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Transition to classical chaos in a coupled quantum system through continuous measurement

Shohini Ghose,* Paul Alsing, and Ivan Deutsch
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA

Tanmoy Bhattacharya and Salman Habib
T-8 Theoretical Division, MS B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 9 September 2003; published 24 May 2004)

Continuous observation of a quantum system yields a measurement record that faithfully reproduces the
classically predicted trajectory provided that the measurement is sufficiently strong to localize the state in
phase space but weak enough that quantum backaction noise is negligible. We investigate the conditions under
which classical dynamics emerges, via a continuous position measurement, for a particle moving in a harmonic
well with its position coupled to internal spin. As a consequence of this coupling, we find that classical
dynamics emerges only when the position and spin actions are both large compared to". These conditions are
quantified by placing bounds on the size of the covariance matrix which describes the delocalized quantum
coherence over extended regions of phase space. From this result, it follows that a mixed quantum-classical
regime(where one subsystem can be treated classically and the other not) does not exist for a continuously
observed spin-12 particle. When the conditions for classicality are satisfied(in the large-spin limit), the quantum
trajectories reproduce both the classical periodic orbits as well as the classically chaotic phase space regions.
As a quantitative test of this convergence, we compute the largest Lyapunov exponent directly from the
measured quantum trajectories and show that it agrees with the classical value.

DOI: 10.1103/PhysRevA.69.052116 PACS number(s): 03.65.Yz, 03.65.Ud, 05.60.Gg, 05.45.Mt

I. INTRODUCTION

The distinct dynamical predictions of quantum and clas-
sical mechanics for a given Hamiltonian have been well
known since the inception of quantum theory. Although one
might naively expect “macroscopic systems”(i.e., ones
whose characteristic actionsI are large compared to") to
behave classically, for systems with Hamiltonian chaos,
Berry and Balazs have argued that the semiclassical approxi-
mation may break down in an exceedingly short time, loga-
rithmic in I /" [1]. Understanding how classical chaotic be-
havior emerges from the underlying quantum description is a
fundamental problem in physics. The study of quantum non-
linear dynamics for application to quantum information pro-
cessing[2] and feedback control[3] provides further moti-
vation to pursue a deeper understanding of the quantum to
classical transition in chaotic systems. Finally, the experi-
mental state of the art is rapidly progressing to the situation
where individual quantum systems can be monitored in a
controlled way[4–9] necessitating a parallel theoretical de-
velopment.

In previous studies, the quantum to classical transition
was analyzed by comparing distributions in phase space[10].
It has been shown that the process of decoherence due to
interaction with an environment can suppress quantum inter-
ference so that the quantum quasiprobability distribution re-
mains close to the corresponding classical phase space dis-
tribution [11]. Here we extend a different approach taken in
Ref. [12] to define the emergence of classical dynamics.
Given an experiment in which the dynamical system is con-

tinuously observed, we ask under what conditions the mea-
surement record is faithfully predicted by the classical dy-
namical equations of motion(e.g., Hamilton’s equations). In
a fundamentally quantum system the continuous measure-
ment has two basic effects:(i) through knowledge gained in
the observation the state is localized to within the resolution
of the measurement and(ii) backaction noise is imparted to
the conjugate variables consistent with the quantum
information-disturbance relations. Classical dynamics will
provide a good approximation to the measurement record
only when the localization is sufficiently strong so that tra-
jectories can be defined in phase space and the backaction
noise is sufficiently weak so that these trajectories are barely
disturbed. In general this balance can be struck for a suffi-
ciently macroscopic system. The scale of action relative to"
at which this occurs characterizes the quantum/classical dy-
namical boundary.

A quantitative description of the time evolving continuous
measurement record can be made using the quantum trajec-
tory formalism [13]. Bhattacharya, Habib, and Jacobs[12]
were able to find the conditions that achieve the strong-
localization/weak-backaction balance. The system they stud-
ied was the Duffing oscillator—a driven nonlinear system
with one dynamical degree of freedom. We seek to general-
ize this analysis to coupled systems with multiple degrees of
freedom and no external classical driving force. New ques-
tions arise for such coupled quantum systems. Since the
scale of the action relative to" can differ for the different
subsystems, one can explore a regime where one degree of
freedom has a large action while another is deeply quantum.
It is known that such approximate mixed quantum-classical,
or “semiclassical,” systems can exhibit signatures of chaos
[14–17]: We wish to investigate whether such a description
remains valid when we include the effect of the measure-*Electronic address: sghosel@unm.edu
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ments required to observe chaotic trajectories when an actual
experiment is performed. Another interesting question is
whether the quantum entanglement of the different degrees
of freedom plays a role in the approach to the classical re-
gime.

