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Atomic motion in magneto-optical double-well potentials: A testing ground for quantum chaos

Shohini Ghose, Paul M. Alsing, and Ivan H. Deutsch
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131
~Received 6 February 2001; revised manuscript received 25 June 2001; published 24 October 2001!

We have identified ultracold atoms in magneto-optical double-well potentials as a very clean setting in
which to study the quantum and classical dynamics of a nonlinear system with multiple degrees of freedom. In
this system, entanglement at the quantum level and chaos at the classical level arise from nonseparable
couplings between the atomic spin and its center of mass motion. The main features of the chaotic dynamics
are analyzed using action-angle variables and Poincare´ surfaces of section. We show that for the initial state
prepared in current experiments@D. J. Haycocket al., Phys. Rev. Lett.85, 3365~2000!#, classical and quantum
expectation values diverge after a finite time, and the observed experimental dynamics is consistent with
quantum-mechanical predictions. Furthermore, the motion corresponds to tunneling through a dynamical po-
tential barrier. The coupling between the spin and the motional subsystems, which are very different in nature
from one another, leads to interesting questions regarding the transition from regular quantum dynamics to
chaotic classical motion.

DOI: 10.1103/PhysRevE.64.056119 PACS number~s!: 05.60.Gg, 05.45.Mt, 32.80.Qk, 32.80.Pj

I. INTRODUCTION

Systems with multiple degrees of freedom whose con-
stituent parts are coupled are of fundamental interest for the
purpose of exploring the correspondence limit. In such cases
the quantum system can explore an enormous collection of
generally entangled states with no classical description. We
are just beginning to characterize these entangled states at
the fundamental level and realize their capabilities for infor-
mation processing@1#. This disparity between the states
available in the quantum and classical description is central
to the mysteries of the correspondence limit. It is responsible
for the distinct predictions of quantum coherent evolution
and those of classical chaotic dynamics that arise in such
nonlinearly coupled systems@2#.

The study of quantum systems whose Hamiltonians gen-
erate classical chaos has a long history. Most studies focus
on static properties~‘‘quantum chaology’’@3#! such as sta-
tistics of the energy spectrum or ‘‘scars’’ in the energy
eigenstates@4#. As chaos is an intrinsically dynamical phe-
nomenon, we are most interested here in understanding the
time-dependentfeatures arising in these systems. A variety
of such studies have been carried out. Most notable is the
phenomenon of ‘‘dynamical localization’’@5#, which appears
in periodically perturbed systems such as the ‘‘kicked rotor’’
@4#. Differences between the quantum and classical predic-
tions for the dynamics occur due to localization of the quan-
tum Floquet states. Dynamical localization was seen in the
experiments of Mooreet al. @6,7# who realized these dynam-
ics using optical lattices—ultracold atoms in a standing wave
of light. The ability to observe this phenomenon in the labo-
ratory is evidence that the atom/optical realization provides a
very clean arena in which to study coherent quantum dynam-
ics versus nonlinear classically chaotic motion.

We have identified another nonlinear paradigm associated
with trapped neutral atoms—dynamics in a magneto-optical
double potential@8#. In recent experiments by Haycocket al.
@9#, mesoscopic quantum coherence associated with the
atomic dynamics has been observed. This system has some

important features. Unlike the kicked rotor where the nonlin-
earity arises because of a time-dependent externalclassical
perturbation, in this system, the nonlinear dynamics arises
intrinsically from two coupledquantumdegrees of freedom.
Here, classical chaos results from the coupling between the
atomic magnetic moment and its motion in the lattice. At the
quantum level this leads to ‘‘entangled spinor wave pack-
ets.’’

The nonlinear coupling of different degrees of freedom is
often amenable to a Born-Oppenheimer approximation
whereby ‘‘fast’’ degrees of freedoms are slaved to the
‘‘slow.’’ Such an analysis leads to the identification of adia-
batic potential surfaces. If the system strictly adheres to these
surfaces, one obtains regular dynamics. The complexity
arises when these approximations break down, which gener-
ally may occur near the anticrossings of the adiabatic poten-
tials @10#. This leads to a variety of interesting phenomena
including chaos@11–13#, irreversible dissipation@14#, and
anomalous diffusion@15#. The latter was explored in a
coupled spin-lattice system not too dissimilar from the
magneto-optical potential discussed here. These analyses
highlight the importance of the corrections to adiabaticity in
complex dynamics. Our goal here, however, is to avoid the
adiabatic approximation altogether, and instead compare the
predictions of theexactclassical dynamics to theexactquan-
tum predictions. This approach is particularly useful when
the system is not well described by Born-Openheimer, as is
typically the case in optical lattices@16#.

This article, thus, investigates the nonclassical nature of
our dynamical system. Motional and spin degrees of freedom
are of a very different nature as seen in the topology of their
respective phase spaces~plane vs sphere!and reflected in
their respective Hilbert spaces~infinite vs finite dimen-
sional!. This may lead to a disparity in the relative size of\
in the two subsystems, raising interesting questions regard-
ing the quantum to classical transition. In addition, for this
system of entangled internal and external degrees of free-
dom, it is nontrivial to distinguish classically allowed from
classically forbidden motion, i.e., ‘‘tunneling.’’ The standard
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definition in one dimension, i.e., motion through a potential
barrier, is not sufficient for systems with multiple degrees of
freedom since the energy does not uniquely specify the clas-
sical trajectory. In this case, a phenomenon known as ‘‘dy-
namical tunneling’’ may occur through classically forbidden
regions of phase space, which are not, however, separated by
a potential barrier@17#.

