Wilfrid Laurier University

[Scholars Commons @ Laurier](https://scholars.wlu.ca/)

[Physics and Computer Science Faculty](https://scholars.wlu.ca/phys_faculty)

Physics and Computer Science

2010

On the Complexity of Finding a Sun in a Graph

Chính T. Hoàng Wilfrid Laurier University, choang@wlu.ca

Follow this and additional works at: [https://scholars.wlu.ca/phys_faculty](https://scholars.wlu.ca/phys_faculty?utm_source=scholars.wlu.ca%2Fphys_faculty%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Hoàng, Chính T., "On the Complexity of Finding a Sun in a Graph" (2010). Physics and Computer Science Faculty Publications. 74. [https://scholars.wlu.ca/phys_faculty/74](https://scholars.wlu.ca/phys_faculty/74?utm_source=scholars.wlu.ca%2Fphys_faculty%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Physics and Computer Science at Scholars Commons @ Laurier. It has been accepted for inclusion in Physics and Computer Science Faculty Publications by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [scholarscommons@wlu.ca.](mailto:scholarscommons@wlu.ca)

ON THE COMPLEXITY OF FINDING A SUN IN A GRAPH[∗]

CHÍNH T. HOÀNG †

Abstract. The sun is the graph obtained from a cycle of length even and at least six by adding edges to make the even-indexed vertices pairwise adjacent. Suns play an important role in the study of strongly chordal graphs. A graph is chordal if it does not contain an induced cycle of length at least four. A graph is strongly chordal if it is chordal and every even cycle has a chord joining vertices whose distance on the cycle is odd. Farber proved that a graph is strongly chordal if and only if it is chordal and contains no induced suns. There are well known polynomial-time algorithms for recognizing a sun in a chordal graph. Recently, polynomial-time algorithms for finding a sun for a larger class of graphs, the so-called HHD-free graphs (graphs containing no house, hole, or domino), have been discovered. In this paper, we prove the problem of deciding whether an arbitrary graph contains a sun is NP-complete.

Key words. chordal graph, strongly chordal graph, sun

AMS subject classification. 68Q25

DOI. 10.1137/080729281

1. Introduction. A *hole* is an induced cycle with at least four vertices. A graph is *chordal* if it does not contain a hole as an induced subgraph. Farber [6] defined a graph to be *strongly chordal* if it is chordal and every cycle in the graph on 2*k* vertices, $k \geq 3$, has a chord *uv* such that each segment of the cycle from *u* to *v* has an odd number of edges. We denote by *k-sun* the graph obtained from a cycle of length 2*k* $(k \geq 3)$ by adding edges to make the even-indexed vertices pairwise adjacent. Figure 1 shows a 5-sun. A *sun* is simply a *k*-sun for some $k \geq 3$. Farber showed [6] that a graph is strongly chordal if and only if it is chordal and does not contain a sun as induced subgraph. Farber's motivation was a polynomial-time algorithm for the minimum weighted dominating set problem for strongly chordal graphs. The problem is NP-hard for chordal graphs [1]. In this paper, we prove that it is NP-hard to find a sun in an arbitrary graph. This result is motivated by the following discussion on chordal and strongly chordal graphs. For more information on this topic, see [3, 7].

We use $N(x)$ to denote the set of vertices adjacent to vertex x in a graph G . Define $N[x] = N(x) \cup \{x\}$. A vertex *x* in a graph is *simplicial* if $N(x)$ induces a complete graph. It is well known [4] that graph *G* is chordal if and only if every induced subgraph *H* of *G* contains a simplicial vertex of *H*. Farber proved [6] an analogous characterization for strongly chordal graphs. A vertex *x* in a graph is *simple* if the vertices in *N*(*x*) can be ordered as x_1, x_2, \ldots, x_k such that $N[x_1] \subseteq N[x_2] \subseteq \cdots \subseteq$ $N[x_k]$. Thus, every simple vertex is simplicial. For a graph *G*, let $\mathcal{R} = v_1, v_2, \ldots, v_n$ be an ordering of vertices of *G*. Let $G(i) = G[\{v_i, v_{i+1}, \ldots, v_n\}]$, i.e., the subgraph induced in *G* by the set v_i through v_n of vertices. R is a *simple elimination ordering* for *G* if v_i is simple in $G(i)$, $1 \leq i \leq n$. The following is due to Farber [6].

