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Signatures of chaos in the dynamics of quantum discord
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2Department of Physics and Astronomy, University of Waterloo, Ontario N2L 3G1, Canada
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(Received 7 August 2014; revised manuscript received 3 January 2015; published 10 March 2015)

We identify signatures of chaos in the dynamics of discord in a multiqubit system collectively modelled as a
quantum kicked top. The evolution of discord between any two qubits is quasiperiodic in regular regions, while
in chaotic regions the quasiperiodicity is lost. As the initial wave function is varied from the regular regions to
the chaotic sea, a contour plot of the time-averaged discord remarkably reproduces the structures of the classical
stroboscopic map. We also find surprisingly opposite behavior of two-qubit discord versus entanglement of the
two qubits as measured by the concurrence. Our results provide evidence of signatures of chaos in dynamically
generated discord.

DOI: 10.1103/PhysRevE.91.032906 PACS number(s): 05.45.Mt, 03.67.Ac, 03.65.Ud

I. INTRODUCTION

Classical chaos has been widely studied in a variety of
contexts, including weather patterns, population dynamics,
and chemical reactions [1]. Chaos in classical systems is char-
acterized by sensitivity to initial conditions, which means that
nearby trajectories separate exponentially fast with a rate given
by the Lyapunov exponents of the system. The above char-
acterization of chaos fails in quantum mechanics as the
overlap of two state vectors undergoing unitary evolution due
to Schrödinger’s equation is constant with time. A natural
question that arises is in regard to how to characterize chaos
at the quantum level. This has led to the development of the
field of quantum chaos: the study of how chaos manifests
itself in the quantum regime. Signatures of chaos in quantum
systems have been explored in the context of level statistics
of chaotic Hamiltonians [2,3], the dynamics of open quantum
systems undergoing measurement or decoherence [4,5], and
hypersensitivity of a system to perturbations [6,7]. In the past
decade, there has been considerable interest in the role of
dynamical chaos in entanglement generation. This is central
to the understanding of the emergence of the classical world
from the underlying quantum mechanics and the role of
entanglement in the irreversibility of dynamical evolution [8].
Moreover, such questions are important as entanglement is a
crucial resource for quantum information processing [9–12].

However, entanglement does not completely capture the
quantum correlations of a system, and neither does it seem to
be the only reason behind the quantum advantage in quantum
information processing. Quantum discord aims to fill this
gap and capture essentially all the quantum correlations in
a quantum state using information-theoretic measures [13–
15]. There is a considerable interest in quantum discord as
recent studies show that it may account for the speedup in
the performance of certain quantum algorithms compared to
classical ones [16].

In this work, we provide the first evidence of signatures of
chaos in the the dynamical behavior of discord in a quantum
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kicked top. An advantage of the quantum kicked top is that for
a given angular momentum j , it can be regarded as a quantum
simulation of a collection of N = 2j spin-half particles whose
evolution is restricted to the symmetric subspace under particle
exchange. Thus, we have a multiqubit system where the
collective behavior of the qubits is governed by the kicked-top
Hamiltonian. Another advantage of this approach is that it
allows us to study discord between any two qubits and compare
it to pairwise entanglement between two qubits or to bipartite
entanglement between two qubits and the remaining qubits.
Here we present results showing various signatures of chaos
in the dynamics of discord between any two qubits. The discord
dynamics exhibits regular, quasiperiodic behavior in a regular
regime but not in a chaotic regime. A contour plot of the
time-averaged discord reproduces the classical phase space
structures. We find a surprising relationship between two-qubit
discord and two-qubit concurrence—a measure of pairwise
entanglement. When discord increases, concurrence decreases
and vice versa. The two-qubit discord is robust and remains
nonzero in a chaotic regime, whereas the concurrence quickly
decreases to zero. The quantum kicked top was experimentally
realized recently [17], and our simulations are performed
using parameters that are experimentally accessible using
current technology. In the light of recent advances in quantum
simulations and computation using superconducting qubits
[18], we believe that our findings can be realized to explore
quantum signatures of classical chaos even for systems that
are deep in the quantum regime.