We consider a dynamical system consisting of a particle
whose motion in a harmonic well is coupled to its spin. This
has wide applicability to a variety of phenomena including
generalizations of the Jaynes-Cummings model in quantum
optics (coupling of an atomic pseudospin to a harmonic
mode of the electromagentic field) [18], the spin-boson
model of condensed matter systems(e.g., polariton transport)
[19,20], and the motion of ultracold atoms in magneto-
optical traps[21]. In previous work[22], we considered an
integrable regime in which the Hamiltonian exhibits only
regular motion. In the current paper we extend our analysis
to the classically chaotic regime. In particular, we study
when the classical Lyapunov exponents are recovered from
the quantum trajectories. This gives an unambiguous signa-
ture of the emergent chaotic behavior.

The paper is organized as follows. We start by describing
the coupled motion-spin Hamiltonian in Sec. II. The evolu-
tion of the system conditioned on a weak continuous mea-
surement can be described using a stochastic Schrödinger
equation as outlined in Sec. III A. We present our numerical
results for the evolution of the measured quantum system,
starting with the spin-12 system(Sec. III B), and then moving
to the large spin limit(Sec. III C). Analytical conditions for
the recovery of classical dynamics are obtained in Sec. IV by
bounding the nonclassical covariance matrix and thereby
showing that corrections to the classical trajectories always
remain small. In Sec. V we compute the largest Lyapunov
exponent of the quantum trajectories and compare it to the
classical value in order to quantitatively demonstrate the
emergence of classical chaos. We conclude with a brief sum-
mary of our primary results in Sec. VI.

II. THE COUPLED SYSTEM OF SPIN AND MOTION

The Hamiltonian we consider here is

Ĥ =
p̂2

2m
+

1

2
mv2ẑ2 + bẑĴz + cĴx, s1d

where ẑ is the position operator of a particle of massm

trapped in a harmonic well of frequencyv and Ĵi are the
components of the particle’s spin angular momentum. In ad-
dition to the trap, the spin is coupled to an effective magnetic
field with a constant transverse(x direction)component and
gradient along the longitudinalszd direction. We can make
the analogy to a classical Hamiltonian by replacing the spin
with a classical magnetic moment of magnitudem=gJ,
whereg is the gyromagnetic ratio, interacting with the local
field Bszd=−scex+bzezd /g via−m ·Bszd. For this classical
analog system, coupling between the direction of the mag-
netic moment and the position of the particle in the wells can
lead to chaotic motion in a spatially inhomogeneous field
[23,24].

The expectation values of the Heisenberg equations ob-
tained from Eq.(1) are

dkẑl
dt

=
kp̂l
m

,

dkp̂l
dt

= − mv2sẑd − bkĴzl,

dkĴl
dt

= gkĴl 3 Bskẑld + gCJ3Bszd, s2d

where

CJ3Bszd = kĴ 3 Bsẑdl − kĴl 3 Bskẑld s3d

is the covariance or the second cumulant. In general, these
correlations are nonzero, so that the quantum expectation
values do not follow the classical trajectories. As we will see,
in the small " limit, continuous measurement can act to
damp the higher order cumulants with negligible quantum
backaction noise, thereby recovering classical dynamics.

A special case to consider is when the action associated
with center-of-mass dynamics is large enough such that,
were there no coupling between the two degrees of freedom,
the motion in the harmonic wells could be treated classically
while the uncoupled spin would still be deeply quantum. In
the coupled system, should we continue to assume that the
motional subsystem can be treated classically and treat the
position and momentum operators approximately as c num-
bers, then CJ3B<0. This leads to the “semiclassical”
Heisenberg equations of motion, which haveexactly the
same form as the classical Hamilton’s equations withkẑl
→z, etc. If this approximation were correct it would imply
that dynamics in this regime may also exhibit chaos as has
been studied in various contexts[14–17]. The validity of this
approximation and the resulting chaos has been questioned
in Refs.[25,26]. One of our goals in this article is to inves-
tigate whether this “semiclassical chaos” can be recovered in
the quantum trajectories, obtained when the system is weakly
observed.

