is given by: 
 

gm

v
A 2 B

c

 = − × 
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 (3) 

 
In stronger gravitational fields, like those of neutron 

stars and black holes, higher order corrections in v / c
r

 



Ioannis Haranas et al. / American Journal of Space Science 1 (2): 46-53, 2013 

 
47 Science Publications

 
AJSS 

become important for the orbits of test particles, too. 
These kinds of scenarios have been studied by 
Capozziello et al. (2009) and also, Schafer (2009). 

The time rate of change, which is caused by the 
Lense-Thirring effect, in the argument of the periastron 
and the ascending node of the secondary are given by the 
following relations Equation 4 and 5: 
 

( )3/ 22 3 2

d 6GScosi

dt c a 1 e

ω
= −

−
 (4) 

 

( )3/22 3 2

d 2GS

dt c a 1 e

Ω
=

−
 (5) 

 
where, a, e, i represent the semimajor axis, the eccentricity 
and the inclination of the orbit. The radial, transverse and 
normal to the orbital plane components of the acceleration 
given in Equation 3 are Equation 6-8 (Iorio et al., 2011): 
 

( )RA cosi 1 ecosf= ξ +  (6) 

 

TA esin isin f= −ξ  (7) 

 

( )NA sin i 2sin f  1 ecosf esin f cosf= ξ  + +    (8) 

 
where, f is the true anomaly and ξ is equal to Equation 9: 
 

( ) ( )
( )

32

42 3 2

G 1 e 1 ecosf2GS

c a a 1 e

− +
ξ =

−

M
 (9) 

 
Here M denotes the mass of the primary. 
In this study, we deal with the Lense-Thirring effect 

on the relative orbit of the secondary body with respect 
to the primary one. In other words, we reduce the initial 
two-body problem to a central-force problem. Within 
this framework, We establish the periastron time rate of 
change induced by this effect. Then, we determine the 
perturbation in the anomalistic period (the time interval 
elapsed between two successive transits of the secondary 
at the periastron) via the difference between this one and 
that predicted by the Kepler’s theory (Mioc and Radu, 
1979; Haranas et al., 2011). Numerical applications of 
our formulae are given for the motions of Mercury, the 
companion star of the pulsar PSR 1913+16, the 
companion planet of the star HD 80606 as well as the 
artificial Earth satellite GRACE-A. 

2. RATE OF CHANGE AND VARIATION 

PER REVOLUTION OF THE 

PERIASTRON TIME 

Consider the unperturbed relative orbit of the 
secondary, obviously a Keplerian ellipse. Let n be its 
mean motion and M the mean anomaly. First, we will 
express the rate of change of the periastron time T0 in 
terms of the true anomaly f. The well-known relation 
Equation 10: 
 

( )0M n t T= −  (10) 
 

Connects M to T0. Here t denotes the time variable. 
We differentiate Equation (3) with respect to t to obtain: 
 

( )00
t TdT dn 1 dM

1
dt n dt n dt

−
= + −  (11) 

 
The rate of change of the mean motion dn/dt can be 

found by using Kepler’s third law. On the unperturbed 
Keplerian ellipse this law is expressed as follows 
Equation 12 and 13: 
 

2 3n a G= M  (12) 
 
Therefore: 
 
dn 3n da

dt 2a dt
= −  (13) 

 
Substituting Equation (13) in Equation (11) we obtain 

that Equation 14: 
 

( )00
3 t TdT da 1 dM

1
dt 2a dt n dt

−
= + −  (14) 

 
In the presence of a perturbation, the rates of change 

of the orbital elements can be found by using Gauss’ 
planetary equations. In our case and for the semimajor 
axis, the mean anomaly, the argument of the periastron 
and the ascending node, they read: 
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( )N2

d 1 r
A sin f

dt ana 1 e sin i

Ω  = ω + 
 −

 (18) 

 
Substituting Equation 15-18  into Equation 14 and, 

after doing some algebra, Equation 14 simplifies to: 
 

( ) ( )

( )
( )
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 (19) 

 
Next, we express Equation (19) in terms of the 

eccentric anomaly E by using the well-known relations 
Equation 20-24 (Murray and Dermott, 1999): 
 

( )r a 1 ecos E= −  (20) 
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d  1 ecosE
=

−t
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−
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cosf
1 ecosE r
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By using Eqs (20) and (24), we can rewrite AR and 

AT in the following way Equation 25 and 26: 
 

( )
( )

2
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G 1 e2GS cosi
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−
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( )T 42 3
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Then, Equation (19) takes the form Equation 27: 
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Where Equation 28: 