II. BACKGROUND

A. Quantum kicked top

The quantum kicked top is described by the Hamiltonian
[2,17,19]

H = κ

2jτ
Jz

2 + pJy

n=+∞∑
n=−∞

δ(t − nτ ). (1)

Here Jx,Jy , and Jz are components of the angular-momentum
operator J. The time between periodic kicks is given by τ .
Each kick is a rotation about the y axis by an angle p. κ is
the strength of a twist applied between kicks and is also the
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chaoticity parameter: as κ is increased, the degree of chaoticity
increases. Since the kick is in the form of delta kicks, we can
express the Floquet map (evolution from kick to kick) as a
sequence of operations given by

Uτ = exp

(
−i

κ

2jτ
J 2

z

)
exp(−ipJy). (2)

For a given value of angular momentum j , the Hilbert space
dimension is 2j + 1. The finite dimension of the Hilbert space
makes it possible to explore the dynamics without the need for
truncation of the space.

The classical limit of this map can be obtained by writing the
Heisenberg equations of motion for the expectation values of
Jx , Jy , and Jz and factorizing higher moments of the angular-
momentum operators in the limit of large j . The resulting
equations describe the motion of an angular-momentum vector
on the surface of a sphere. The dynamics can be understood
as a rotation by a fixed angle p about the y axis by angle p,
followed by a rotation about the z axis by an angle proportional
to the z component of the angular momentum. This sequence of
transformations can result in chaotic dynamics due to the lack
of enough constants of motion. In our analysis, we fix p = π/2
and choose κ to be our chaoticity parameter. As we vary κ from
0 to 6, the classical limit of the dynamics change from highly
regular to completely chaotic. In the quantum description, as
the dynamics becomes globally chaotic, and for j � 1, the
Hamiltonian can be modelled as a random matrix selected
from the appropriate ensemble [2]. It is this randomness that
leads to the analog of ergodic mixing for quantum systems.

We can think of the total angular momentum j as the sum of
the angular momenta of N = 2j individual spin-half particles
or qubits. The qubits are identical and the system remains
unchanged under the exchange of any two qubits. Hence the
state vector is restricted to a symmetric subspace spanned by
the basis states {|j,m〉; (m = −j,−j + 1, . . . ,j )} with j =
N/2.

In order to explore the quantum dynamics and compare it
to the classical limit, we must pick an initial condition for the
dynamics. In the classical case, the initial condition is a set of
coordinates θ and φ which specify the initial direction of the
classical angular-momentum vector. The uncertainty principle
does not allow us to pick a corresponding quantum initial
condition. Instead, we construct a minimum uncertainty state
vector such that the expectation values of Jx , Jy , and Jz define
a vector pointing along the direction θ,φ. Such states are the
spin-coherent states, which can be expressed as [19–22]

|θ,φ〉 = R(θ,φ)|j,j 〉; −π � φ � π,0 � θ � π, (3)

where

R(θ,φ) = exp{iθ [Jx sin φ − Jy cos φ]} (4)

with the expectation value of J given by

〈θ,φ|J/j |θ,φ〉 = (sin θ cos φ, sin θ sin φ, cos θ ). (5)

And the relative variance of J in a state |θ,φ〉 is [19]

(1/j 2){〈θ,φ|J2|θ,φ〉 − 〈θ,φ|J|θ,φ〉2} = 1/j. (6)

This is the minimum uncertainty possible from the angular-
momentum commutation relations and approaches zero as j

becomes very large.

III. MEASURES OF QUANTUM CORRELATIONS

A. Entanglement

For a particular value of j , the system can be decomposed
into N = 2j qubits. To quantify correlations among these
qubits, we trace out N − 2 qubits from the rest of the system
[23]. The two-qubit state, ρ, thus obtained is a mixed state and
the von Neumann entropy of this two-qubit state, defined as
EV = −Tr (ρ ln ρ), captures how the two qubits are entangled
with the rest of the qubits [24]. Pairwise entanglement between
the two qubits can be quantified by concurrence [25]. Concur-
rence is the entanglement of formation for a two-qubit state. If
we have a bipartite system, ρ, ∈ HAB , comprising systems A
and B, then entanglement of formation of the composite mixed
state is defined as the minimum average entanglement of an
ensemble of pure states that represents ρ [25].