III. CONTINUOUS MEASUREMENT OF POSITION

A. Conditioned dynamics

Using the formalism of generalized measurements, we
model a weak continuous observation of the particle’s posi-
tion via a stochastic Schrödinger equation(SSE) that de-

scribes the evolution of the unnormalized wave functionuc̃l,
conditioned on a record of the position

duc̃l = HS 1

i"
H − kz2Ddt+ s4kkzldt + Î2kdWdzJuc̃l. s4d

This general form of the SSE for a continuous measurement,
described by a Wiener processdWof “strength k” and yield-
ing a recordkzl+s8kd−1/2dW/dt has been previously derived
for the specific case in which the position of a moving mirror
is monitored by an optical probe[27,28]. Scott and Milburn
[29] obtained a similar equation for simultaneous measure-
ments of position and momentum using previous results on
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continuous position measurement operators[30,31].
We evolve the SSE numerically using a “split operator”

method[32,33]

ucst + dtdl = e−Mdt/2e−si/"dH dte−Mdt/2ucstdl, s5d

whereucl anduc̃l differ only in normalization. The exponen-
tiation of the Hamiltonian is written in Cayley form[33]

e−si/"dHdt .11 −
i

4"
Tdt

1 +
i

4"
Tdt211 −

i

2"
Vdt

1 +
i

2"
Vdt211 −

i

4"
Tdt

1 +
i

4"
Tdt2 ,

s6d

whereT is the kinetic energy,V the potential, andM =kfz
−skzl+dW/Î8kdtdg2 represents the conditioning and backac-
tion due to coupling of the particle to the measurement ap-
paratus. The potential operator, block tri-diagonal in the basis
of position andJz eigenstates, can be calculated using effi-
cient algorithms for inverting such matrices[34,35]. As
usual, the kinetic term is applied in the momentum basis
using fast Fourier transforms. In order to increase the effi-
ciency of our numerical code we use a small grid in position
and momentum adaptively centered around the location of
the wave function.

B. The spin-12 system

We start by investigating the conditioned evolution of a
spin J=1/2 system. We choose the initial state to be a prod-
uct of a coherent state for the motion(position and momen-
tum phase plane)and a spin coherent state[direction su ,fd
on the Bloch sphere],

ucs0dl = ua = z+ ipluu,fl. s7d

We pick the spin direction to be alongx so that su ,fd
=sp /2 ,0d (though any other direction would have been
equally suitable), the initial momentum to be zero, and the
initial position to bezs0d<38zg, with b=mv2Dz/J and Dz
<22zg, wherezg=Î" /2mv is the width of the harmonic os-
cillator ground state. For these choices, the action in the mo-
tional phase spaceI0=mvDz2=250". This puts us in the
mixed quantum-classical regime described in Sec. II. The
transverse magnetic field is chosen so thatc=200Eg/J,
whereEg="v /2 is the ground-state energy. We pick a mea-
surement strengthk=v /20zg

2 that satisfies the inequalities for
strong-localization/weak-backaction found in Ref.[12] in the
absence of coupling to the spin. This enables us to study how
the coupling to the spin changes the effect of the measure-
ment.

Differences between quantum and classical trajectories
arise from two possible sources, nonclassical initial states
and nonclassical dynamics. For the integrable regime that we
studied previously[22], the system was linear, and therefore
the quantum and classical propagators wereequivalent.
Thus, only the difference between the quantum and classical
initial statewas responsible for any disparities between the
quantum and classical trajectories[22]. For the nonlinear dy-

namics considered here, the classical and quantum equations
of motion for the higher cumulants differ, and because of
severe quantization effects for small spin, the wave function
distribution is far from Gaussian, making the cumulant ex-
pansion of limited utility.

The time evolving measurement record of the position of
the spin-12 system is compared to the trajectory predicted by
the classical equations of motion in Fig. 1. Consider first the
classical dynamics. Note that even though there is a trans-
verse magnetic field, the motion is regular, not chaotic. This
can be understood by writing the classical equations of mo-
tion as

dz̃

dt
= p̃,

dp̃

dt
= − z̃− nz,

FIG. 1. (Color online) (a) Mean position of the measured spin-1
2

system (solid) in a single quantum trajectory withDz<22zg,
c=200Eg/J, andk=v /20zg

