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The unidirectional grating-assisted codirectional coupler (U-GACC) has recently been proposed. This
unique structure permits irreversible coupling between orthogonal waveguide eigenmodes by means of
simultaneous modulation of both the real and imaginary parts of the refractive index in the coupling
region. Analysis of the U-GACC has until now relied on coupled mode theory, which can be restrictive in
its application as a design tool. We analyze the U-GACC by the transfer matrix method, which demon-
strates in a simple fashion why the device operates in a unidirectional manner. In addition, we show that
for all practical designs, there is a limit to the minimum cross talk between outputs, a phenomenon that
has not been previously identified. © 2007 Optical Society of America

OCIS codes: 060.1810, 130.3120, 250.4480.

1. Introduction

Grating-assisted couplers (GACs) form the basis for
a variety of photonic devices [1,2]. In a GAC, power
transfer between orthogonal waveguide eigen-
modes p and q is achieved using a longitudinal
refractive index perturbation in a region where the
mode fields overlap [3]; the coupling strength from
mode p to mode q is equal to that from mode q
to mode p, a condition known as reciprocal coupl-
ing. In general, GACs can couple power between
forward- and backward-propagating modes (Bragg
grating), or between forward-propagating modes in
multimode or parallel asynchronous single-mode
waveguides (long-period grating). In the former, the
equal coupling strength results in an exponentially
decaying power profile along the length of the grat-
ing, while in the latter, the profile is sinusoidal,
requiring greater modeling precision in order to de-
termine the optimal grating parameters.

Recently, there has been significant interest in a
variation of the GAC that exhibits unidirectional
power transfer [4,5]. Here, the term “unidirectional”
does not refer to the physical direction of power flow,

but rather to the unique phenomenon whereby power
may be coupled from mode p to mode q but not from
mode q to mode p. This type of coupling has also been
referred to as “irreversible” and “nonreciprocal.” We
choose to avoid these terms in order to prevent con-
fusion with the common but unrelated concept of
Faraday isolation. These unidirectional coupling
structures show great promise in optical routing and
computing as a lossless add multiplexer [6] and as an
optical memory cell [7,8].

Despite the vast potential for these devices, very
little progress has been made in their design and
analysis. The earliest known description of a unidi-
rectional GAC used resonance mode expansion to de-
rive the unidirectional coupling properties [9], and all
subsequent analyses have used coupled mode theory
(CMT) [6,10,11]. While it is an important pedagogical
tool, CMT is known to be inaccurate for precise design
work. Errors can be particularly severe in the case of
large index perturbations, or—in the case of corru-
gated gratings—when the grating teeth project in a
direction parallel to the electric field polarization vec-
tor of the modes. For vertical slab couplers this is the
TM polarization. In the case of in-plane coupling,
either or both polarizations are affected—and to dif-
ferent degrees—depending on the grating geometry
used [12]. In either case, the perturbations in mode
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profiles within each grating period are not accounted
for in CMT, and this leads to erroneous results when
calculating the optimal period and duty cycle.

In this work, we analyze an ideal unidirectional
GAC by the well-known transfer matrix method
(TMM). While we consider only the unidirectional
grating-assisted codirectional coupler (U-GACC) uti-
lizing a long-period grating, the methods discussed
here are equally applicable to Bragg gratings. Section
2 contains a general description of the U-GACC, and
describes the conditions for its ideal operation. In
Section 3, the single-period transfer matrix is de-
rived, and is found to exhibit a strong asymmetry
between the off-diagonal elements, indicating that
the power transfer is indeed unidirectional. A simple
expression is found for the number of grating periods
required for power equalization in each mode, and it
is shown that there is a fundamental limitation to the
minimum cross talk, defined here as the ratio of
power coupled in the forbidden direction to power
coupled in the allowed direction. Section 4 contains
an example of the U-GACC, where the TMM is con-
firmed by comparison with beam propagation method
simulations.

2. Description of the U-GACC

A real index grating, �n�z� � n0 sin�2�z���, consists
of a sinusoidal index perturbation of amplitude n0
and period � (periodic but nonsinusoidal gratings can
be decomposed into a superposition of sinusoidal com-
ponents, of which we consider only one to contribute
to the coupling of modes p and q). When the difference
in modal propagation constants is equal to the grat-
ing vector Kg,

�p � �q � Kg � 2���, (1)

maximum power transfer can be obtained. In the
spatial frequency domain, a pure index grating ex-
hibits dual sidebands at �Kg, as the Fourier power
spectrum of a real function is symmetric. By Eq. (1),
this equalizes the coupling strength between modes
p and q.

