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Control power in perfect controlled teleportation via partially entangled channels
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We analyze and evaluate perfect controlled teleportation via three-qubit entangled channels from the point
of view of the controller. The key idea in controlled teleportation is that the teleportation is performed only
with the participation of the controller. We calculate a quantitative measure of the controller’s power and
establish a lower bound on the control power required for controlled teleportation. We show that the maximally
entangled Greenberger-Horne-Zeilinger state is a suitable channel for controlled teleportation of arbitrary single
qubits—the controller’s power meets the bound and the teleportation fidelity without the controller’s permission
is no better than the fidelity of a classical channel. We also construct partially entangled channels that exceed
the bound for controlled teleportation of a restricted set of states called the equatorial states. We calculate the
minimum entanglement required in these channels to exceed the bound. Moreover, we find that in these restricted
controlled teleportation schemes, the partially entangled channels can outperform maximally entangled channels
with respect to the controller’s power. Our results provide an alternative perspective on controlled teleportation
schemes and are of practical interest since we propose useful partially entangled channels.

DOI: 10.1103/PhysRevA.90.052305 PACS number(s): 03.67.Hk, 03.67.Ac

I. INTRODUCTION

Entanglement is a phenomenon unique to the quantum
world and is an important resource for quantum information
processing. It is widely used in protocols such as quantum
key distribution [1–3], quantum secret sharing [4–6], quantum
dense coding [7,8], quantum secure direct communication
[9,10], and quantum computation [11,12]. One of the most
intriguing uses of entanglement is for quantum teleportation
[13]. An arbitrary quantum state can be recovered in a
remote location with the aid of a maximally entangled
Einstein-Podolsky-Rosen (EPR) pair and two bits of classical
information. Quantum teleportation has been widely studied
theoretically and experimentally in the past 20 years [14–17].
Standard quantum teleportation of a single qubit involves only
two parties [13]. The sender, Alice, and the receiver, Bob, share
a maximal entangled two-qubit Bell state in advance. Alice
makes a two-qubit measurement in the Bell state basis on the
state to be teleported and her qubit from the entangled Bell
pair. Based on her measurement outcome, Bob can perform
appropriate unitary operations on his qubit from the Bell pair
to perfectly recover the state to be teleported. A variant of
quantum teleportation called controlled teleportation (CT) was
first proposed in 1998 [18]. In this scheme, the teleportation
procedure is controlled by a controller, such that the arbitrary
quantum state can be teleported from sender to receiver only
with the participation of the controller [4]. The protocol
described in [18] utilized the maximally entangled three-qubit
Greenberger-Horne-Zeilinger (GHZ) state as the quantum
channel for CT of a single qubit (we call it the GHZ scheme
in the following). Controlled teleportation is useful in various
contexts in quantum communication, including in quantum
networks and cryptographic conferences [19–22]. Following
the GHZ scheme, a number of controlled teleportation schemes
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have been proposed thus far [23–29]. From an intuitive
point of view, one would think that maximally entangled
states are required as a high-quality quantum resource in
controlled teleportation for optimal performance, just like in
other quantum information processing tasks, although it can
be a technological challenge to prepare and share maximal
entanglement in practical experiments.

In 2008, Gao et al. [28] found that certain partially
entangled states called maximal slice (MS) states [30] can
also be used for controlled teleportation. The CT scheme
employing the MS states has 100% success probability and
fidelity of teleportation, which is the same as the GHZ scheme
[18]. However, we show in this paper that these schemes
are different from the controller’s point of view, i.e., the
controller’s power is different. Although a lot of work has
been devoted to studying controlled teleportation, very little
has been discussed about the controller’s measurable authority.
In a controlled teleportation scheme, it is important and
necessary to ensure the controller’s authority while retaining
the success probability and fidelity of teleportation. We define
a measure of the controller’s power based on the noncondi-
tioned fidelity (NCF)—the teleportation fidelity achievable
without the controller’s permission and participation. This
nonconditioned fidelity of teleportation must be minimized
in order to maximize the controller’s power. We show that
in the GHZ scheme, the teleportation fidelity that can be
achieved without the controller’s permission is no better
than the fidelity using a classical channel [18]. Thus the
maximally entangled GHZ state is a suitable channel for
CT of arbitrary single qubits as it ensures the controller’s
authority—the teleportation fidelity can only be greater than
the classical limit with the controller’s participation. On the
other hand, when MS states are used, the teleportation fidelity
achieved without the controller’s permission can be greater
than the classical limit and hence these states are not suitable
channels for CT of arbitrary single-qubit states. However, we
find that the MS states and other similar partially entangled
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states are good channels for controlled teleportation of certain
restricted sets of input states—the equatorial states [31,32].
For these restricted input states, the controller’s power is
preserved, and the teleportation fidelity cannot be greater
than the classical limit without the controller’s permission.
We show that these partially entangled channels can even
outperform the maximally entangled states in maximizing
the controller’s power. We calculate the minimum degree
of entanglement required in the partially entangled quantum
channel that will ensure the controller’s authority in CT
schemes. Our work provides an alternative perspective on
quantum controlled teleportation and on the properties of
three-qubit entanglement. Our results are of relevance for
designing practical implementations of teleportation using
nonmaximal entanglement.