2. Outer solid curves show the variance
of the wave function. The measurement backaction causes the quan-
tum trajectory to diverge from the classical(dotted, black)trajec-
tory. This is because part of the wave function moves along the
upper adiabatic potential while the rest moves along the lower adia-
batic potential[dashed red curves in(b)]. Eventually, the measure-
ment collapses the wave function into the upper or lower potential
[solid blue line in(b)]. The classical motion is along the dashed-
dotted potential in(b).
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dnx

dt
= −

I0

J
z̃ny, s8d

dny

dt
=

I0

J
z̃nx − c̃

I0

J
nz,

dnz

dt
= c̃

I0

J
ny,

where

z̃= z/Dz,

p̃ = p/mvDz,

I0 = mvDz2, s9d

c̃ = cJ/mv2Dz2,

t = vt,

wheren is the direction of the magnetic moment. We can see
from these equations that the dynamics depends on the ratio
of the actions of the coupled subsystems. In the classical
limit, both external and internal actionsI0 and J become
infinitely large relative to", but the limit is taken such that
ratio of the two remains finite and constant. For the “semi-
classical” regime considered here,I0/J=500. The large dis-
parity between the actions of the external and internal dy-
namics separates the time scales of the position and magnetic
moment evolutions, effectively decoupling the spin from its
motion in the well. This leads to a regime where the mag-
netic moment can adiabatically follow the changing mag-
netic field direction. The angle between the magnetic mo-
ment direction and the local magnetic field becomes an
additional constant of motion apart from the energy, giving
rise to integrable motion.

Figure 1 also shows a typical measured quantum trajec-
tory of the spin-12 system. After a very short time, it fails to
follow the classical adiabatic motion described above. This
behavior can be understood in a manner similar to that pre-
sented in our previous study of linear dynamics, with no
transverse magnetic field[22]. Here, the initial wave func-
tion can be decomposed in the basis of adiabatic eigenstates
u± szdl, obtained by diagonalizing the total potential at each
position

ucs0dl = ualuu,fl = f+szdu + szd + f−szdu− szdl. s10d

At the initial time, thef+szd andf−szd components overlap
in space, but are pulled apart by the differential force of the
upper and lower adiabatic potentials[dashed lines in Fig.
1(a)]. As the wave packet splits, the overlap betweenf+ and
f− gradually decreases and eventually, when the position
measurement can resolve the two spatially separated compo-
nents, the state is projected into one of the two quantum
adiabatic eigenstates. This contrasts with the classical adia-
batic motion which moves on anaverageof these two quan-

tum potentials[Fig. 1(b)]. Thus, due to the entanglement
between motion and spin, the weak measurement of position
results in a projective measurement of the spin, very similar
to the situation for the spin-1

2 particle with c=0 [22]. The
difference here is that the pointer basis associated with the
measurement apparatus is the adiabatic basis rather than the
magnetic sublevels associated with the space-fixed quantiza-
tion axis.

We have thus shown that a continuously observed system
in a mixed quantum-classical regime does not follow the
classical trajectory. This divergence of the two time series
occurs even in the absence of chaos and is simply a state-
ment that there is no smooth classical limit for low-spin sys-
tems. To explore the chaotic regime, we must reduce the
ratio of the two actions in Eq.(8). However, for a spin-12
system, this requires reduction of the external action to val-
ues that violate the conditions required for classical dynam-
ics given in Ref.[12]. This means that both the predicted
regular and chaotic classical trajectories in the “semiclassi-
cal” spin-12 description cannot be seen in the measured dy-
namics.

C. The large spin limit

The classical equations of motion result in chaotic dynam-
ics when the time scales of the internal and external dynam-
ics are on the same order. With this in mind we setI0/J=5
and c=200Eg/J in the equations of motion[Eq. (8)]. The
classical phase space for these parameters is mixed, with
regions of stable motion separated by stochastic layers. We
show in this section that this classical chaotic behavior can
be recovered from the measured quantum system in the large
action limit.

Figures 2(a)and 2(b)show two classical trajectories, one
of which is in a regular part of the phase space, and the other
in the chaotic region. The corresponding quantum trajecto-
ries are shown in Figs. 2(c) and 2(d)for a spin with an action
J=200 and measurement strengthk=v /8zg

2. We pick Dz
<45zg which results in a ratio of characteristic actions in the
quantum system that is the same as the classical ratioI0/J
=5. As in the spin-12 case, our choice of measurement
strengthk satisfies the conditions for classicality in Ref.[12]
had there been no coupling to the spin. The initial quantum
state is chosen to be a product of a coherent state in position
and momentum, centered at the classical initial values, and a
spin coherent state pointing in the same direction as the ini-
tial classical magnetic moment. In Fig. 2, the initial condi-
tions for the regular quantum trajectory werezs0d
=76zg,ps0d=0, andsu ,fd=sp ,0d. The initial conditions for
the chaotic quantum trajectory werezs0d=89zg and ps0d
=0, su ,fd=sp ,0d.

