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RECOGNIZING PERFECT 2-SPLIT GRAPHS∗

CHÍNH T. HOÀNG† AND VAN BANG LE‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 48–55

Abstract. A graph is a split graph if its vertices can be partitioned into a clique and a stable
set. A graph is a k-split graph if its vertices can be partitioned into k sets, each of which induces
a split graph. We show that the strong perfect graph conjecture is true for 2-split graphs and we
design a polynomial algorithm to recognize a perfect 2-split graph.
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AMS subject classification. 05C15
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1. Introduction. A graph is a split graph if its vertices can be partitioned into a
clique and a stable set. Split graphs were studied in [14] and [11]. Split graphs form a
class of perfect graphs and can be recognized in polynomial time. A graph G is perfect
if for each induced subgraph H of G the chromatic number of H equals the number
of vertices in a largest clique of H. The strong perfect graph conjecture (SPGC),
proposed by Berge [1], states that a graph is perfect if and if only it does not contain
as an induced subgraph the odd chordless cycle with at least five vertices, called odd
hole, or the complement of such a cycle, called odd antihole (for more information on
perfect graphs, see [12] and [2].) Nowadays, graphs containing no odd holes and no
odd antiholes are called Berge graphs. It is not known whether perfect graphs and
Berge graphs can be recognized in polynomial time.

The purpose of this paper is to study a generalization of split graphs and its
relation to the SPGC. We shall call a graph a k-split graph if its vertices can be
partitioned into k sets, each of which induces a split graph. The graph C5 shows
that 2-split graphs are not necessarily perfect. We will show that the SPGC holds
for 2-split graphs and we will design a polynomial algorithm for recognizing perfect
2-split graphs.

Theorem 1. A 2-split graph is perfect if and only if it is Berge.

In the remainder of this section, we shall prove Theorem 1. In the next section,
we shall show that perfect 2-split graphs can be recognized in polynomial time.

A graph is minimal imperfect if it is not perfect but each of its proper induced
subgraphs is. The proof of Theorem 1 relies on several known results on minimal
imperfect graphs. First, Lovász [16] proved that

every minimal imperfect graph G has exactly ω(G) · α(G) + 1 vertices,(1)

where ω(G), respectively α(G), denotes the number of vertices in a largest clique,
respectively, stable set, of G. Equation (1) implies that

a graph is perfect if and only if it its complement is.(2)
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Fig. 1. A perfect 2-split non-quasi-parity graph.

Next, a result of Tucker [19] shows that

ω(G) ≥ 4 and α(G) ≥ 4 for every minimal imperfect Berge graph G.(3)

Theorem 1 is a consequence of (1) and (3).

Proof of Theorem 1. The “only if” part is trivial. We shall prove the “if” part
by contradiction. Assume that there is an imperfect Berge graph G satisfying the
hypothesis of the theorem. Since G contains an induced subgraph that is minimal
imperfect, we may, without loss of generality, assume that G is minimal imperfect.
Let T be a set of vertices in G such that each of T and V (G) − T induces a split
graph. Let T be partitioned into a clique C and a stable set S. Then

|T | = |C|+ |S| ≤ ω(G) + α(G).

Similarly,

|G− T | ≤ ω(G) + α(G).

Hence by (1),

ω(G)α(G) + 1 = |G| ≤ 2(ω(G) + α(G)).

This and (3) give

1 ≤ 2

(
1

α(G)
+

1

ω(G)

)
− 1

ω(G)α(G)

< 2

(
1

α(G)
+

1

ω(G)

)
≤ 1,

which is a contradiction.