Unidirectional coupling requires a grating with
only a single sideband. This is accomplished through
the use of a complex grating,

�n�z� � n0 exp��iKgz� � n0�cos�Kgz� � i sin�Kgz��.
(2)

From Eq. (2) it is apparent that in order to achieve
unidirectional coupling, a grating is required in
which both the real refractive index and the gain–loss
coefficient are modulated with identical amplitudes
and relative phase of ���2. The sign of the phase
difference determines the sole direction of coupling;
from Eq. (1), a positive sign allows coupling from the
mode with higher � to the mode with lower �. As with
all grating-based devices, ideal operation exists at a
nominal operating wavelength, from which detuning
will alter the phase-matching condition described in

Eq. (1). In this work, we examine the ideal case only;
nonidealities such as wavelength detuning, phase off-
set, and nonidentical grating amplitudes will be ex-
amined in a future work.

One possible embodiment of the U-GACC incorpo-
rates an asynchronous directional coupler, and is
shown in Fig. 1. Here, the real grating exists as a
corrugation in one passive waveguide (WG1) while
the gain–loss grating exists in a parallel waveguide of
different propagation constant (WG2). The regions of
WG2 preceding and following the gain–loss grating
are passive. Such a waveguide could in principle con-
sist of an active waveguide that is sectionally pumped
at three different levels: high (for gain), medium (for
transparency), and low (for loss). The waveguides are
in close enough proximity that when considered to-
gether as a single waveguiding system, they support
two orthogonal supermodes, which closely resemble
the modes of each isolated waveguide [6].

A second embodiment of the U-GACC utilizes a
dual-mode waveguide as shown in Fig. 2. In this fig-
ure, the real and imaginary gratings are spatially
colocated, although this is not necessary. As the in-
teracting modes of the unperturbed waveguide ex-
hibit even and odd symmetry, the gratings exist in
just half of the waveguide cross section in order to

Fig. 1. Asynchronous coupler embodiment of the U-GACC (three
periods shown). The real index grating is in waveguide 1 (WG1)
and the gain–loss grating is in waveguide 2 (WG2). White lines are
drawn to show each grating period, indicating the ���2 phase
offset between the gratings.

Fig. 2. Dual-mode waveguide embodiment of the U-GACC (three
periods shown). Both gratings coexist within one half of the
waveguide cross section. Inset, one period of the grating, with the
labeling used in this paper.
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produce a finite coupling between modes. In practice,
the two modes can be spatially (de)multiplexed by
an asymmetric adiabatic y-branch coupler [13]. The
structure in Fig. 2 shall be considered in the remain-
der of this work.

3. Analysis by Transfer Matrix Method

For our analysis, we assume that there are only two
guided modes present. In the case that more than two
guided modes exist, this analysis is still valid if the
Fourier decomposition of the complex grating in-
cludes only spatial frequencies that are matched to
the difference in propagation constants of the rele-
vant modes. Additionally, we assume that the grating
is piecewise continuous rather than sinusoidal, which
is generally the case for long-period gratings.

As a test case, we consider the U-GACC shown in
Fig. 2, in which the gain–loss grating leads the index
grating in the propagation direction. Based on the
discussion in Section 2, we expect this structure to
allow coupling from the mode with lower � to that
with higher � (that is, from the odd mode to the even
mode). From this figure, it is apparent that the
U-GACC consists of a periodic repetition of four dif-
ferent grating segments, as opposed to just two in the
case of a piecewise continuous real index grating.
These segments are labeled RI (R, I � “H,” “L”) to
indicate whether the real (R) and imaginary (I) parts
of the index perturbation are higher or lower than the
average index, respectively. In the TMM, the complex
amplitudes of the modes are tracked via two-by-two
matrices as they propagate within each segment of
the grating, and as they scatter at the grating planes.
In this fashion, the transfer matrix of one full period
of the grating is described by a matrix T, and that of
the entire N-period grating structure is described by
the matrix TN. Electric field mode amplitudes are
easily calculated as Eout � TNEin, or

�E1
out

E2
out�� TN�E1

in

E2
in�, (3)

with magnetic field mode amplitudes defined analo-
gously.