The quantum trajectories in Fig. 2 successfully reproduce
the classical mixed phase space. This is because forJ=200,
there are 2J+1=401 adiabatic potentials rather than just two
as in the spin-12 case. The initial state is in a superposition of
the 401 eigenstates, but has most of its support concentrated
on just a few of the adiabatic potentials closest to the local
direction of the classical magnetic moment. The differential
force is thus very weak and only slightly splits the wave
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packets into nonoverlapping components. The position mea-
surement acts only to damp the tails of the distribution where
spread is substantial and keeps the wave function localized.
It does not, however, strongly project the spin state into a
single adiabatic state. A weak measurement of the position
also acts as a weak measurement of the spin so that the
strong localization and weak backaction conditions can si-
multaneously be satisfied for both the position and the spin.

A further qualitative example of the quantum trajectories
recovering different structures in the mixed classical phase
space is shown in Fig. 3. The dots represent a classical sur-
face of section atE=0.08E0=0.08mv2Dz2 with I0/J=2.5 and
c̃=0.4. The slice is taken atJy=0, dJy/dt.0. This surface of

section shows many islands of regular motion with thin sto-
chastic layers in between. An initial classical trajectory that
starts on a regular island cannot cross the stochastic layer
that bounds it. In the limit of large actions, the asterisks in
Fig. 3 show how quantum trajectories follow different clas-
sical periodic orbits. It is possible for the noise due to the
measurement to cause a quantum trajectory moving on a
periodic orbit to drift into the chaotic region and hence cross
a KAM surface. However, as the spin becomes larger and
larger, the noise becomes smaller and smaller, eventually be-
coming negligible in the extreme classical limit and it be-
comes increasingly unlikely for the quantum trajectory to
cross a KAM boundary.

IV. CONDITIONS FOR RECOVERING
CLASSICAL CHAOS

Classical dynamics is recovered when the mean position,
momentum and spin of the measured quantum system follow
classical trajectories. The equations of motion for the means
of these observables conditioned on the measurement are

dkẑl =
kp̂l
m

dt + Î8kCzzdW,

dkp̂l = − mv2kẑldt − bkĴzldt + Î8kCzpdW,

dkĴl = gkĴ 3 Bsẑdldt + Î8kCzJdW

=gkĴl 3 Bskẑlddt + gCJ3Bszddt+Î8kCzJdW. s11d

We show how these equations approach the classical equa-
tions of motion by imposing the dual conditions of strong
localization and weak noise. The measurement must be
strong enough to localize the state in phase space so that it

FIG. 2. Regular and chaotic
classical trajectories[(a) and (b)]
are recovered in the quantum tra-
jectories [(c) and (d)] with J
=200", Dz<45zg, andk=v /8zg

2.

FIG. 3. (Color online) Quantum trajectories(asterisks)follow
the stable islands of the classical surface of section(black dots).
Shown are quantum trajectories that reproduce the regular motion
around different period-1 fixed points(blue, green), a period-3 orbit
(red), and a higher period orbit(magenta).
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resembles a classical point, but weak enough to cause mini-
mal measurement noise or backaction. From Eq.(11) we see
that the noise terms are proportional to the covariances.
Hence, these covariances must remain small at all times to
ensure that the noise terms stay negligible. Furthermore, the
strong localization condition requires all the variances to re-
main small relative to the total phase space explored by the
motion. Combining these two conditions results in the re-
quirement that the covariance matrix which includes all the
second cumulants must remain small at all times. In general,
the evolution of the second cumulants depends on the third
cumulants which in turn depends on the fourth cumulants
and so on in an infinite hierarchy. However, if the condi-
tioned state remains almost Gaussian in the large action
limit, the third and higher cumulants can be neglected and
the evolution of the second cumulants can be written in
terms of a matrix Ricatti equation