The class of perfect 2-split graphs contains all split graphs, all bipartite graphs,
and their complements. Therefore it is not contained in BIP∗ [8] and not in the class
of strongly perfect graphs [3]. Meyniel [17] established perfectness for a large class
of graphs, the class of “quasi-parity” graphs. An even pair is a pair of vertices such
that all chordless paths joining them have an even number of edges. A graph G is a
quasi-parity graph if for each induced subgraph H of G either H or its complement
contains an even pair. The graph in Figure 1 is a perfect 2-split graph that is not a
quasi-parity graph.
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2. Recognition algorithm. In this section, we shall show that perfect 2-split
graphs can be recognized in polynomial time. As usual, n and, respectively, m denote
the number of vertices, respectively edges, of a graph G. A (k, l) partition of a graph
G is a partition of its vertices into k stable sets and l cliques. A graph is a (k, l) graph
if its vertices admit a (k, l) partition. Thus k-split graphs are (k, k) graphs. (k, l)
graphs were first studied by Brandstädt [5], who remarked that deciding whether a
graph is a (k, l) graph is NP-complete whenever k ≥ 3 or l ≥ 3. However, he showed
[4] that finding a (2, 1) partition (respectively, (2, 2) partition) in a graph can be done
in O(n2m) (respectively, O(n10m)) time. Brandstädt pointed out that the algorithms
he gave in [5] are incorrect; however, his algorithms in [4] are correct. Brandstädt, Le,
and Szymczak [6] later designed an O((n+m)2) algorithm to recognize (2,1) graphs.
Recently, Feder et al. [10] gave a new algorithm to find a (2, 2) partition of a graph,
if it exists; their algorithm also runs in O(n10m) time.

We shall show that an odd hole in a (2, 2) graph G, if it exists, can be found in
O(n4m3) time. Since the complement of a (2, 2) graph is again a (2, 2) graph, an odd
antihole can also be detected in polynomial time. Thus, to determine if a given graph
G is a perfect 2-split graph, we first use the algorithm of Brandstädt to construct a
(2,2) partition of G (if such a partition exists) and then use our algorithm to test for
the existence of an odd hole or antihole in G. This shows that perfect 2-split graphs
can be recognized in polynomial time.

A chordless path, respectively cycle, on k vertices is denoted by Pk, respectively
Ck. The length of a path or a cycle is the number of its edges. We often write Pk
x1x2 · · ·xk for the path on vertices x1, x2, . . . , xk and edges xixi+1 (1 ≤ i < k); x1

and xk are called end-points of P . For the path P4 x1x2x3x4, the vertices x2, x3 are
called midpoints, the edges x1x2, x3x4 are called wings of that P4, and the edge x2x3

is called the rib of that P4. By NG(x) we denote the set of vertices adjacent to vertex
x in G; when there can be no confusion, we shall write N(x) = NG(x).

Let G be a graph on n vertices and m edges. To analyze our algorithm, we shall
need an upper bound on the number of Pk’s in G for a certain number k. Since each
edge ab can extend into a P3 in at most n ways, the number of P3’s in G is of order
O(nm). Since each edge ab can be the rib of at most n2 P4’s, the number of P4 in G
is of order O(n2m). Similarly, the number of P6’s is of order O(n4m).

The remainder of this section is devoted to showing that an odd hole (if it exists)
in a (2, 2) graph can be detected in polynomial time. An (x, y)-path is an induced
path whose end-points are vertices x and y. The parity of a path is the parity of its
number of edges. We note that the following two problems can obviously be solved
in O(n+m) time.
Problem Odd Path

Input: A (2, 0) graph G, and two nonadjacent vertices x, y in G.
Question: Is there an odd induced (x, y)-path in G?

Problem Even Path
Input: A (2, 0) graph G, and two nonadjacent vertices x, y in G.
Question: Is there an even induced (x, y)-path in G?

Finding an odd hole in (2,1) graphs. We shall describe an algorithm for
finding an odd hole in a (2,1) graph G. Let the vertices of G be partitioned into
stable sets S1, S2, and a clique C1. If G contains an odd hole H, then H must contain
one or two vertices in C1.

Step 1. Look for an odd hole H containing one vertex in C1.
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For each vertex in C1, list all P3’s containing it as a midpoint. For each P3 abc
with b ∈ C1, a, c ∈ S1 ∪S2, abc extends into an odd hole if and only if there is an odd
induced (a, c)-path in the (2,0) subgraph of G induced by S1 ∪ S2 − (NG(b)−{a, c}).

Since the number of P3’s in G is of order O(nm), the complexity of this step is
O(nm2).

Step 2. Look for an odd hole H containing two vertices in C1.
For each pair of vertices b, c in C1, list all P4’s containing them as midpoints.

For each P4 abcd with b, c ∈ C1, a, d ∈ S1 ∪ S2, abcd extends into an odd hole if and
only if there is an even induced (a, d)-path in the (2,0) subgraph of G induced by
S1 ∪ S2 − ((NG(b) ∪NG(c))− {a, d}).