THEOREM 1 (see [6]). *The following are equivalent for any graph* G *:*

- *G is strongly chordal.*
- *G is chordal and does not contain a sun.*
- *Vertices of G admit a simple elimination ordering.*

[∗]Received by the editors July 3, 2008; accepted for publication (in revised form) September 2, 2009; published electronically January 22, 2010. This author's research was supported by NSERC.

http://www.siam.org/journals/sidma/23-4/72928.html

[†]Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario, Canada (choang@wlu.ca).

Fig. 2. *The house, the hole, and the domino.*

Thus, suns play an important role in the studies of chordal and strongly chordal graphs. There are well known algorithms [16, 12] to test whether a chordal graph is strongly chordal and thus whether it contains a sun. It is natural to investigate the problem of sun testing for larger classes of graphs. A graph is HHD-free if it does not contain a house, a hole, or a domino (see Figure 2). Every chordal graph is an HHD-free graph. HHD-free graphs [10] have several properties analogous to those of chordal graphs. Brandstädt [2] proposed the problem of finding a sun in an HHD-free graph. This problem was proved to be polynomial-time solvable in [13] and [5]. The absence of a sun in a graph seems to suggest that the graph has a certain structure. The author has thought, but has not been able to prove, that a sun-free HHD-free graph contains a homogeneous set or a simple vertex (a set *H* of vertices of a graph $G = (V, E)$ is homogeneous if $2 \leq |H| < |V|$ and every vertex outside *H* is adjacent to all, or to no vertices of *H*; homogeneous sets are also known as nontrivial modules). One may wonder whether the existence of the algorithms in [16, 12, 13, 5] is due to the property of being sun-free or of being chordal (or HHD-free). This has led several researchers to ask for the complexity of finding a sun in a graph. In this paper, we will prove the following.

Theorem 2. *It is NP-complete to decide whether a graph contains a sun.*

The above theorem suggests that it is the property of being chordal (or HHD-free) that allows us to test for a sun efficiently and it is unlikely there is a polynomial-time algorithm for finding a sun in an arbitrary graph. Denote by *k-hole* the hole on *k* vertices. A *k-antihole* is the complement of a *k*-hole. A graph is *weakly chordal* [8] if it does not contain a *k*-hole or *k*-antihole with $k \geq 5$. Weakly chordal graphs generalize chordal graphs in a natural way, and they are known to be perfect and have many interesting algorithmic properties (see [9]). In spite of Theorem 2, it is conceivable there are polynomial-time algorithms to solve the sun recognition problem for weakly chordal graphs or even perfect graphs [15]. In this spirit, we will refine Theorem 2 to obtain a stronger result.

Theorem 3. *It is NP-complete to decide whether a graph G contains a sun, even when G does not contain a k-antihole with* $k \geq 7$ *.*

Let *k*-CLIQUE (respectively, *k*-SUN) be the problem whose instance is a graph *G* and an integer *k*, for which the question to be answered is whether *G* contains a clique on *k* vertices (respectively, *k*-SUN). It is well known [11] that *k*-CLIQUE is NP-complete. It is not difficult to prove but perhaps interesting to note that *k*-SUN is also NP-complete. Observe that if *k* is a constant (not part of the input), then the two problems can obviously be solved in polynomial time.

Theorem 4. *k-SUN is NP-complete.*

Note that Theorem 2 implies Theorem 4: To decide whether a graph contains a sun, we need only to solve $O(n)$ instances of k-SUN with k running from 3 to $n/2$, where n is the number of vertices of the graph. However, we have a short and direct proof of Theorem 4. We will give the proofs of Theorems 2, 3, and 4 in the remainder of the paper.

2. The proofs. First, we need to introduce some definitions. For simplicity, we will say a vertex *x sees* a vertex *y* if *x* is adjacent to *y*; otherwise, we will say *x misses y*. Let *G, F* be two vertex-disjoint graphs, and let *x* be a vertex of *G*. We say that a graph *H* is obtained from *G* by *substituting F* for *x* if *H* is obtained by replacing *x* by *F* in *G* and adding the edge *ab* for any $a \in V(G) - \{x\}$ and any $b \in F$ whenever *ax* is an edge of *G*. In the proofs, we will often use the observation that every vertex in *H* − *F* either sees all, or misses all, vertices of *F*.