Ef (ρ) = min

( ∑
i

piE|ψi〉〈ψi |
)

, (7)

where |ψi〉 are pure states and E(|ψi〉〈ψi |) represents the
entanglement as quantified by the von Nuemann entropy
of one of the subsystems. For the two-qubit case, it has a
simplified expression defined as

C = max(0,
), (8)

where 
 = λ1 − λ2 − λ3 − λ4, and λi are the eigenvalues in
decreasing order of the matrix ρ(σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2). σ2 is a
Pauli matrix and ρ∗ is the complex conjugate of ρ.

B. Quantum discord

Quantum discord is a measure that captures all quantum
correlations, including and beyond entanglement in a quantum
state [13]. The approach to do this is to remove the classical
correlations from the total correlations in a system. A measure
of total correlations in a bipartite quantum system ρAB is the
quantum mutual information,

I(A : B) = H(A) + H(B) − H(A,B), (9)

where H(·) is the von Neumann entropy, H(ρ) ≡
−Tr (ρ log ρ). A definition of mutual information for classical
probability distributions based on Bayes’s rule is

I (A : B) = H (A) − H (A|B). (10)

Here the conditional entropy H (A|B) is the average of the
Shannon entropies of A, conditioned on the values of B,
and reflects the ignorance in A given the state of B. In the
quantum case, we can describe measurements on B by a
POVM (positive-operator valued measure) set {
i}, such that
the conditioned state of A given outcome i is

ρA|i = Tr B(
iρAB)/pi, pi = Tr A,B(
iρAB). (11)

The POVMs are a set of Hermitian, positive, and complete
operators and represent the most general quantum mea-
surements on a quantum system [26]. The corresponding
entropy is then H̃{
i }(A|B) ≡ ∑

i piH(ρA|i), from which
one can write the quantum mutual information as J{
i }(A :
B) = H(A) − H̃{
i }(A|B). Maximizing this over all {
i}, we
obtain J (A : B) = max{
i } (H(A) − H̃{
i }(A|B)) ≡ H(A) −
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H̃(A|B), where H̃(A|B) = min{
i } H̃{
i }(A|B). The mini-
mum is achieved using rank 1 POVMs since the conditional
entropy is concave over the set of convex POVMs [27]. Hence
we arrive at a definition for quantum discord:

D(A : B) = I(A : B) − J (A : B)

= H(B) − H(A,B) + min
{
i }

H̃{
i }(A|B), (12)

with {
i} being rank 1 POVMs. Quantum discord is
non-negative for all quantum states [13,27], and it is
subadditive [28].

IV. DYNAMICS OF QUANTUM CORRELATIONS

In order to study the connection between discord and
chaos in the kicked top, we use the multiqubit representa-
tion of the system as discussed above. We trace out two
qubits whose state and discord are calculated after every
application of the Floquet map. Since all the qubits are
identical, this represents the discord between any two qubits
of the system. We choose as initial states the minimum
uncertainity spin-coherent states, which can be characterized
by angle θ and φ. We take for the initial conditions different
points in the classical phase space for p = π/2 and κ = 3
(Fig. 1). We choose to take points corresponding to (θ,φ) =
(2.25,0.63),(2.25,0.90),(2.25,1.05), and (θ,φ) = (2.25,2.00).
As can be seen from the classical phase space, these four points
correspond to a fixed point, a point chosen in the regular island,
an “edge of chaos” point or point on the boundary of the regular
island and the chaotic sea [29], and a point chosen in the middle
of the chaotic sea. In Fig. 2 we plot the discord dynamics for
different values of φ for θ = 2.25. It can be clearly noticed
that as we move towards the chaotic region, the long-term
periodic modulation is lost. Also, it clearly shows that chaotic
initial conditions lead to a higher value of average dynamically
generated discord. The dynamics of discord for these specific
four coordinates are shown separately in Fig. 3. For a coherent
state initialized at a fixed point and in a regular island, discord

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

φ

θ

FIG. 1. (Color online) Classical stroboscopic map for the kicked
top. The direction of the angular-momentum vector is plotted after
each kick for different initial conditions with p = π/2,κ = 3.
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FIG. 2. (Color online) Dynamical evolution of discord for initial
SCS with θ = 2.25 and different φ. Here we have taken parameters
as κ = 3 and j = 40.