Ċstd = U + CstdVCstd + WCstd + CstdWT, s12d

with

U =1
0 0 0 0 0

0 2"2k 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
2 , V =1

− 8k 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
2 ,

W=1
0 1/m 0 0 0

− mv2 0 0 0 − b

− bkJystdl 0 0 − bkzstdl 0

bkJxstdl 0 bkzstdl 0 − c

0 0 0 c 0
2 ,

s13d

whereC is the covariance matrix

C =1
Czz Czp CzJx

CzJy
CzJz

Czp Cpp CpJx
CpJy

CpJz

CzJx
CpJx

CJxJx
CJxJy

CJxJz

CzJy
CpJy

CJxJy
CJyJy

CJyJz

CzJz
CpJz

CJxJz
CJyJz

CJzJz

2 . s14d

Unlike thec=0 case[22], we can no longer ignore theJx and
Jy components of the spin. Furthermore, the time dependence

of the matrixW makes it impossible to solve forCstd ana-
lytically.

We can, however, numerically integrate the coupled sto-
chastic equations for the means[Eq. (11)] and the second
cumulants[Eq. (12)]. We do so by using an explicit Runge-
Kutta type algorithm that is strongly convergent to order 1.5
[36]. Figure 4 shows the solution of the Riccati equation for
Czz using the quantum trajectories of Fig. 2. The other cu-
mulants have similar magnitudes. Since the second cumu-
lants remain small relative to the size of the phase space, we
expect the solutions of Eq.(11) to agree with the classical
solutions at this value of the actions. Our numerical studies
showed that this is indeed true(Fig. 2). Furthermore, we
have verified that at these large values of the actions, the
trajectories obtained by evolving the full SSE agree well
with those obtained by solving the equations for the means
and second cumulants, indicating that the Gaussian approxi-
mation is valid. Hence, numerical solutions of the Riccati
equation are a good indication of when the measured dynam-
ics can be approximated classically.

V. QUANTITATIVE RECOVERY OF CLASSICAL CHAOS

Our numerical and analytical studies have shown that
qualitative features of the classical trajectories are found in
the measurement record of a continuously observed quantum
system when the actions are sufficiently large. We would also
like to recover some quantitive property of the classical dy-
namics in order to make a direct comparison. A standard
measure of the degree of stochasticity of a classical chaotic
system is the largest Lyapunov exponent, describing the av-
erage rate of divergence of neighboring trajectories.

We can compute a Lyapunov exponent for the measured
quantum trajectories by using a method similar to that em-
ployed in classical nonlinear dynamics[37–39]. In the clas-
sical case one chooses a “fiducial trajectory” and calculates
the average rate at which this and a neighboring trajectory
(nominally an infinitesimal distance away)diverge. In deter-
mining the rate numerically, the neighboring trajectory is
chosen at a finite, but very small distance,e from the fidu-
cial. The distance between the fiducial and neighboring tra-
jectory is propagated for a short timeT to obtaind1sTd. One
then restarts a neighboring trajectory, displaced a distancee
from the fiducial along the direction connecting the fiducial
and old neighboring trajectory at timeT, and propagates the
distance again to yield the distanced2sTd. After a long time
average, forN→` iterations, the rate of divergence will con-
verge to the largest Lyapunov exponent

FIG. 4. Solutions ofC̃zzstd=Czzstd /zg
2 for the

regular and chaotic quantum trajectories of Fig.
2. The maximum cumulant is smaller than the
total phase space covered by the motion by a fac-
tor of about 100.
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l1 =
1

NT
o
i=1

N

ln
disTd

P
. s15d

For the quantum trajectories, one can repeat the same pro-
cedure, replacing the points that define the classical trajecto-
ries with the mean values of the relevant observables. The
quantum state, however, is defined by all higher cumulants
and these can effect the dynamics. Motivated by the classical
analysis, when defining a fiducial and neighboring quantum
state, we do it so that they differ only in their means but
share exactly the same higher order cumulants. We can
achieve this with the help of the phase-space displacement
and rotation operators, as described below.