II. CONTROLLED TELEPORTATION VIA MAXIMAL
SLICE STATES

The MS states can be written as [28,30]

|MS〉123 = 1√
2

(|000〉 + c|111〉 + d|011〉)123, (1)

where c and d are assumed to be real and c2 + d2 = 1. When
c = 0, the resulting state is a product state of the first qubit with
a maximally entangled Bell pair of qubits 2 and 3. When c = 1,
the resulting state is the maximally entangled GHZ state. For
all other values of c, the three qubits are partially entangled.
The three-qubit entanglement as measured by the three tangle
[33] is c2. The MS states have been shown to have interesting
entanglement and nonlocality properties due to their inherent
symmetries [30,34]. Furthermore, Gao et al. mathematically
showed that all states, equivalent under local unitaries to
the MS states, can be used to perform perfect, deterministic
controlled teleportation. Here, we present a simple way to
understand the Gao result.

Suppose the arbitrary state to be teleported is

|ϕ〉t = k0|0〉t + k1|1〉t , (|k0|2 + |k1|2 = 1). (2)

The three qubits of the MS state are distributed to the controller
Charlie, who gets qubit 1, the sender Alice, who gets qubit 2,
and the receiver Bob, who gets qubit 3. The MS state can be
rewritten as

|MS〉123 = 1
2 [(1 + d)|0〉 + c|1〉]1 ⊗ |�+〉23

+ 1
2 [(1 − d)|0〉 − c|1〉]1 ⊗ |�−〉23, (3)

where |�±〉 = 1√
2
(|00〉 ± |11〉) are the two Bell states. This

structure of the MS state as a superposition of Bell states
makes it easy to see why it can be used for perfect controlled
teleportation; if Charlie measures his qubit 1 in the following
orthogonal basis,

|x+〉 = 1√
(1 + d)2 + c2

[(1 + d)|0〉 + c|1〉1],

(4)

|x−〉 = 1√
(1 − d)2 + c2

[(1 − d)|0〉 − c|1〉1],

then Alice and Bob will always be left with one of the two
maximally entangled Bell states |�±〉 depending on Charlie’s

measurement outcome. If Charlie broadcasts his measurement
outcome to Alice and Bob, then they will know which Bell
state they are sharing and can then use it for teleportation in
the standard way: Alice makes a two-qubit measurement in
the Bell state basis (Bell measurement) on the qubit to be
teleported and her qubit from the Bell state. Based on her
broadcasted measurement result, Bob performs a single-qubit
unitary operation on his qubit to perfectly recover the state
of the qubit to be teleported [13]. The success probability
and the fidelity of this scheme are both 100%. It thus
appears that the partially entangled MS state can implement
controlled teleportation as well as the maximally entangled
GHZ state. What is even more surprising is that perfect
CT seems to be possible with MS states regardless of the
degree of entanglement. However, a more careful analysis of
the controller’s power shows that the MS states have some
limitations in their use for controlled teleportation.