By $(c_1, c_2, \ldots, c_k, r_1, r_2, \ldots, r_k)$ we denote the *k*-sun with vertices c_1, c_2, \ldots, c_k , r_1, r_2, \ldots, r_k such that c_1, c_2, \ldots, c_k induce a clique and r_1, r_2, \ldots, r_k induce a stable set; each r_i has degree two and sees c_i , c_{i+1} with the subscripts taken modulo k . The vertices *rⁱ* will be called the *rays* of the *k*-sun. A *triangle* is a clique on three vertices.

We will rely on the following NP-complete problem due to Poljak [14].

Stable set in triangle-free graphs.

Instance: A triangle-free graph *G*, an integer *k*.

Question: Does *G* contain a stable set with *k* vertices?

Proof of Theorem 2*.* We will reduce *stable set in triangle-free graphs* to the problem of finding a sun in a graph.

Let $G = (V, E)$ be a triangle-free graph with $V = \{v_1, v_2, \ldots, v_n\}$, and without loss of generality assume $k \geq 4$. Define a graph $f(G, k)$ from *G* as follows. Substitute for each vertex v_i a clique $V_i = \{v_i^1, v_i^2, \ldots, v_i^k\}$; add a clique *W* with vertices $u_1, w_1, \ldots, u_k, w_k$; add a stable set *X* with vertices x_1, \ldots, x_k ; for $i = 1, 2, \ldots, k$, add edges x_iw_i and x_iu_{i+1} (the subscripts are taken module *k*); for $i = 1, 2, ..., n$ and $j = 1, 2, \ldots k$, add edges $v_i^j u_j, v_i^j w_j$. Figure 3 shows a graph *G* whose graph $f(G, 4)$ is shown in Figure 4 (for clarity, we do not show all edges of $f(G, 4)$; all adjacency between V_1 and W and between V_2 and W are shown, and adjacency between V_3 and *W* are not shown; the thick line between V_1 and V_2 (and between V_2 and V_3) represents all possible edges between the two sets; there are no edges between V_1 and V_3 ; each of the sets V_i , W induces a clique; the set X induces a stable set). We will often rely on the following observations.

Observation 1. Suppose *G* is triangle-free. Then $f(G, k)$ does not contain a triangle each of whose vertices belongs to a distinct *Vi*. П

Observation 2. Let *x* be a vertex in V_i , and *y* be a vertex in V_j with $i \neq j$. If *x* and *y* have a common neighbor *z* in *W*, then $N(x) \cap W = N(y) \cap W$. \Box

The theorem follows from the following claim.

Fig. 4. *The graph f(G,*4*).*

CLAIM 1. *G* has a stable set with *k* vertices if and only if $f(G, k)$ contains a sun.

Proof of Claim 1*.* Suppose *G* has a stable set with vertices v_1, v_2, \ldots, v_k . Then $f(G,k)$ has a 2k-sun $(c_1, c_2, \ldots, c_{2k}, r_1, r_2, \ldots, r_{2k})$ with $r_{2i-1} = v_i^i$, $r_{2i} = x_i$, $c_{2i-1} =$ u_i , and $c_{2i} = w_i$ for $i = 1, 2, ..., k$.

Now, suppose $f(G, k)$ contains a sun. Write $T = V_1 \cup V_2 \cup \cdots \cup V_n$. We will establish that

(1) any sun *S* of $f(G, k)$ is a 2*k*-sun with *k* rays in *T*.

Consider a sun $S = (c_1, c_2, \ldots, c_t, r_1, r_2, \ldots, r_t)$ of $f(G, k)$. First, we claim that (with the subscript taken modulo *k*)

(2) if a ray r_j lies in *X*, then r_{j-1}, r_{j+1} lie in *T*.

Let x_i be a vertex in *X* that is a ray r_j of *S*. We may assume that $c_j = w_i$ and $c_{j+1} = u_{i+1}$. Since r_{j-1} sees w_i and misses u_{i+1} , we have $r_{j-1} \in V_s$ for some *s*. Similarly, we have $r_{j+1} \in V_r$ for some *r*. Note that $r \neq s$. So, (2) holds.

Since *W* is a clique, *S* must have a ray in $T \cup X$. (2) implies that

(3) *T* contains a ray of *S*.