( ) ( )
( )( ) ( )2
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And Equation 29: 
 

( )
( )

( ) ( )

2

2
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 (29) 

 
To proceed with the integration we expand in power 

series of the eccentricity the following terms that appear 
in Equation (27): 
 

( )4

2 2 3 3

4 4 5

1

1 ecos E
1 4ecos E 10e

cos E 20e cos E
35e cos E O(e )

−
≅ + +
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2

5

2 3 3 4 4 5

1
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−
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If we substitute Equation (30-31) into (27), take into 

account that 22
S

5
= MR w  and integrate over one period, 

we obtain: 
 

( )

( )
( )

( )
( )( )
( ) ( )

1/ 2
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3

4 5
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+ − +  
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 (32) 

 
where, ℜ and w denote the radius and the angular 
velocity of the primary, respectively. Ii is seen that ∆T0 
is proportional to M3/2ℜ2w. This is how the anomalistic 
period change of the secondary depends on the 
characteristics of the primary.  

In particular, for polar orbits (i = 90°), Equation (32) 
becomes: 
 

( )

( )( )

1/2
3 3 22

0p 3 2 9

2 3 4

G 1 e
T

10n c a

16 16 e 24e 8 5 2 e 30e

 −π  ∆ =
 
 

+ π + + π − +

MR w

 (33) 
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While, for equatorial ones (i = 0°), it takes the form: 
 

( )

( )

1/ 2
3 3 22

0e 3 2 9

2 3 4

G 1 e
T

10n c a

] 32 64e 24e 184e 150e

 −π  ∆ =
 
 

− − − −

−
MR w

 (34) 

 
In the special case of polar circular orbits we obtain 

that: 
 

1/ 22 3 3

0p 3 2 9

16 G
T

10n c a

R w M π
∆ =  

 
 (35) 

 
And for equatorial circular orbits we get: 

 
1/ 22 3 3

0e 3 2 9

32 G
T

10n c a

 π
∆ = −  

 

R w M
 (36) 

 
For elliptical orbits, Equation 33 and 34 produce the 

following relation between equatorial and polar 
anomalistic times Equation 37: 
 

( )

0e
2 3 4

0p2 3 4

T
32 - 64e - 24e -184e -150e

T
16 16 e 24e 8 5 - 2 e 30e

∆ = −

∆
+ π + + π +

 (37) 

 
while, for circular ones, Equation 35 and 36 give that 
Equation 38: 
 

0e 0pT 2 T∆ = − ∆  (38) 

 

3. NUMERICAL RESULTS 

First, we proceed with the calculation of the change 
of the perihelion time of Mercury. We have used for the 
orbital parameters of this planet the following values: a = 
57909083km, e = 0.205, I = 7.004°, n = 8.26×10-7 rad/s. 
For Sun we have used that. M = 1.99×1030 kg, w = 
2.863×10−6 rad/s, while, supposing that this star is a 
spherical body, its radius is, approximately, ℜ  =  6.96×108 
km. Τhen, Equation (32) predicts the following anomalistic 
period change for Mercury due to the Lense-Thirring effect 
Equation 39: 
 

5
0∆ 9.824 10−= ×T s/rev (39) 

 
Figure 1 represents the variation of the anomalistic 

period time of change for Mercury by altering the values 
of its semimajor axis and eccentricity. Figure 2 depicts 
the corresponding variation if its inclination is 
considered to be equal to 0. 

Next, we consider the case of the pulsar PSR 
1913+16 and its companion star. For the pulsar we have 
used that m = 2.870×1030 kg, w = 0.454881162rad/s and 
ℜ = 9.74×103 km, while for the orbital parameters the 
companion a = 1.950×106 km, e = 0.617, i = 45°and n = 
1.60608×10-4rad/s. Then, the change of the anomalistic 
period of this companion is found to be Equation 40: 
 

8
0∆ 6.073 10−= ×T s/rev (40) 

 
Similarly, assuming that the companion of PSR 

1913+16 has an orbital inclination i = 0°, we obtain 
Equation 41: 
 

7
0e∆ 3.112 10 s / rev−= − ×T  (41) 

 
While, for i = 90°, we have that Equation 42: 

 
7

0p∆ 3.971 10 s / rev−= ×T  (42) 

 
Figure 3 represents the variation of the anomalistic 

period time of change for Mercury by altering the values 
of its eccentricity and inclination. 