Let us compute the nonconditioned fidelity (NCF), the
fidelity of the teleportation without Charlie’s collaboration.
We note here that the NCF is calculated with the sender’s
participation, since we are interested in the case where
Alice and Bob would like to proceed with the teleportation
without having to get Charlie’s permission. The state of the
joint quantum system composed of |ϕ〉t and |MS〉123 can be
rewritten in terms of the Bell basis as

|ϕ〉t ⊗ |MS〉123 = 1
2 |�+〉t2(k0|00〉 + k1c|11〉 + k1d|01〉)13

+ 1
2 |�−〉t2(k0|00〉 − k1c|11〉 − k1d|01〉)13

+ 1
2 |�+〉t2(k1|00〉 + k0c|11〉 + k0d|01〉)13

− 1
2 |�−〉t2(k1|00〉 − k0c|11〉 − k0d|01〉)13.

(5)

For Alice’s different Bell measurements of qubits 2 and
t , Bob and Charlie’s qubits collapsed onto the corresponding
states, as shown above. Then the density matrix describing
Bob’s qubit 3, while tracing over qubit 1, is

ρ3 = tr1(|ψ〉13〈ψ |). (6)

The density matrix ρ3 can be transformed into the same
one for all of Alice’s different outcomes with proper unitary
operations performed by Bob. Then the NCF can be computed
by

f = 〈ϕ|ρ3|ϕ〉, (7)

where |ϕ〉 is the desired state to be teleported. The noncondi-
tioned fidelity of teleportation using the MS state is

fMS = |k0|4 + |k1|4 + 2|d||k0|2|k1|2, (8)

which depends on the state to be teleported. In order to
calculate the average fidelity over all input states, which are
assumed to occur equally often, the parameters are rewritten
in polar coordinates as

k0 = cos θ, k1 = eiφ sin θ. (9)

Then the average fidelity can be computed by

f̄MS = 1

4π

∫ 2π

0
dφ

∫ π

0
fMS sin θdθ, (10)
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and we get

f̄MS = 2

3
+ |d|

3
. (11)

From this expression, we see that when d = 0, the result is
consistent with that of the GHZ scheme [18]. And, when d =
1, Bob can recover the input state perfectly without Charlie’s
help since the original channel is a product state between
Charlie’s qubit and the rest of the system. For a general MS
state, Bob’s average nonconditioned fidelity is always larger
than 2/3.

The aim of controlled teleportation is to teleport an arbitrary
quantum state from the sender to the receiver, but only with the
permission of the controller. Therefore, the NCF which mea-
sures the fidelity of the teleportation without the controller’s
participation (i.e., permission) should be minimized in order
to maximize the controller’s authority. We can thus define
Charlie’s control power as

C = 1 − f. (12)

In that case, the average control power is C̄ = 1 − f̄ . As
shown in Refs. [35,36], 2/3 is the optimal value of the fidelity
for estimating the quantum state with only one sample. It
is also called the classical fidelity since it is the maximum
possible fidelity when two parties communicate with each
other only through a classical channel [18,35,36]. A controlled
teleportation scheme should ensure that the receiver cannot
achieve better than the classical fidelity without the controller’s
permission. So C̄ should be no less than 1/3.

From Eq. (11), we find that the fidelity of the GHZ scheme
d = 0 is exactly the classical limit. And, for d = 1, Bob can
recover the teleported state without the help of the controller,
which makes the controller powerless. For all other MS states,
C̄MS is always less than 1/3. In other words, the teleportation
fidelity can always exceed the classical limits without Charlie’s
help. Thus, the general MS states are unsuitable for controlled
teleportation of arbitrary states since the controller’s power
is less than the classical limit. However, as we show in
the following section, MS states and other similar partially
entangled channels are suitable for controlled teleportation of
certain subsets of states known as equatorial states.

III. PERFECT CONTROLLED TELEPORTATION
OF EQUATORIAL STATES VIA PARTIALLY ENTANGLED

CHANNELS

The equatorial states are states whose Bloch vector is
restricted to the intersection of the x − z (x − y, y − z) plane
with the Bloch sphere [31,32]. The y(z,x) component of the
Bloch vector is zero for these states. For simplicity, we call
these three kinds of states the x − z state, the x − y state, and
the y − z state, respectively. These states can be written as

|ϕx−z〉t = cos
θ

2
|0〉t + sin

θ

2
|1〉t , (13)

|ϕx−y〉t = 1√
2

(|0〉t + eiφ|1〉t ), (14)

|ϕy−z〉t = cos
θ

2
|0〉t + i sin

θ

2
|1〉t , (15)

which are specific subclasses of the arbitrary single-qubit state
|ϕ〉t = cos θ

2 |0〉t + eiφ sin θ
2 |1〉t .