A. Description of the Mode Fields in an Ideal U-GACC

For most applications of the TMM, it suffices to sim-
ply obtain a numerical solution for the mode fields in
each grating segment. In the case of the ideal
U-GACC, we are interested in the relationship
among these fields, and how this is manifested in the
matrices that describe the structure. In particular, it
is important to determine what constitutes real and
imaginary gratings of equal amplitude as in Eq. (2);
this is particularly important when these gratings
are not spatially colocated in the xy plane. We begin
by defining the index profile in each of the four grat-
ing segments in terms of an unperturbed profile
ñ�x, y� with both real and imaginary index perturba-
tions,

n�x, y� � ñ�x, y� � �nR�x, y� � �nI�x, y�, (4)

where the signs of each perturbation depend on the
particular grating segment. The spatial profiles and
magnitudes of �nR and �nI need not be identical for
the ideal U-GACC. Next, we define the modes p and
q in each segment of the grating. These are necessar-
ily complex-valued due to the presence of the gain–
loss grating, and thus they cannot be normalized to
carry unit power as is common in most TMM descrip-
tions. Rather, they are orthonormalized in the sense
that

1
4�� �Ep � Hq 	 Eq � Hp�da � 
pq (5)

in any given segment of the grating, where


pq �	1, p � q
0, p � q (6)

is the Kronecker delta symbol and da � ẑdxdy is the
differential element of cross-sectional area perpen-
dicular to the direction of propagation. Here and
throughout this work, we suppress the transverse
spatial coordinates �x, y� of all fields for brevity. In
Subsection 3.B, we shall define the elements of the
transfer matrices in an analogous fashion, but with
modes p and q existing in the grating segments fol-
lowing and preceding the grating plane under exam-
ination, respectively.

The mode fields in an arbitrary segment are equal
to those in the unperturbed waveguide with small
real and imaginary perturbations,

Ep,q � Ẽp,q 	 �Ep,q
R 	 i�Ep,q

I,

Hp,q � H̃p,q 	 �Hp,q
R 	 i�Hp,q

I. (7)

Note that all perturbation fields 
�E, �H� as defined
above are real-valued in order to simplify the follow-
ing derivation. Similar to Eq. (5), we define an or-
thonormality relation for modes p and q in the
unperturbed waveguide,

1
4�� �Ẽp � H̃q 	 Ẽq � H̃p�da � 
pq, (8)

and furthermore introduce the following auxiliary
orthonormality relations, which arise from consid-
eration of the real and imaginary perturbations
separately:

1
4�� ��Ẽp � �Ep

R� � �H̃q � �Hq
R�� 	 ��Ẽq � �Eq

R�

� �H̃p � �Hp
R��da � 
pq, (9)

1
4�� ��Ẽp � i�Ep

I� � �H̃q � i�Hq
I�� 	 ��Ẽq � i�Eq

I�

� �H̃p � i�Hp
I��da � 
pq. (10)
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Finally, we define the mode fields in each segment,
to first order, as

Ep,q
HH � Ẽp,q 	 �Ep,q

R 	 i�Ep,q
I,

Hp,q
HH � H̃p,q 	 �Hp,q

R 	 i�Hp,q
I, (11)

Ep,q
HL � Ẽp,q 	 �Ep,q

R � i�Ep,q
I,

Hp,q
HL � H̃p,q 	 �Hp,q

R � i�Hp,q
I, (12)

Ep,q
LL � Ẽp,q � �Ep,q

R � i�Ep,q
I,

Hp,q
LL � H̃p,q � �Hp,q

R � i�Hp,q
I, (13)

Ep,q
LH � Ẽp,q � �Ep,q

R 	 i�Ep,q
I,

Hp,q
LH � H̃p,q � �Hp,q

R 	 i�Hp,q
I. (14)

B. Derivation of Transfer Matrices

We begin by defining the transfer matrix elements at
the grating plane from segment RI to segment R�I�,

Tpq
�R�I��RI �

1
4�� ��Ep

R�I� � Hq
RI� 	 �Eq

RI � Hp
R�I���da.

(15)

Specifically, for propagation across an imaginary
grating plane from segment HH to segment HL,

Tpq
�HL�HH �

1
4�� ��Ep

HL � Hq
HH� 	 �Eq

HH � Hp
HL��da.