Our numerical procedure for extracting Lyapunov expo-
nents from the continuously observed quantum system is
thus as follows. We calculate a fiducial quantum trajectory
starting with an initial product of coherent states of motion
and spin. The neighboring trajectory is chosen by applying
the joint displacement-rotation operator to the fiducial at
each stepT. After, say the first iteration, the distance between
these quantum trajectories is calculated from the differences
in the means

d1sTd = ÎdzsTd2 + dpsTd2 + dmsTd2. s16d

The neighboring trajectory is then restarted by using the dis-
placement and rotation operators to shift the fiducial state at
time T by e along the direction connecting the fiducial and
original neighboring trajectory at timeT. For example, the
new mean position of the neighboring trajectoryz8sTd is re-
lated to that of the fiducialzsTd by

kz8sTdl = kzsTdl +
dzsTd
d1sTd

e. s17d

This process is repeated N times, withN→`, and the largest
Lyapunov exponent is then determined via. Eq.(15).

When the magnitude of the spinJ and external actionI0
are large(the regime of interest), the Hilbert space dimension
of the coupled system grows and tracking the evolution of
the full quantum state becomes numerically intensive. How-
ever, we have shown in the previous section that the Gauss-
ian approximation applies in this regime. We can thus use
this approximation to efficiently propagate the quantum tra-
jectories and thus compute the Lyapunov exponent for large
values of the spin and external action. As a technical aside,
whenT is very small, the quantum noise due to the measure-
ment can mask the exponential divergence of the quantum
trajectories. We can cancel this effect by ensuring that the
noise realizationsdW for the fiducial and quantum trajectory
are the same.

Figure 5(a)shows a distribution of the largest classical
Lyapunov exponent obtained from 500 fiducial trajectories at
an energy ofE=0.58E0 with I0/J=5 andc=200Eg/J. The
Lyapunov exponent, computed using 100 fiducial quantum
trajectories with J=200", Dz<45zg, and k=v /8zg

2 [Fig.
5(b)], show good agreement with the classical distribution.
As discussed above, for numerical efficiency the quantum
trajectories were propagated using the coupled equations for
the means and second order cumulants. We have verified that

for these values of the actions, the trajectories obtained by
solving these equations are a good approximation to the ex-
act trajectories obtained by solving the full SSE.

VI. SUMMARY

We have studied the conditions under which the measure-
ment record of a continuously observed quantum system can
faithfully reproduce the chaotic trajectories predicted by
classical mechanics. This represents a calculation for the
case ofcoupleddegrees of freedom—spin and motion—with
an undriven Hamiltonian whose classical dynamics can ex-
hibit chaos. In the mixed quantum-classical regime, with
large motional action and small spin, the continuous mea-
surement cannot simultaneously satisfy the conditions of
strong localization and weak noise, thereby making it impos-
sible to observe “semiclassical chaos.” In the large spin limit,
both conditions for classicality can be simultaneously satis-
fied. We computed a Lyapunov exponent directly from the
measured quantum trajectories that agrees with the largest
classical Lyapunov exponent, thus showing the quantitative
correspondence of classical and quantum trajectories. We
also obtained general conditions for recovering classical dy-
namics from the measurement trajectories by studying the
evolution of the covariance matrix. These measure the quan-
tum coherence that is delocalized across phase space and
thus cause differences between the quantum and classical

FIG. 5. Distribution of the largest Lyapunov exponent obtained
from (a) classical dynamics using 500 fiducial trajectories atE
=0.58E0 with I0/J=5 andc=200Eg/J. (b) Continuously measured
quantum dynamics using 100 fiducial quantum trajectories withJ
=200", Dz<45zg, andk=v /8zg

2. For numerical efficiency, the SSE
was integrated by truncating the cumulants at second order.
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propagators. While we can solve for the covariance matrix
analytically in the integrable regime, for the chaotic case we
solved the problem numerically.

Whereas coupled degrees on freedom can lead to chaos at
the classical level, at the quantum level nonseparable Hamil-
tonians will generally lead to entanglement between the dif-
ferent subsystems(here motion and spin). Entanglement is
generally considered to bethe feature which distinguishes
quantum states from their classical counterparts. It is thus
natural to explore how the entanglement in our system varies

as classical dynamics is recovered in the measured quantum
trajectories. As in a pure system entanglement is as good a
measure of correlation as the covariance. it might be useful
to study the approach to classicality in terms of this comple-
mentary variable instead. We plan to explore this possibility
in more detail in future work.

ACKNOWLEDGMENT

This work was supported by NSF Grant No. PHY-009569.

[1] M. V. Berry and N. L. Balazs, J. Phys. A12, 625(1979).
[2] M. A. Nielsen and I. L. Chuang,Quantum Computation and

Quantum Information(Cambridge University Press, Cam-
bridge, 2000).