increases at a slow rate and exhibits quasiperiodic oscillatory
behavior. For a spin-coherent state initially in the chaotic sea
(θ = 2.25,φ = 0.63), the discord increases more rapidly and
reaches a quasisteady state. The periodic modulation of discord
dynamics is lost as the initial conditions are scanned from
the regular region to the chaotic sea in the classical phase
space. This demonstrates that there is a correlation between
discord dynamics and regular versus chaotic regions of the
classical phase space where the quantum state is initialized.
It is remarkable that we see these signatures even though we
operate with very few qubits (j = 4 which corresponds to
just eight qubits). Such a quantum regime is achievable in
current experiments [17]. As we increase the value of j , the
system approaches the classical limit and the signatures of
chaos become clearer.

In order to further understand the signatures of chaos in
the evolution of discord, we look at the time-averaged value
of discord as we scan through different initial conditions. A
contour plot of the time-averaged discord as a function of
the initial spin-coherent state. Figure 4 clearly reproduces the
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400

FIG. 3. (Color online) Dynamically generated discord as a func-
tion of the number of applications of the Floquet map for j = 4
and κ = 3. (a) Fixed-point initial condition (θ = 2.25,φ = 0.63).
(b) Regular initial condition (θ = 2.25,φ = 0.90). (c) Edge-of-chaos
initial conditions (θ = 2.25,φ = 1.05). (d) Chaotic initial condition
(θ = 2.25,φ = 2.00).
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 0         π
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    0 
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    θ
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 θ

         (a) (b)

FIG. 4. (Color online) Side-by-side comparison showing dynam-
ically generated discord as a remarkable signature of classical chaos
in a mixed phase space (p = π/2,κ = 3, and j = 40). (a) Classical
phase space, Poincaré section. (b) Long-time average discord, D, as
a function of mean coordinate of the initial projected coherent state.
A weighted average of D according to the measure on phase space
gives the value of D̄ = 0.275 in the chaotic sea and D̄ = 0.143 in the
regular islands.

regular and chaotic structure of the classical phase space and
shows remarkably strong correlation between structures in the
classical mixed phase space and the time-averaged discord
plot. Chaotic initial conditions generally go to a higher average
value than regular initial conditions, with the smallest values of
discord generation near the classical fixed points. Additionally,
all initial conditions in the chaotic sea saturate to nearly the
same average discord.

Long-time average discord for states localized in the
chaotic sea is higher than those localized deep inside regular
islands. As one gradually approaches the border between a
regular island and the chaotic sea, the dynamically generated
discord for an initial condition inside a regular island becomes
comparable to that for an initial state located inside the chaotic
sea [Figs. 3(c) and 3(d)]. Thus, discord as a signature of
chaos effectively differentiates between the features of the
classical phase space and regular islands from the chaotic
sea, while leaving the border between the regular island and
the chaotic sea murky. Therefore, as discussed above and as
Figs. 3(c) and 3(d) show, one needs to be careful with the
initial states at the border [30] that has an average value of
discord comparable to the value inside the chaotic sea. This
is especially true for lower values of j such that the system
is far from the classical limit. While classical chaos leads to
infinitely intricate structures in the phase space, in quantum
mechanics, the Plank’s constant, �, limits the scale for such
structures. Our resolution of the phase space is determined by
the Plank’s constant. Therefore, quantum discord is a universal
signature of chaos if one considers it as a tool to demarcate
regular islands from the chaotic sea in a coarse-grained fashion.

In order to compare dynamically generated discord as a
function of chaos, we consider the same initial state while
increasing the chaos in the system gradually. Figure 5 shows

 0.26

  0.24

  0.32

  0.3

0.28

0.22

0.2

  0.18
1.51 2 2.5 3.5 4.5 4 54.5 5.5 6

        К

D

FIG. 5. (Color online) Average discord, D, as a function of the
chaoticity parameter, κ , for the kicked top for j = 100. The average
is calculated over the first 350 kicks. The initial state is the same as
in Fig. 3(c), given by (θ = 2.25,φ = 1.05).

the average discord generated for the same initial state as
in Fig. 3(c), given by (θ = 2.25,φ = 1.05), as we gradually
increase the chaoticity parameter. We see a strong correlation
between the degree of chaos in the system and the average
value of discord generated. Therefore, for a fixed family of
maps and sufficiently large spin size, the generation of discord
is a function of chaos in the system.