Our goal is to construct quantum channels for teleporting
these states such that Charlie’s control power exceeds the
classical limit of 1/3. Like the MS states, we start by
constructing a partially entangled superposition of Bell states
that is useful for perfect controlled teleportation:

|
〉123 = a|0〉1|�+〉23 + b|1〉1σk3|�+〉23. (16)

Here, a2 + b2 = 1 and the qubits 1, 2, and 3 are distributed to
Charlie, Alice, and Bob, respectively. σk3(k = x,y,z) are the
three Pauli operators acting on qubit 3:

σx =
(

0 1
1 0

)
, σy =

(
0 −1
1 0

)
, σz =

(
1 0
0 −1

)
.

(17)

The state in Eq. (14) can always be used for perfect teleporta-
tion since the state shared by Alice and Bob will be a Bell state
after Charlie’s measurement of qubit 1 in the |0〉,|1〉 basis.
Given Charlie’s measurement results, Alice and Bob know
which Bell state they share and can use it for teleportation in
the usual way [13]. Alice performs a Bell measurement on
the qubit to be teleported and her qubit from the Bell state
and broadcasts her measurement result. Bob then performs an
appropriate single-qubit operation on his qubit from the Bell
state to obtain the qubit to be teleported.

We now consider the situation where Alice and Bob want to
proceed with the teleportation without Charlie’s permission,
i.e., without his participation. In that case, Charlie does not
measure his qubit. Alice performs a Bell state measurement
on her qubit 2 and qubit t , which is the qubit to be teleported.
The remaining joint state of Charlie’s qubit 1 and Bob’s qubit
3 can always be transformed via local operations to

|ψ〉13 = a|0〉1 ⊗ |ϕj 〉3 + b|1〉1 ⊗ σk3|ϕj 〉3. (18)

Here, j represent the three possible sets of input states. The
reduced density matrix of Bob’s qubit is thus

ρ3 = a2|ϕj 〉3〈ϕj | + b2σk3|ϕj 〉3〈ϕj |σ †
k3. (19)

The nonconditioned fidelity 〈ϕj |ρ3|ϕj 〉 is then

f = a2|〈ϕj |ϕj 〉|2 + b2|〈ϕj |σk3|ϕj 〉|2

= a2 + b2|〈ϕj |σk3|ϕj 〉|2. (20)

To maximize Charlie’s control power, the nonconditioned
fidelity of teleportation achievable without the controller’s
permission must be minimized. From the above expression,
we see that the minimum value of f can be obtained when
|〈ϕj |σk3|ϕj 〉|2 = 0. For our three sets of equatorial input states,
we can find corresponding Pauli operators σk3 to get the
minimum,

|〈ϕx−z|σy |ϕx−z〉|2 = 0, (21)

|〈ϕx−y |σz|ϕx−y〉|2 = 0, (22)

|〈ϕy−z|σx |ϕy−z〉|2 = 0. (23)

From the symmetry of the parameters a and b, we get
fmin = max(a2,b2), which is independent of the parameters
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of the input states. We thus do not need to average over all
input equatorial states. The corresponding partially entangled
channels for the equatorial states can be obtained by substitut-
ing the Pauli operators σk3 from Eqs. (19)–(21) into Eq. (14).
For the x − z state with real parameter, the resulting quantum
channel is thus

|
x−z〉123 = a|0〉1|�+〉23 + b|1〉1|�−〉23. (24)

This state is also known as a three-qubit tetrahedral state
[30,37]. For the x − y state, the quantum channel is

|
x−y〉123 = a|0〉1|�+〉23 + b|1〉1|�−〉23. (25)

This is the MS state. Finally, for the y − z state with fixed
relative phase, the quantum channel is

|
y−z〉123 = a|0〉1|�+〉23 + b|1〉1|�+〉23. (26)

To sum up, we have found partially entangled quantum
channels for CT of equatorial states such that the noncondi-
tioned fidelity is minimized. The next question is whether this
minimum nonconditioned fidelity results in a control power
that is equal to or better than the classical limit of 1/3. For all
three cases, the control power is

C = 1 − fmin = 1 − max(a2,b2). (27)

Thus, C � 1/3 when

1/3 � a2 � 2/3. (28)

For these values, the fidelity of teleportation without the
controller’s permission is no better than the classical limit of
2/3, and hence the control power is no less than the classical
limit of 1/3. If we use the three tangle [33] to quantify the
degree of entanglement, then τchannel = 4a2b2 should be no less
than 8/9 to ensure a control power equal to or greater than 1/3.