(16)

Inserting Eqs. (11) and (12) into Eq. (16), applying
Eq. (9), and keeping only the lowest-order perturba-
tion term produces the matrix elements

T11
�HL�HH � 1 	

1
2�� ��E1

I � �H1
I�da, (17)

T22
�HL�HH � 1 	

1
2�� ��E2

I � �H2
I�da, (18)

T21
�HL�HH � �

i
2�� ���E2

I � H̃1� 	 �Ẽ1 � �H2
I��da,

(19)

T12
�HL�HH �

i
2�� ���E2

I � H̃1� 	 �Ẽ1 � �H2
I��da.

(20)

The transfer matrix at this grating plane thus takes
the form

T�HL�HH � �1 	
��1

I�2

2
i�X

I

�i�X
I 1 	

��2
I�2

2

, (21)

with

��1
I�2 ��� ��E1

I � �H1
I�da, (22)

��2
I�2 ��� ��E2

I � �H2
I�da, (23)

�X
I �

1
2�� ���E2

I � H̃1� 	 �Ẽ1 � �H2
I��da. (24)

This notation is chosen in order to keep track of the
perturbation order contained in each matrix element;
the cross-coupling (off-diagonal) terms represent a
first-order contribution of field perturbations, while
the self-coupling (diagonal) terms represent a second-
order contribution. We note further that all � terms
are real-valued. A similar derivation of the transfer
matrix for propagation from segment LL to segment
LH uses Eqs. (13) and (14), resulting in

T�LH�LL � �1 	
��1

I�2

2
�i�X

I

i�X
I 1 	

��2
I�2

2

 � �T�HL�HH�T, (25)

that is, the two imaginary transfer matrices are the
nonconjugate transpose of each other.

For the real grating planes, using Eq. (10) rather
than Eq. (9), the transfer matrices are

T�LL�HL � �1 �
��1

R�2

2
�X

R

��X
R 1 �

��2
R�2

2

,

T�HH�LH � �T�LL�HL�T, (26)

with

��1
R�2 ��� ��E1

R � �H1
R�da, (27)

��2
R�2 ��� ��E2

R � �H2
R�da, (28)
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�X
R �

1
2�� ���E2

R � H̃1� 	 �Ẽ1 � �H2
R��da. (29)

Comparing Eqs. (25) and (26), it is apparent that in
the TMM picture, the condition of equal real and
imaginary coupling strengths requires that


�X
R
�
�X

I
� 
�X
. (30)

We shall see later that the terms ��p,q
RI�2 fall out of the

full-period transfer matrix.

C. Derivation of Propagation Matrices

Within each grating segment, both modes propagate
independently along the z direction, accumulating a
phase

�p,q
RI�z� � �p,q

RI�z � z0�, (31)

where z0 is the z coordinate at the beginning of the
segment and the � terms are the complex propaga-
tion constants of each mode in segment RI. In the
ideal U-GACC, the phase mismatch between the
modes upon traversing each segment is equal to ��2,
resulting in a total phase mismatch of 2� over a full
period. Only two unique segment lengths must be
calculated, as the real part of the propagation con-
stant is negligibly affected by the gain–loss grating.
Segment lengths are thus equal to

�H �
�

2 Re��1
H � �2

H�
, �HH, HL segments�, (32)

�L �
�

2 Re��1
L � �2

L�
, �LH, LL segments�, (33)

where the superscripts H and L refer to the regions of
high and low real index, irrespective of the imaginary
index. Here, we note that the TMM analysis has pro-
vided a duty cycle for the real grating—defined here
as �H���H 	 �L�—that differs from 0.5, as is assumed
in CMT [11]. In comparison, the duty cycle of the
imaginary grating is exactly 0.5, in order to produce
zero net gain in each period. The period of the full
complex grating is then

� � 2��H 	 �L�. (34)

In addition to the phase mismatch, the modes ex-
perience gain and loss during propagation, as deter-
mined by the imaginary part of the propagation
constants. With zero net gain in the ideal device, the
gain and loss in segments with the same real index
are the inverse of one another. There does exist, how-
ever, a slight disparity in gain between segments of
high and low real index, due to the difference both in
segment lengths and modal overlap with the gain
region (this, again, is not accounted for in CMT). The

gain of each mode in the segment with high real index
is thus denoted

gp,q
H � exp�Im��p,q

H��H�, (35)

while that in the segment with low real index is

gp,q
L � exp�Im��p,q

L��L�. (36)