For the mixed phase space (p = π/2,κ = 3), the value of
long-time discord is almost the same for all initial states in
the chaotic sea. To find the average discord of the chaotic and
regular regions, we take a grid of coherent states across the
phase space. Each point on the grid is classified as as “regular”
or “chaotic” by the Lyapunov exponent of the classical
dynamics. Weighting these values according to the measure on
phase space gives us an average discord of D̄ = 0.275 in the
chaotic sea and D̄ = 0.143 in the regular islands. Therefore,
using the average value of discord, one can distinguish regular
islands from the chaotic sea.

Our studies are similar to signatures of chaos observed
previously in time-averaged entanglement [11]. We also note
that the average value of discord for initial spin-coherent states
in different parts of the chaotic sea reaches roughly the same
value. To confirm this we took a slice of the graph and plotted
long-time average discord for constant θ = 2.25 and varying
φ (Fig. 6). We see that the fixed-point region has a significantly
lower value of discord compared to the chaotic region. There
is gradual change as we cross from the regular islands into
the chaotic sea. The time-averaged discord thus can be used to
identify the edge of chaos [12].

To understand the nature of measures of correlations such as
discord and entanglement and their relationship to each other,
we next compare the discord dynamics with the entanglement
dynamics. The two-qubit discord quantifies the correlation
of these two qubits among themselves, while the two-qubit
von Neumann entropy quantifies the entanglement of these
two qubits with the rest of the system. Figure 7 shows
discord dynamics compared to the von Neumann entropy and
concurrence dynamics. We find that discord dynamics mirror
the entropy dynamics very well and behaves opposite to that
of concurrence dynamics. When concurrence is high, discord
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FIG. 6. (Color online) (a) Contour plot of discord for j = 40.
Blue regions indicate regions of low average discord. (b) Average
discord for θ = 2.25 and varying φ. Comparison to classical phase
space shows that chaotic region initial conditions lead to higher
average discord.

is low and vice versa. Our results show that although both
concurrence and discord are measures of quantum correlations,
they are two separate quantities. We feel that this is an
important finding and, to the best of our knowledge, has
not been reported elsewhere. Our results suggest a similarity
between various measures of correlations in a quantum system
and demand a detailed and systematic study.

A. Chaos and random matrix theory

Quantum chaos is intimately connected with the theory
of random matrices [2]. As one approaches large Hilbert
space dimensions, and the corresponding classical limit of
the quantum system exhibits global chaos, the eigenstates and
eigenvalues of the quantum Hamiltonian operator have the
statistical properties of appropriately chosen random matrices.
The appropriate ensemble depends on the symmetries of the
system, for example, whether the quantum system has a
time-reversal symmetry [2]. The kicked top has a time-reversal
symmetry. The time-reversal operator, T , for the kicked top
can be given the standard form

T = UK, (13)

where U = exp(ipJy) exp(iπJx) and K is the complex conju-
gation with respect to a standard representation. Since T 2 = 1,
there is no Kramer’s degeneracy [2,3]. The kicked top is
time-reversal invariant [2] has the consequence that the Floquet
operator has the statistical properties of a random matrix
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FIG. 7. (Color online) (a) Discord dynamics. (b) Entropy dynam-
ics and (c) concurrence dynamics for j = 4.
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FIG. 8. (Color online) Dynamically generated discord as a func-
tion of the number of applications of (a) the Floquet map correspond-
ing to global chaos for j = 4. (b) A random unitary chosen from the
COE for j = 4. (c) The Floquet map corresponding to global chaos
for j = 40. (d) A random unitary chosen from the COE for j = 40.

chosen from the circular orthogonal ensemble (COE). The
eigenvectors of these random operators have well-defined sta-
tistical properties [31]. Since the COE ensembles are invariant
under a group of orthogonal transformations, the eigenvectors
must be uniformly distributed on a vector space according to
the Haar measure that is invariant under that group. However,
the case of the dynamically evolved state differs [11]. In
addition to the time-reversal symmetry, the kicked top has
a parity symmetry, R = exp{−iπjy}, that commutes with
the Floquet map. In the basis of the parity operator, the
Floquet map has a block-diagonal structure having two blocks
associated with the positive- or negative-parity eigenvalues.
Due to the parity symmetry, the kicked top is statistically
equivalent to a block-diagonal random matrix (block diagonal
in the basis in which the parity operator is diagonal) whose
blocks (corresponding to positive and negative eigenvalues)
are sampled from the COE [32].