Generally speaking, the minimum fidelity of teleportation is
1/2, which can be obtained by merely selecting a state at ran-
dom. Accordingly, Cmax = 1 − fmin = 1/2 is the maximum
control power in the controlled teleportation scheme. In the
above schemes, the maximal control power can be obtained by
using the corresponding maximally entangled channel, a = b.
For a �= b in the partially entangled channels introduced above,
the controller’s power is determined by the parameters a,b of
the channel.

IV. DISCUSSION AND SUMMARY

In this paper, we have investigated perfect controlled
teleportation schemes via nonmaximally entangled channels.
The important idea in controlled teleportation is that the
teleportation is performed only with the permission of the
controller. We have therefore analyzed CT schemes by defining
a measure of the controller’s power based on the teleportation
fidelity achievable without the controller’s permission. The
controller’s power should be no less than a minimum of
1/3 to ensure that the fidelity of teleportation without the
controller’s permission is no better than the fidelity using a
classical channel. Based on this measure, we showed that for
CT of arbitrary single-qubit unknown states, the maximum
control power is equal to the classical limit of 1/3 and can be

achieved via a maximally entangled GHZ channel. However,
the partially entangled MS states are unsuitable for controlled
teleportation of arbitrary states from the controller’s point of
view, since the controller’s power is less than the classical limit
of 1/3. Better control power can be achieved if we focus on
restricted sets of input states to be teleported, i.e., the equatorial
states which are popular in quantum communication. We
constructed suitable partially entangled quantum channels that
can achieve controlled teleportation of equatorial states with
a control power no less than the classical limit of 1/3. The
entanglement of these channels as measured by the three tangle
must be no less than 8/9 for the controller’s power to beat the
classical limit. The control power is independent of the input
equatorial states.

What if we use a mismatched quantum channel to teleport
equatorial states? For example, suppose we use 
i to teleport
|ϕj 〉(i,j ∈ {x − y,y − z,x − z} and i �= j ). Then the noncon-
ditioned fidelity will be

f = a2 + b2|〈ϕj |σk|ϕj 〉|2, (29)

where k = {x,y,z} corresponding to i = {y − z,x − z,x − y},
respectively. It is easy to calculate the average value of these
three Pauli operators over the restricted sets of equatorial
states. The results show that the nonconditioned fidelity is
always larger than the classical limit, indicating inadequate
control power. Even for the maximally entangled case of
a = b, the maximum control power is just the classical limit.
In comparison, the correctly matched quantum channel (i.e.,

j to teleport |ϕj 〉(j ∈ {x − y,y − z,x − z}) will result in a
better-than classical control power when a2 > 1/3. Thus, in
this case, the correctly matched partially entangled quantum
channel can outperform the mismatched quantum channel
even when the mismatched channel is maximally entangled.
Therefore, it is important that the correct quantum channel is
shared in advance between the three parties. Note that the three
partially entangled channels in Eqs. (22)–(24) are unitarily
equivalent to each other. However, the transformation cannot
be realized by only one party. Therefore, the sender and the
controller can prevent the receiver from rotating the channel
to get a higher NCF. It is interesting that unitarily equivalent
states have different performance in controlled teleportation
tasks. This can be explained by the fact that unitary operations
change the fidelity for our restricted sets of states.

In summary, we have evaluated the use of partially entan-
gled quantum channels for CT and shown their advantages for
teleporting restricted sets of equatorial quantum states, which
are commonly used in quantum communication schemes. High
control power can be obtained while retaining unit success
probability and state fidelity. Compared to the maximally
entangled states, the option of using partially entangled states is
attractive because of the practical challenges of generating and
maintaining maximal entanglement. Preparation of partially
entangled states may be more realistic in physical systems,
and could allow for more robust and flexible schemes. In real
systems, the prepared states are often mixed states and, in
future work, we plan to investigate the use of mixed states for
controlled teleportation.
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