We are now in a position to define the propagation
matrix in segment RI as

PRI � �exp��i�1
RI� 0

0 exp��i�2
RI��. (37)

In the grating segments with high real index, the
propagation matrices for the ideal U-GACC are

PHH � �g1
H 0

0 ig2
H�, PHL � ��g1

H��1 0
0 i�g2

H��1�,

(38)

where a common phase exp��i Re��1
H��H� has been

factored out without loss of generality. Likewise, in
the segments with low real index,

PLH � �g1
L 0

0 ig2
L�, PLL � ��g1

L��1 0
0 i�g2

L��1�. (39)

D. Full-Period Transfer Matrix

For the grating orientation in Fig. 2, the transfer
matrix for a full period is

T � T�HH�LHPLHT�LH�LLPLLT�LL�HLPHLT�HL�HHPHH

� �T11 T12

T21 T22
�, (40)

where, to second order in all � terms,

T11 � 1 � �X
2�g1

L

g2
L � 2

g1
H

g2
H �

g2
L

g1
L �

g1
Lg1

H

g2
Lg2

H 	 1�, (41)

T12 � ��X� g2
H

g1
H 	

g1
L

g2
L 	 2�, (42)

T21 � ��X� g1
H

g2
H 	

g2
L

g1
L � 2�, (43)

T22 � 1 � �X
2�g1

L

g2
L 	 2

g2
H

g1
H �

g2
L

g1
L �

g2
Lg2

H

g1
Lg1

H 	 1�. (44)

T is unimodular, as is expected from a system with
segments of equal gain and loss when the scattering
loss is neglected. However, unlike the transfer matrix

20 November 2007 � Vol. 46, No. 33 � APPLIED OPTICS 8056



of a pure index grating, T is not unitary, and as a
result, the total optical power changes (and in fact,
grows) during propagation. This surprising result oc-
curs because the modes interfere constructively in
the regions with gain and destructively in the lossy
regions.

The asymmetry in T is evident from the ratio of
off-diagonal terms |T12|�|T21|, which is not equal to
unity. In Section 4, we shall see that in practical
U-GACC designs all gain terms are very slightly
greater than unity, and thus the ratios gp

H,L�gq
H,L in

Eqs. (41)–(44) are all approximately equal to one. In
this case, the single-period transfer matrix can be
simplified to

T ��1 	 2�X
2 �4�X

0 1 � 2�X
2�. (45)

E. Reversed Grating Phase

The analysis in Subsection 3.D considered a structure
in which the gain–loss grating leads the index grating
when propagating from left to right. If this grating
phase is switched (either by physically reversing the
gain and loss segments, or merely by propagating
through the structure in the reverse direction), then
by Eq. (2), we expect the allowed direction of coupling
to be reversed as well. To verify this, we define the
reverse single-period transfer matrix Trev in the same
way as Eq. (40), but with the eight submatrices in the
reverse order; superscripts on the transfer matrices
between each segment are flipped to indicate the re-
versed direction of propagation:

Trev � PHHT�HH�HLPHLT�HL�LLPLLT�LL�LHPLHT�LH�HH.
(46)

We now remark that at each grating plane, from
Eq. (15),

T�RI�R�I� � �T�R�I��RI�T. (47)

Together with the trivial observation that �PRI�T �
PRI, we can rewrite Eq. (46) as

Trev � �PHH�T�T�HL�HH�T�PHL�T�T�LL�HL�T�PLL�T

� �T�LH�LL�T�PLH�T�T�HH�LH�T

� �T�HH�LHPLHT�LH�LLPLLT�LL�HLPHLT�HL�HHPHH�T

� TT. (48)

Thus, a U-GACC with reversed phase between the
real and imaginary gratings is described by the orig-
inal transfer matrix with the elements T12 and T21
exchanged, indicating that the allowed direction of
coupling is indeed reversed.