Next, we will prove

(4) if
$$
r_i \in V_j
$$
, then $c_i, c_{i+1} \in W$.

Suppose (4) is false. For simplicity, we may assume $i = 1$ and $j = 1$ (we can always rename the vertices of $f(G, k)$ and *S* so that this is the case). We will often implicitly use the fact that a vertex in V_a either sees all, or misses all, vertices of V_b whenever $a \neq b$. Note that c_1, c_2 cannot be in *X*. We will distinguish among several cases.

Case 1*.* $c_1, c_2 \in V_1$. Since c_3 sees c_1, c_2 and misses r_1, c_3 cannot be in *T*. Thus, c_3 is in *W*. But no vertex in *W* can see two vertices in V_1 , a contradiction.

Case 2*.* $c_1 \in V_1, c_2 \in V_j$ *for some* $j \neq 1$ *.* We may write $j = 2$ *.* Since c_3 (respectively, r_t) sees c_1 and misses r_1 , c_3 (respectively, r_t) cannot be in *T*. Thus, c_3 and r_t are in W. Observation 2, with $z = c_3$, $x = c_1$, and $y = c_2$, implies r_t sees c_2 , a contradiction to the definition of *S*.

Case 3*.* $c_1 \in V_1, c_2 \in W$. This case is not possible since a vertex in *W* can have at most one neighbor in any V_i .

Case 4*.* $c_1, c_2 \in V_j$ *for some* $j \neq 1$ *.* We may write $j = 2$ *.* Since r_2 sees c_2 and misses c_1 , r_2 is in *W*. Since r_t sees c_1 and misses c_2 , r_t is in *W*. But then r_2 sees r_t , a contradiction.

Case 5*.* $c_1 \in V_j$, $c_2 \in V_r$ *with* $j \neq r, j \neq 1$, and $r \neq 1$. In this case, r_1, c_1 , and c_2 contradict Observation 1.

Case 6*.* $c_1 \in V_j$ *for some* $j \neq 1$ *and* $c_2 \in W$ *.* We may let $j = 2$. If $c_3 \in$ *W*, then Observation 2, with $z = c_2, x = r_1$, and $y = c_1$, implies c_3 sees r_1 , a contradiction to the definition of *S*. So, we have $c_3 \in T$. Since c_3 misses r_1 , we have $c_3 \notin V_1 \cup V_2$. So, we may assume $c_3 \in V_3$. We have $r_2 \notin W$; otherwise Observation 2, with $z = c_2, x = c_1$, and $y = c_3$, implies r_2 sees c_1 , a contradiction to the definition of *S*. We have $r_2 \notin V_1 \cup V_2 \cup V_3$ since r_2 misses r_1 and c_1 . So, we may assume $r_2 \in V_4$. Since r_3 (respectively, c_4 if it exists) sees c_3 and misses r_1 , Observation 2, with $z = c_2, x = r_1$, and $y = c_3$, implies $r_3 \notin W$ (respectively, $c_4 \notin W$). Since *r*₃ (respectively, *c*₄ if it exists) misses r_1 and r_2 , we have $r_3 \notin V_1 \cup V_2 \cup V_3 \cup V_4$ (respectively, $c_4 \notin V_1 \cup V_2 \cup V_3 \cup V_4$). Now, if $t = 3$, then the three vertices r_3, c_1 , and c_3 contradict Observation 1. But if $t > 3$, then the three vertices c_4, c_1 , and c_3 contradict Observation 1.

So, (4) holds. Next, we will establish two more assertions (where the subscripts are taken modulo *k*) below.

(5) If a ray
$$
r_j
$$
 lies in T, then r_{j-1}, r_{j+1} lie in X.

By (4) and the definition of $f(G, k)$, we may assume $c_j = u_i, c_{j+1} = w_i$. Since x_i is the only vertex of $f(G, k)$ that sees w_i and misses u_i , we have $x_i = r_{j+1}$. Similarly, we have $x_{i-1} = r_{i-1}$. So, (5) holds.

(6) If some vertex $x_i \in X$ is a ray of *S*, then x_{i+1} is also a ray of *S*.