Since the number of P4’s in G is of order O(n2m), the complexity of this step is
O(n2m2). Thus the complexity of finding an odd hole in a (2,1) graph is O(n2m2).

Finding an odd hole in (2,2) graphs. Let the vertices of G be partitioned
into stable sets S1, S2 and cliques C1, C2. If there is an odd hole in S1 ∪ S2 ∪ Ci, for
i = 1, 2, then we can find it using the previous algorithm. So we may assume that
there is no odd hole in S1 ∪ S2 ∪ Ci, for i = 1, 2. Now, any odd hole H in G must
contain some vertex in C1 and some vertex in C2; we let Hi denote the set of vertices
in H ∩ Ci for i = 1, 2.

First, we can look for a C5 in G in O(n5) (actually, we can do slightly better).
Thus we may assume that G has no C5.

Step 1. Look for an odd hole H such that all the vertices in H ′ = H1 ∪H2 appear
consecutively in H.

In this case H ′ induces a Pk v1 . . . vk (k = 2, 3, 4) in G. Thus we need only to
test if this Pk extends into an odd hole. For each induced path P xv1 . . . vky with
x, y ∈ S1∪S2, P extends into an odd hole if and only if there is an even (respectively,
odd) induced (x, y)-path in the subgraph of G induced by S1 ∪ S2 − ((NG(v1) ∪
NG(v2) . . . ∪NG(vk))− {x, y}) if k is even (respectively, odd).

Since the number of P6’s in G is of order O(n4m), the complexity of this step is
O(n4m2).

Step 2. Look for an odd hole H such that not all vertices in H ′ = H1 ∪H2 appear
consecutively in H.

We shall test (i) whether there is a P3 abc with b ∈ Ci, a, c ∈ S1 ∪ S2, such that
abc extends into an odd hole; and (ii) whether there is a P4 abcd with b, c ∈ Ci, a, d ∈
S1 ∪ S2, such that abcd extends into an odd hole.

A P3 abc with b ∈ Ci, a, c ∈ S1 ∪ S2 is of type 1 if a, c ∈ Sj for j = 1, 2;
otherwise the P3 is of type 2. A P4 abcd with b, c ∈ Ci, a, d ∈ S1 ∪ S2 is of type 1 if
a ∈ Si, d ∈ Sj , i 6= j; otherwise the P4 is of type 2.

Substep 2.1. For each P3 abc of type 1 with b ∈ Ci, a, c ∈ Sj , we can test if
it extends into an odd hole in the following way. If abc does not extend into a P4,
then it does not extend into an odd hole. Now, consider a P4 of the form abcd. We
must have d ∈ Ci′ ∪ Sj′ , i 6= i′, j 6= j′. Let F be the subgraph of G induced by
Ci′ ∪ S1 ∪ S2 − (NG(b)∪NG(c)−{a, d}) and let F ′ be the graph obtained from F by
adding the edge ad. Since G contains no C5, the P4 abcd extends into an odd hole in
G if and only if there is an odd hole in F ′ (this odd hole must contain the edge ad by
our assumption that Ci′ ∪ S1 ∪ S2 contains no odd hole).

Since F ′ is a (2,1) graph, this problem can be solved in O(n2m2). Thus the
complexity of this substep is O(n3m3).

Substep 2.2. For each P4 abcd of type 1 with b, c ∈ Ci, a ∈ S1, d ∈ S2, let F be
the subgraph of G induced by Ci′ ∪ S1 ∪ S2 − (NG(b) ∪ NG(c) − {a, d}), i 6= i′, and
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let F ′ be the graph obtained from F by adding the edge ad. Since G contains no C5,
the P4 abcd extends into an odd hole in G if and only if there is an odd hole in F ′.

Since F ′ is a (2,1) graph, this problem can be solved in O(n2m2). Thus the
complexity of this substep is O(n4m3).

Now, we may assume that no P3 and no P4 of type 1 extend into a odd hole of
G. We claim that

G contains no odd hole.