F. N-Period Grating

The unimodular property of T allows us to apply
Chebyshev’s formula [14] to determine the transfer
matrix of an N-period U-GACC:

TN � �1 � N�X
2�g1

L

g2
L � 2

g1
H

g2
H �

g2
L

g1
L �

g1
Lg1

H

g2
Lg2

H 	 1� �N�X�g2
H

g1
H 	

g1
L

g2
L 	 2�

�N�X�g1
H

g2
H 	

g2
L

g1
L � 2� 1 � N�X

2�g1
L

g2
L 	 2

g2
H

g1
H �

g2
L

g1
L �

g2
Lg2

H

g1
Lg1

H 	 1�
. (49)

Fig. 3. Modal power evolution in an ideal U-GACC (2 → 1
coupling permitted, �X � 0.01). ●, mode 1; X, mode 2. (a) Power
input to mode 1. (b) Power input to mode 2.
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When all gain ratios gp
H,L�gq

H,L are assumed equal to
unity as in Eq. (45), this simplifies to

TN � �1 	 2N�X
2 �4N�X

0 1 � 2N�X
2���1 �4N�X

0 1 �, (50)

where the approximation assumes that �X �� 2. From
Eq. (3), the electric field amplitudes of the modes at
the end of the grating are therefore

�E1
out

E2
out�� TN�E1

in

E2
in�� �E1

in � 4N�XE2
in

E2
in �. (51)

Figure 3 illustrates the evolution of modal power in a
hypothetical U-GACC for which only coupling from
mode 2 to mode 1 is allowed, with �X � 0.01. Note that
the linear increase in coupled field magnitude [see T12
of Eq. (51)] results in a quadratic increase in coupled
power. The number of periods required to achieve
equalization (at a minimum) of field magnitude in the
two modes is determined by setting |T12| � 1,

Neq � 
1

4�X , (52)

where the ceiling function >·? is used to indicate that
Neq must be an integer.

G. Cross Talk

A U-GACC will exhibit a finite cross talk according to
Eq. (49), as |T21| is not precisely zero. If we define the

cross talk as the ratio of power leakage in the forbid-
den direction to power coupling in the allowed direc-
tion (for identical mode amplitudes input to the
grating), it can be expressed simply as

cross talk � 
T21�T12
2 � ��g1
H�g2

H� 	 �g2
L�g1

L� � 2

�g2
H�g1

H� 	 �g1
L�g2

L� 	 2�
2

,

(53)

irrespective of the number of grating periods, with T21
and T12 exchanged in the case of reversed grating
phase.

4. Example

To demonstrate the TMM, we consider the structure
outlined in Figs. 2 and 4. This U-GACC is designed
for operation at � � 1.55 �m, and consists of a dual-
mode waveguide with rectangular core of 0.5 �m
height and 2.0 �m width. The unperturbed refractive
indices are 3.60 (core) and 3.45 (cladding). Index per-
turbations �nR and �nI are �5 � 10�4 within the left
half of the core cross section and zero within the right
half. As the real and imaginary perturbations are
spatially colocated in this example, their magnitudes
will be equal in the ideal U-GACC case.

Mode profiles and propagation constants are calcu-
lated using a semivectorial finite difference method
[15] with variable node spacing [16]; quasi-TE modes
(those with dominant electric field component paral-
lel to the long axis of the core) are considered here.
Table 1 contains calculated complex effective indices
for both modes in each segment, as well as the seg-
ment length corresponding to ��2 phase mismatch
between modes [Eqs. (32) and (33)], and the gain of
the modes in each segment [Eqs. (35) and (36)]. The
magnitude of the off-diagonal term in each individual
transfer matrix is calculated to be �X � 0.00733 [Eqs.
(24) and (29)].

Using Eqs. (41)–(44), the transfer matrix for a sin-
gle period of this U-GACC is found to be

T � � 1.000106 �2.91 � 10�2

�1.13 � 10�6 0.999894 �. (54)

The 4 orders of magnitude difference between T12 and
T21 indicates a very strong asymmetry in the coupling

Fig. 4. Cross section of example U-GACC analyzed in this work.
�nR � �nI � 5 � 10�4.