Another test case will be the well known extra-solar 
planet b, a companion planet of the star HD 80606 in the 
constellation of Ursa Major. This planet is a superjovian 
planet whose orbital parameters (http://exoplanet.hanno-
rein.de/system.php?id = HD+80606+b) are 
approximately: a = 6.795×107 km, e  = 0.933, i  = 
89.285° and n = 4.0×10−8 rad/s. Also, the mass, the 
angular velocity and the radius of HD 80606 are M= 
1.791×1030 kg, w = 1.168×10−3 rad/s and ℜ = 
5.99×10−8 km.  Then, the change of the anomalistic 
period of the planet b will be Equation 43: 
 

6
0∆ 3.910 10 s / rev−= ×T  (43) 

 
Assuming i = 0° for the inclination of b, we get that 

Equation 44: 
 

6
0e∆ 3.518 10 s / rev−= − ×T  (44) 

 
while, for i = 90°, Equation (32) predicts that Equation 
45: 
 

6
0p∆ 3.956 10 s / rev−= ×T  (45) 

 
Figure 4 represents how this period change varies, 

assuming different values for its semimajor axis and 
eccentricity. Figure 5 depicts the corresponding 
variation if its inclination was equal to 0. 
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Fig. 1. The anomalistic period time change of Mercury due to Lense-Thirring effect as a function of e and a by supposing that their 

values are altered in the ranges [0,1] and [perihelion, aphelion], respectively 
 

 
 
Fig. 2. The anomalistic period time change of Mercury due to Lense-Thirring effect as a function of a and i by supposing that their 

values are altered in the ranges [perihelion-aphelion] and [0, 8], respectively 
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Fig. 3. The anomalistic period time change of the companion star of the pulsar 1913+16 due to Lense-Thirring effect as a function of 

e and i by supposing that their values are altered in the ranges [0,1] and [0,90], respectively 
 

 
 
Fig. 4. The anomalistic period time change of the planet HD 80606 b due to Lense-Thirring effect as a function of e and a by 

supposing that their values are altered in the ranges [0.1] and [periastron-apoastron], respectively 
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Fig. 5. The anomalistic period time change of the planet HD 80606 b due to Lense-Thirring effect as a function of e and a by 

supposing that their values are altered in the ranges [0,1] and [periastron-apoastron], respectively. An equatorial orbit case (i 
= 0) is considered 

 
Comparing the values of ∆T0 for the polar and 

equilateral orbit in any of the two last example cases, it 
seems that this change for polar orbits is, in absolute 
value, bigger than that for equilateral ones. 

In the case of GRACE-A, an artificial satellite of 
Earth, we have that its orbital elements are a = 
6876.4816 km, e = 0.00040989, i = 89.025446° and n = 
0.001100118 rad/s (http://www.csr.utexas.edu/grace/). 
For Earth we have that M = 5.9736×1024 kg and w = 
7.292×10−5 rad/s and ℜ = 638.1363 km. Then, for 
GRACE-A, the change of the anomalistic period is 
Equation 46:  

 
7

0T 1.867 10−∆ = × s/rev (46) 

 
But we must say that, practically, these results have a 

low degree of reliability, because of the very small 
eccentricity of this satellite. It is known that for 
quasicircular orbits the position of the periastron (hence 
the periastron passage time) cannot be accurately 
determined. However our calculations are of some 
interest regarding the magnitude order of the perigee 
passage time variation. 

4. SUMMARY AND CONCLUDING 

REMARKS 

We use the components of the gravitomagnetic force 
produced by a primary celestial body that gives rise to 
the Lense–Thirring effect in order to derive an eccentric 
anomalydependent equation that estimates the rate of 
change of the periastron time T0 of a secondary body 
orbiting this primary. By using the integral of this 
equation over a whole revolution, we have found that the 
Lense-Thirring effect contributes to an advance or a 
recess of the periastron time, depending on the 
inclination and eccentricity of the secondary. A variation 
for T0 of the order of microseconds may be detectable by 
today’s technology. This variation was estimated for 
some concrete astronomical cases. Mercury exhibits an 
advance of 98.24 µs, the PSR 1913+16 companion star 
an advance of 0.061  µs, the planet HD 80606 b an 
advance of 3.91 µs and finally in the case of GRACE-A 
this advancing effect is equal to 0.1867 µs. The 
presented results can constitute a possible test for the 
action of the Lense-Thirring force on the solar system 
bodies, or other celestial objects. Of course, this is not 
the only effect to be considered. For example, other 
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effects like general relativistic and quantum effects can 
be also considered. This is another topic for us to deal 
with in the nearest future. 
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