We use a block-diagonal COE as the appropriate ensemble
of random matrices for the kicked-top Hamiltonian to evolve
the system and compare the dynamics of discord with that of
when the system is acted upon by the kicked-top Hamiltonian.
Figure 8(b) shows the evolution of 2-qubit discord for a system
of 8 qubits when acted upon by a random unitary, while
Fig. 8(d) shows discord evolution for 80 qubits. We find that
the discord dynamics under the action of random unitary is
very similar to the discord dynamics under the action of a
kicked-top Hamiltonian in the chaotic regime [Figs. 8(a) and
8(c), respectively]. Interestingly, the fluctuations around the
mean value of quantum discord, as measured by the standard
deviation, decline at the rate proportional to 1/

√
N , where N

is the number of qubits (Fig. 9). This is consistent with entropy
calculations on random states and properties of random vectors
in Hilbert space [33]. As the value of discord becomes sharply
defined upon increasing the dimension of the chaotic system
and, as a result, one can talk about the discord of a typical
state.

This shows that the kicked top with parameters in the
chaotic region effectively simulates a random unitary. This
can have potential practical application as random unitary have
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FIG. 9. (Color online) Fluctuations around the mean value of
quantum discord in the fully chaotic phase space, p = π/2,κ = 6, as
measured by the standard deviation as a function of the number of
qubits N (blue curve). The red line shows the 1/

√
N behavior.

been shown to be instrumental in many quantum information-
processing tasks [34].

V. DISCUSSION AND SUMMARY

The quantum kicked top is a simple but versatile system for
studying various aspects of quantum chaos. A major advantage
of this system is that it simulates a collection of N = 2j qubits
evolving in the symmetric subspace under an exchange of
qubits. This allows for the possibility of studying different
measures of quantum correlations such as entanglement and
discord in the same system. The finite dimension of the Hilbert
space makes it possible to perform accurate calculations
without errors introduced due to truncations issues. In this
paper we have shown that the dynamics of two-qubit discord
in a multiqubit system collectively evolving as a quantum
kicked top shows signatures of chaos. The discord between
any two qubits shows quasiperiodic modulations for initial
states localized in regular regions. The periodic oscillation is
lost when the initial state lies in the chaotic sea, and the discord
rapidly rises to an almost constant value. The time-averaged
discord is higher when the initial conditions correspond to

chaotic region of the classical phase space and the boundary
between regular and choatic regions is sharply delineated by
the change in the average discord.

Chaos occurs when the number of constraints or symmetries
is fewer than the degrees of freedom. The same lack of
symmetries at the quantum level means that the Hamiltonians
cannot be described in block-diagonal form. Instead, chaotic
Hamiltonians have eigenstatistics that are well described by
random matrices [2,3]. Classical chaos can generate random
probability distributions in phase space. Corresponding quan-
tum dynamics can generate random states in Hilbert space [35].
When we focus our attention on the reduced subsystem of two
qubits, this manifests as the generation of highly discordant
states corresponding to the chaotic regions of the phase space.
Quantum chaotic dynamics drives the system into arbitrary
superposition of quantum states and this results in a higher
average of value of discord in the chaotic part of the phase
space as compared to the regular islands.

An interesting question that is relevant to quantum
information-processing applications is the comparison of
various measures of quantum correlations—the two most im-
portant ones being entanglement and discord. Our calculations
show that the dynamical behavior of two-qubit discord mirrors
very closely the two-qubit von Nuemann entropy but behaves
opposite to the two-qubit concurrence. This raises interesting
questions about the relationship of discord and concurrence,
which we plan to explore in future work. Our results shed
new light on the behavior of quantum correlations in chaotic
systems, and since all parameters used are in an experimentally
accessible regime, our work is relevant to future experiments
exploring quantum chaos.
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