[3] A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S. M.
Tan, Phys. Rev. A62, 012105(2000).

[4] C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H.
J. Kimble, Science287, 1447(2000).

[5] D. Mozyrsky and I. Martin, Phys. Rev. Lett.89, 018301
(2002).

[6] G. Smith, S. Chaudhury, and P. S. Jessen, J. Opt. B: Quantum
Semiclassical Opt.5, 323(2003).

[7] N. V. Morrow, S. K. Dutta, and G. Raithel, Phys. Rev. Lett.
88, 093003(2002).

[8] T. Fischer, P. Maunz, P. W. H. Pinkse, T. Puppe, and G.
Rempe, Phys. Rev. Lett.88, 163002(2002).

[9] J. M. Geremia, J. K. Stockton, and H. Mabuchi, quant-ph/
0309034.

[10] W. H. Zurek, Rev. Mod. Phys.75, 715(2003).
[11] S. Habib, K. Shizume, and W. H. Zurek, Phys. Rev. Lett.80,

4361 (1998).
[12] T. Bhattacharya, S. Habib, and K. Jacobs, Phys. Rev. Lett.85,

4852 (2000).
[13] H. J. Carmichael,An Open Systems Approach to Quantum Op-

tics (Springer-Verlag, Berlin, 1993).
[14] P. I. Belobrov, G. M. Zaslavskii, and G. Kh. Tartakovskii, Sov.

Phys. JETP44, 945(1976).
[15] R. Blumel and B. Esser, Phys. Rev. Lett.72, 3658(1994).
[16] H. Schanz and B. Esser, Phys. Rev. A55, 3375(1997).
[17] P. W. Milonni, J. R. Ackerhalt, and H. W. Galbraith, Phys. Rev.

Lett. 50, 966(1983).
[18] E. T. Jaynes and F. W. Cummings, Proc. IEEE51, 89 (1963).
[19] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.

Garg, and W. Zwerger, Rev. Mod. Phys.59, 1 (1987).

[20] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Rev. Mod. Phys.67, 725(1995).

[21] I. H. Deutsch, P. M. Alsing, J. Grondalski, S. Ghose, D. J.
Haycock, and P. S. Jessen, J. Opt. B: Quantum Semiclassical
Opt. 2, 633(2000).

[22] S. Ghose, P. M. Alsing, I. H. Deutsch, T. Bhattacharya, S.
Habib, and K. Jacobs, Phys. Rev. A67, 052102(2003).

[23] D. Feinberg and J. Ranninger, Physica D14, 29 (1984).
[24] S. Ghose, P. M. Alsing, and I. H. Deutsch, Phys. Rev. E64,

056119(2001).
[25] F. Cooper, J. Dawson, S. Habib, and R. Ryne, Phys. Rev. E57,

1489 (1998).
[26] L. E. Ballentine, Phys. Rev. E63, 056204(2001).
[27] G. J. Milburn, K. Jacobs, and D. F. Walls, Phys. Rev. A50,

5256 (1994).
[28] A. C. Doherty and K. Jacobs, Phys. Rev. A60, 2700(1999).
[29] A. J. Scott and G. J. Milburn, Phys. Rev. A63, 042101(2001).
[30] C. M. Caves and G. J. Milburn, Phys. Rev. A36, 5543(1987).
[31] G. J. Milburn, Quantum Semiclassic. Opt.8, 269(1996).
[32] R. Kosloff, J. Phys. Chem.92, 2087(1988).
[33] M. E. Riley and B. Ritchie, Phys. Rev. A59, 3544(1999).
[34] J. Grondalski, PhD. thesis, University of New Mexico, Albu-

querque, 2001, http://info.phys.unm.edu/papers/PhD/
Grondalski.pdf

[35] F. J. Vessely,Computational Physics: An Introduction(Plenum
Press, New York, 1994).

[36] P. E. Kloeden and E. Platen,Numerical Solution of Stochastic
Differential Equations(Springer, Berlin, 1999).

[37] G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, Mec-
canica 21(1980).

[38] I. Shimada and T. Nagashima, Prog. Theor. Phys.61, 1605
(1979).

[39] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Physica
D 16, 285(1985).

GHOSEet al. PHYSICAL REVIEW A 69, 052116(2004)

052116-8


	Transition to Classical Chaos in a Coupled Quantum System Through Continuous Measurement
	Recommended Citation

	tmp.1333978563.pdf.Np8yV