Let x_i be a vertex in X that is a ray r_j of S. We may assume that $c_j = w_i$ and $c_{j+1} = u_{i+1}$. By (2), we have $r_{j+1} \in V_a$ for some *a*. By (4), we have $c_{j+2} = w_{i+1}$. By (5) , r_{i+2} lies in X, and so we have $r_{i+2} = x_{i+1}$. Thus, (6) holds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

We are now in a position to prove (1) . From (3) , we may assume r_1 lies in T . By (5), we have $r_2 \in X$. By (6), all x_j 's are rays of *S* for $j = 1, 2, \ldots, k$. It follows from (2) that *S* has exactly k rays in T . Therefore, S is a $2k$ -sun. We have proved (1).

We continue with the proof of Claim 1 (and Theorem 2). Consider the *k* rays of *S* that belong to *T*. Since each V_i is a clique, it contains at most one ray. So, there are *k* sets V_i containing a ray of *S*. Let these sets be V_1, V_2, \ldots, V_k . Clearly, in *G*, the vertices v_1, v_2, \ldots, v_k form a stable set. □

Proof of Theorem 3*.* We will use the notation defined in the proof of Theorem 2 with *G* being a triangle-free graph. We need only to prove the graph $f(G, k)$ does not contain a *t*-antihole with $t \geq 7$. We will prove by contradiction. Suppose $f(G, k)$ contains a *t*-antihole *A* with vertices a_1, a_2, \ldots, a_t with $t \geq 7$ such that a_i misses a_{i+1} with the subscripts taken modulo *k*. Since the vertices in *X* have degree two, none of them can belong to A . Since each V_i is a clique,

(7) no two consecutive vertices of A can belong to the same V_i .

Similarly,

(8) no two consecutive vertices of *A* can belong to *W*.

Now, we claim that

(9) one of
$$
a_i, a_{i+1}
$$
 must lie in W for all *i*.

Suppose (9) is false for a_i . For simplicity, we may assume $i = 1$, and so we have $a_1, a_2 \in T$. By (7), we may assume $a_1 \in V_1, a_2 \in V_2$. Clearly, we have $a_t \notin V_1$.

Suppose $a_t \in V_2$. Then a_3 has to be in *W*; otherwise a_3 lies in some V_j and so it misses a_t (since it misses a_2) implying $t = 4$, a contradiction. By symmetry, we have $a_{t-1} \in W$. Since a_1 sees a_3 , and a_{t-1} is a common neighbor of a_1 and a_2 , Observation 2 implies that a_2 sees a_3 , a contradiction to the definition of *A*. So, we have $a_t \notin V_2$.

Suppose $a_t \in W$. By (8), we have $a_{t-1} \in V_j$. If $j = 2$, then a_1 misses a_{t-1} , a contradiction to the definition of *A*. If $j = 1$, then a_2 misses a_{t-1} implying $t = 4$, a contradiction. So, we may assume $a_{t-1} \in V_3$. Let $j \in \{t-2, t-3\}$. If $a_j \in W$, then since a_2 sees a_t , Observation 2 with $z = a_j$, $x = a_2$, and $y = a_1$ implies a_1 sees *a*_{*t*}, a contradiction to the definition of *A*. So, we have $a_{t-2} \in V_m$ for some *m*, and $a_{t-3} \in V_p$ for some *p*. Since a_{t-2} misses a_{t-1} , we have $a_{t-2} \notin V_1 \cup V_2 \cup V_3$. So, we may assume $m = 4$. We have $a_{t-3} \in V_2 \cup V_3$; otherwise the three vertices a_{t-3}, a_{t-1} , and *a*₂ contradict Observation 1. Since a ^{*t*−2} sees a ², a ^{*t*−2} sees all of *V*₂. Thus, we have *a*_{*t*−3} ∉ *V*₂, and so $a_{t-3} \in V_3$. Since $t \geq 7$, the vertex a_{t-4} exists. Since a_{t-4} misses a_{t-3} but sees a_{t-1} , a_{t-4} is not in *T*; so we have $a_{t-4} \in W$. Observation 2 with $z =$ $a_{t-4}, x = a_{t-1}$, and $y = a_{t-2}$ implies a_{t-1} sees a_t , a contradiction to the definition of *A*.

Thus, a_t belongs to some V_i which is distinct from V_1, V_2 . It follows from symmetry and the definition of $f(G, k)$ that a_3, a_{t-1} also belong to distinct V_i . Now, the three vertices a_{t-1}, a_1 , and a_3 contradict Observation 1. So, (9) holds.