Suppose that G contains an odd hole H. Since we are in Step 2, the vertices in
H ∩ (C1 ∪ C2) do not appear consecutively on H. Enumerate the vertices of H as
x1, . . . , xt, b1, . . . , bu, y1, . . . , yr, a1, . . . , as in the cyclic order with xi ∈ C1 for each
i, bi, ai ∈ (S1 ∪ S2) for each i, and yi ∈ C2 for each i. Define Q1 to be the path
asx1 . . . xtb1 and Q2 to be the path buy1 . . . yra1. Q1 and Q2 are a P3 or P4 of type 2.

Suppose that Q1 is a P3 of type 2. If Q2 is a P3 of type 2, then the path b1 . . . bu
has the same parity as the path a1 . . . as. However, then H has even length, which is
a contradiction. Thus Q2 must be a P4 of type 2. Now, the path b1 . . . bu has different
parity than the path a1 . . . as; then H has even length, which is a contradiction.

Thus we may assume that Q1, and by symmetry Q2, is a P4 of type 2. Now, it is
easy to see that the path b1 . . . bu has the same parity as the path a1 . . . as. However,
then H has even length, which is a contradiction. Thus, G cannot contain an odd
hole as claimed.

Optimizing perfect and nonperfect 2-split graphs. Grötschel, Lovász, and
Schrijver [13] designed a polynomial algorithm to find a largest clique and an optimal
coloring of a perfect graph. This important algorithm is a variation of the ellipsoid
method for linear programming and is unlike a typical combinatorial algorithm. Thus,
one may ask for a more combinatorial algorithm. With this in mind we shall comment
on the problem of optimizing 2-split graphs.

Let G be a graph with a (2,2) partition C1, C2, S1, S2, where the Ci’s are cliques
and the Si’s are stable sets. Since we can optimally color C1 ∪ C2, we can color G
with at most χ(G) + 2 colors (χ(G) denotes the chromatic number of G). We do not
know if there is a combinatorial algorithm to optimally color a perfect 2-split graph.

We shall show that a largest clique of a 2-split graph can be found in polynomial
time. It is well known that there is a combinatorial polynomial algorithm for finding
a largest stable set and a minimum clique cover of a bipartite graph (for example, see
[7, pp. 331–336]). We shall assume that the following function can be computed in
polynomial time.
function Find-Omega-Bip(G)

input: a graph G that is the complement of a bipartite graph.
output: a number Find-Omega-Bip(G)=ω(G).
The clique number of a (2,2) graph can be computed in polynomial time by the

following function.
function Find-Omega(G)

input: a (2,2) graph G with partition C1, C2, S1, S2, where the Ci’s are cliques and
the Si’s are stable sets.

output: a number Find-Omega(G)=ω(G).
begin
max := Find-Omega-Bip(C1 ∪ C2);
for each vertex b ∈ S1 ∪ S2 do

begin
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k := Find-Omega-Bip (N(b) ∩ (C1 ∪ C2));
if k + 1 > max then max := k + 1;

end;
for each edge ab with a, b ∈ S1 ∪ S2, do

begin
k := Find-Omega-Bip (N(a) ∩N(b) ∩ (C1 ∪ C2));
if k + 2 > max then max := k + 2;

end;
return max;
end.

We are going to show that function Find-Omega correctly computes the clique
number of G. Let ω(C1∪C2) = k. Obviously, we have k ≤ ω(G) ≤ k+2. If ω(G) = k,
then the value returned by the function is obviously correct. If ω(G) = k+1, then any
largest clique of G must contain a vertex in B = S1 ∪ S2; such a clique can be found
by finding, for each vertex b ∈ B, a largest clique in N(b)∩(C1∪C2). If ω(G) = k+2,
then any largest clique of G must contain two adjacent vertices in B = S1∪S2; such a
clique can be found by finding, for each pair of adjacent vertices b1, b2 ∈ B, a largest
clique in N(b1) ∩ N(b2) ∩ (C1 ∪ C2). Thus function Find-Omega always returns the
correct value.

3. Perfect 3-split graphs. We have shown that the SPGC holds for 2-split
graphs and we provided a polynomial algorithm for recognizing perfect 2-split graphs.
A natural extension of this result would be to show that the SPGC holds for 3-split
graphs and, more generally, k-split graphs for any fixed k. We shall show that a
minimal imperfect Berge k-split graph cannot have many vertices. When there can
be no confusion we shall write ω = ω(G) and α = α(G).