Table 1. Calculated Effective Mode Indices, Segment Lengths, and Segment Gain for the Example in Section 4

Segment and
Mode neff

�
(�m) [from

Eqs. (32)–(33)]
Gain [from

Eqs. (35)–(36)]

HH, 1 3.509038 � (1.70952 � 10	4)i g1
H � 1.00764

HH, 2 3.473577 � (1.39386 � 10	4)i �H � 10.928 g2
H � 1.00624

HL, 1 3.509038 	 (1.70952 � 10	4)i
HL, 2 3.473577 	 (1.39386 � 10	4)i
LL, 1 3.508698 	 (1.68441 � 10	4)i g1

L � 1.00754
LL, 2 3.473298 	 (1.40371 � 10	4)i g2

L � 1.00630
LH, 1 3.508698 � (1.68441 � 10	4)i �L � 10.946
LH, 2 3.473298 � (1.40371 � 10	4)i
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characteristics of this structure. From Eq. (52), field
equalization in both modes is achieved after 35 peri-
ods of the grating. Finally, we note that the duty cycle
of this ideal U-GACC is 0.4996, due to the slightly
larger discrepancy between mode indices in the seg-
ments with high real index. This differs negligibly
from 0.5, but it should be noted that the departure
from a 0.5 duty cycle is considerably larger for the
geometry shown in Fig. 1. The cross talk, by Eq. (53),
is �44 dB, which can be considered negligible in com-

parison to that which is incurred in demultiplexing
the two modes at the end of the grating.

To verify these results, we simulate this 35-
period U-GACC using a three-dimensional beam
propagation method (BPM) [17]. The adiabatic
asymmetric y-branch used to multiplex signals
from two input waveguides onto the two guided
modes utilizes tapered sinusoidal s-bends (see Fig. 5).
It has length L � 500 �m and initial waveguide sep-
aration x0 � 5 �m. Both waveguides have initial
width W0 � 1 �m, and final waveguide widths are
W1 � 1.5 �m (coupling to mode 1) and W2 � 0.5 �m
(coupling to mode 2). The demultiplexing y-branch is
identical.

Figure 6 shows the power profile along the
U-GACC and at the output plane of the demulti-
plexer. The figures in the top row describe a grating
with segments ordered HH, HL, LL, LH. With optical
power input to mode 2 (top left figure), the output
powers in each mode are approximately identical.
Optical power input to mode 1 (top right figure) re-
mains in that mode. In the bottom row, the order of
segments is inverted: HH, LH, LL, HL. In this case,
the coupling properties are reversed, as explained in
Subsection 3.E. The modal power at the end of each
period for the U-GACC with coupling from mode 2 to

Fig. 5. Geometry of the adiabatic asymmetric y-branch multi-
plexer.

Fig. 6. (Color online) Optical power in the U-GACC example from Section 4. Top row, order of grating segments: HH, HL, LL, LH. Bottom
row, order of grating segments: HH, LH, LL, HL. Left column, power input to mode 2. Right column, power input to mode 1. The curves
to the right of each plot show the power at the output plane of the demultiplexer (arbitrary units).
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mode 1 permitted is shown in Fig. 7. As predicted by
Eq. (52), power is equalized by the end of the 35th
period of the grating. It is also apparent from this
figure that there is scattering present, and that it is
more prevalent for mode 1 than for mode 2; this is
likely due to the fact that mode 1 has peak power at
the index discontinuity at x � 0, whereas mode 2 has
a null along this axis.

5. Conclusion

The ideal unidirectional grating-assisted codirec-
tional coupler has been analyzed by the transfer ma-
trix method, which demonstrates clearly why such a
device exhibits such a strong asymmetry in modal
coupling. Simple formulas are found to calculate the
number of grating periods required for equalization
of modal power, and for the cross talk, which is shown
to be finite. These have been confirmed by compari-

son with BPM simulations. Although this work con-
cerns the ideal structure, nonidealities can easily be
analyzed by using the explicit (nonsimplified) matri-
ces to describe scattering between grating planes [Eq.
(15)] and propagation within each grating segment
[Eq. (37)]. In addition, it should be pointed out that
the introduction of the perturbation fields in Eq. (7)
was done in order to facilitate the derivation of the
transfer matrix elements. In practical application of
this work, these matrix elements would be calculated
explicitly using Eq. (15).

This work was supported by the Natural Sciences
and Engineering Research Council (NSERC) and in-
dustrial and government partners, through the Agile
All-Photonic Networks (AAPN) Research Network.
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Fig. 7. Modal power evolution in the U-GACC example of Section
4. Order of grating segments: HH, HL, LL, LH. ●, mode 1; X, mode
2. (a) Power input to mode 1: see Fig. 6, upper right figure. (b)
Power input to mode 2: see Fig. 6, upper left figure.
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