From (8) and (9), we may assume without loss of generality that $a_i \in T$ whenever *i* is odd, and $a_i \in W$ whenever *i* is even. In particular, *t* is even and at least eight. The definition of *A* implies that a_1 sees a_4 , a_6 . Thus, we have $\{a_4, a_6\} = \{u_i, w_i\}$ for some *i*. The definition of $f(G, k)$ means that every vertex of T either sees both a_4, a_6 or misses both of them. But a_3 misses a_4 and sees a_6 , a contradiction. п

Proof of Theorem 4*.* We will reduce *k*-CLIQUE to *k*-SUN. Let *G, k* be an instance of *k*-CLIQUE. We may assume $k \geq 4$. Construct a graph $h(G)$ from *G* by adding a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

vertex $v(a, b)$ for each edge *ab* of *G* and joining $v(a, b)$ to *a* and *b* by an edge of $h(G)$. Let *Y* be the set of vertices $v(a, b)$. It is easy to see that if *G* has a clique *K* on *k* vertices, then $h(G)$ has a *k*-sun induced by *K* and some *k* vertices in *Y*. If $h(G)$ has a k -sun $(c_1, \ldots, c_k, r_1, \ldots, r_k)$, then since the vertices in *Y* have degree two, none of them can be a vertex c_i ; thus, the vertices c_1, \ldots, c_k induce a clique on k vertices in G . Д

REFERENCES

- [1] K. S. Booth and J. H. Johnson, *Dominating sets in chordal graphs*, SIAM J. Comput., 11 (1982), pp. 191–199.
- [2] A. BRANDSTÄDT, *Problem session*, in Dagstuhl Seminar on Robust and Approximative Algorithms for Particular Graph Classes, Seminar 04221, Wadern, Germany, 2004, Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss, Dagstuhl, Germany, 2005.
- [3] A. BRANDSTÄDT, V. B. LE, AND J. P. SPINRAD, *Graph Classes: A Survey*, SIAM Monogr. Discrete Math. Appl. 3, SIAM, Philadelphia, 1999.
- [4] G. A. Dirac, *On rigid circuit graphs*, Abh. Math. Sem. Univ. Hamburg, 25 (1961), pp. 71–76.
- [5] E. M. Eschen, C. T. Hoang, and R. Sritharan ` , *An O*(*n*3) *recognition algorithm for hhds-free graphs*, Graphs Combin., 23 (2007), pp. 209–231.
- [6] M. Farber, *Characterizations of strongly chordal graphs*, Discrete Math., 43 (1983), pp. 173– 189.
- [7] M. C. Golumbic, *Algorithmic Graph Theory and Perfect Graphs*, Academic Press, New York, 1980.
- [8] R. B. Hayward, *Weakly triangulated graphs*, J. Combin. Theory Ser. B, 39 (1985), pp. 200–209.
- [9] R. B. Hayward, J. Spinrad, and R. Sritharan, *Improved algorithms for weakly chordal graphs*, ACM Trans. Algorithms, 3 (2007), article 14.
- [10] C. T. Hoàng and N. Khouzam, *On brittle graphs*, J. Graph Theory, 12 (1988), pp. 391–404.
- [11] R. Karp, *Reducibility among combinatorial problems*, in Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.
- [12] A. Lubiw, *Doubly lexical orderings of matrices*, SIAM J. Comput., 16 (1987), pp. 854–879.
- [13] S. D. Nikolopoulos and L. Palios, *Recognizing hhds-free graphs*, in Proceedings of the 31st International Workshop on Graph Theoretic Concepts in Computer Science (WG 2005), Metz, France, Lecture Notes in Comput. Sci. 3787, Springer, Berlin, 2005, pp. 456–467.
- [14] S. Poljak, *A note on stable sets and coloring of graphs*, Comment. Math. Univ. Carolin., 15 (1974), pp. 307–309.
- [15] J. L. RAMÍREZ-ALFONSÍN AND B. A. REED, EDS., *Perfect Graphs*, Wiley, New York, 2001.
- [16] R. Paige and R. E. Tarjan, *Three partition refinement algorithms*, SIAM J. Comput., 16 (1987), pp. 973–989.