Lemma 2. For any k ≥ 2, l ≥ 2, any minimal imperfect (k, l) graph has at most
kα+ lω − r vertices where r = min (k, l).

We shall need a result of Padberg [18], who showed that

if G is a minimal imperfect graph, then any ω-clique of G is disjoint
from precisely one α-stable set of G, and vice versa.

(4)

Proof of Lemma 2. Suppose that G is a minimal imperfect (k, l) graph. Let G
be partitioned into k stable sets S1, . . . , Sk and l cliques K1, . . . ,Kl. Then |V (G)| =∑ |Si|+∑ |Ki|.

If no stable set Si is a maximum stable set and no clique Ki is a maximum clique,
then the lemma holds trivially.

Suppose that some two cliques, say, K1 and K2, are ω-cliques. Then no stable
set Si can be an α-stable set; otherwise Si is disjoint from K1 and K2, which is a
contradiction to (4). Therefore, we have |V (G)| = ∑ |Si| +∑ |Ki| ≤ k(α − 1) + lω.
Similarly, if two stable sets Si and Sj are α-stable sets, then we have |V (G)| ≤
kα+ l(ω − 1). Thus the lemma holds in this case.

Now, assume that exactly one clique of {K1, . . . ,Kl} is a ω-clique and exactly
one stable set of {S1, . . . , Sk} is an α-stable set. We have, therefore, |V (G)| ≤ α +
(k − 1)(α − 1) + ω + (l − 1)(ω − 1) = kα + lω − (k + l) + 2. Since k ≥ 2 and l ≥ 2,
the lemma also holds in this case.

Theorem 3. 3-split Berge graphs are perfect if the SPGC holds for graphs with
at most 33 vertices. Furthermore, (2, 3) Berge graphs and (3, 2) Berge graphs are
perfect.
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Proof of Theorem 3. Let G be a 3-split Berge graph and suppose that G is not
perfect. Then G contains a minimal imperfect graph and so, without loss of generality,
we may assume that G is minimal imperfect. By (1) and Lemma 2, we have

|V (G)| = αω + 1 ≤ 3(α+ ω)− 3.(5)

By replacing G with its complement if necessary, we may assume that α ≥ ω. Now
(5) gives αω + 1 ≤ 6α− 3 and so ω ≤ 5. This and (3) imply

4 ≤ ω ≤ 5.(6)

From (5) and (6), it is easy to verify that the largest value that |V (G)| can have is
33 and this occurs when α = 8 and ω = 4 (for example, if ω = 4 and α = 9, then
αω+ 1 = 37 but 3(α+ ω)− 3 = 36, contradicting (5); similarly, when ω = 5 we must
have α = 5 and so |V (G)| = αω + 1 = 26).

Similarly, for the case k = 2, l = 3, we have |V (G)| ≤ 21. This occurs when
ω = 5, α = 4. (2,3) Berge graphs are perfect because the SPGC holds for graphs
with at most 24 vertices. (This unpublished proof is due to V. A. Gurvich and V. M.
Udalov, who announced it at the Perfect Graph Conference in Princeton, 1993, and
is also reported in [9]; [15] gives a proof that the SPGC holds for graphs with at most
20 vertices.) By (2), (3,2) Berge graphs are also perfect.

The complexity of recognizing perfect (3,2) graphs. We shall now com-
ment on the difficulty of recognizing Berge (3,2) graphs. Tucker [19] proved that Berge
K4-free graphs are perfect; in other words, they are 3-colorable. The problem of rec-
ognizing Tucker’s graphs is still open. 3-colorable graphs are (3,0) graphs. However,
determining if a graph is a (3, l) graph is at least as hard as determining if a graph
is a (3,0) graph, for any l ≥ 1. To see this, consider a graph G and a graph H that
is the union of G and l vertex-disjoint cliques on at least four vertices. Clearly, G is
a (3,0) graph if and only if H is a (3, l) graph, and G is Berge if and only if H is.
Thus, recognizing Berge (3,2) graphs is at least as hard as recognizing Berge K4-free
graphs. Thus, our algorithm for recognizing Berge (2,2) graphs seems to be the best
possible (in the sense that it is polynomial) given the current state of knowledge on
perfect graphs.
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