We have analyzed the underlying classical chaotic dy-
namics of our system and investigated distinct predictions of
the classical versus quantum dynamics for an initial state that
has been prepared in current experiments@9#. In Sec. II, the
physical system is briefly reviewed. Section III establishes
the general predictions of the classical chaotic dynamics
based on a physical picture of the primary nonlinear reso-
nances and numerical studies via Poincare´ surface of section
plots. In Sec. IV A, we employ the theory of quasiprobability
distributions in the coupled phase space of spin and external
motion to compare and contrast classical and quantum statis-
tics, and thereby show that the dynamics observed in the
experiment are nonclassical in nature. The classical evolu-
tion diverges from the quantum dynamics much faster than
on the expected logarithmic time scale@2# and leads to a
violation of the positive semidefiniteness of the density ma-
trix @18#. Furthermore, we show that the experimentally ob-
served nonclassical motion corresponds to tunneling through
a complex region of phase space where the kinetic energy is
negative~Sec. IV B!. We conclude in Sec. V with a brief
discussion of further research in this area.

II. THE MAGNETO-OPTICAL DOUBLE-WELL
POTENTIAL

The physics of the magneto-optical double well has been
described in previous publications@8,19#, and we summarize
the salient points here. A one-dimensional optical lattice is
formed by counterpropagating plane waves whose linear po-
larization vectors are offset at a relative angleQL . The re-
sulting field may be decomposed intos1 and s2 standing
waves whose nodes are separated byQL /k, wherek is the
laser wave number. Atoms whose angular momenta are
aligned~antialigned!along the lattice axis are trapped by the
s1 (s2) field. A uniform magnetic-field transverse to the
axis would cause Larmor precession of the atom’s magnetic
moment, but due to the optical trap, the moment is correlated
with motion of the atom between thes6 wells. This corre-
lation between spin precession and motion in the wells leads
to entangled spinor wave packets.

For the case of an atom whose electronic angular momen-
tum is J51/2, the combined effects of the far-off resonance
optical potential and an applied external transverse magnetic
field may be conveniently expressed in terms of a neteffec-
tive scalar plus magnetic interaction@8#,

Û5UJ~z!1̂2m̂•Beff~z!. ~1!

Here,UJ(z)52U0 cosQL cos(2kz) is a scalar potential inde-
pendent of the atomic moment, whereU0 is a constant de-
pending on the atomic polarizability and field intensity. The
effective magnetic field,Beff(z)5Bxex1Bfict(z)ez , is the sum

of the transverse field plus a fictitious field associated with
the lattice,mBBfict52U0 sinQL sin(2kz)ez , wheremB is the
Bohr magneton. For the real alkali atoms used in experi-
ments, the total atomic angular momentum is prepared in a
hyperfine ground state with quantum numberF. Under the
circumstance that the optical trap is detuned sufficiently far
from resonance so that the excited hyperfine splitting is not
resolved, the form of effective potential Eq.~1! is un-
changed, with the atomic magnetic moment now equal to
m̂5\g F̂52mBF̂/F, whereg is the gyromagnetic ratio and
F̂ is the total angular momentum vector in units of\. We
consider here133Cs, withF54, the atom used in the Jessen-
group experiments@9#. The eigenvalues of the potential as a
function of position result in nine adiabatic potentials, the
lowest of which exhibits a lattice of double wells.

III. CHAOTIC CLASSICAL DYNAMICS

The Hamiltonian for the magneto-optical double well@Eq.
~1!# describes the motion of a magnetic moment in a spa-
tially inhomogeneous effective magnetic field. Generic sys-
tems of this sort have been studied in both classical and
quantum circumstances, leading for example, to geometric
forces @20#. An important aspect of this system is that the
Heisenberg equations of motion that couple the magnetic
moment to the center-of-mass dynamics are nonlinear. The
corresponding classical motion is generallychaotic, as seen
in the positive Lyapunov exponent calculated in@19#, char-
acterizing the exponential sensitivity to initial conditions. In
the spin-1/2 case and for harmonic wells, we recover the
Jaynes-Cummings problem@21#, but without the rotating
wave approximation~RWA!. The classical chaotic equations
of motion have been studied in quantum optics in the context
of two-level atoms interacting with a single-mode electro-
magnetic field@22#, and also in condensed-matter theory in
the context of the small polaron problem@23#. Our system is
a generalization to higher spin with no possible approxima-
tion of a single harmonic mode.

A closely related Hamiltonian was studied in the semi-
classical regime by Kusnezov and coworkers@15#. Expressed
in our context, their system corresponds to a spin-1/2 particle
with QL590°. Nonintegrable dynamics at the periodically
distributed anticrossings that leads to anomalous diffusion
over multiple anticrossings was analyzed in@15#. For our
system, withQLÞ90°, one finds that adjacent anticrossings
have different energies resulting in a double-well structure
@Fig. 1~a!#. We focus on the dynamics localized to asingle-
lattice site~i.e., a single double well!with one anticrossing
bounded by high potential walls of the double well and neg-
ligible tunneling or diffusion to neighboring sites.

We present here a more detailed analysis of the chaotic
dynamics that can occur in our system. For convenience we
define m52mBn, so that n[ez cosu1sinu(ex cosf
1ey sinf) is the unit direction of the atom’s angular momen-
tum, and the classical analog ofF̂/F. The classical equations
of motion are
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dz

dt
5

p

m
,

dp

dz
52

d

dz
„UJ~z!1mBn•Beff~z!…,

dn

dt
5g@n3Beff~z!#. ~2!

The dynamics takes place on a four-dimensional phase space
(z,p,u,f), which topologically is locally the tensor product
of the phase plane~for the center-of-mass motion!, and unit
sphere~direction of the magnetic moment with fixed magni-
tude!. This is equivalent to a system with two effective de-
grees of freedom. Nonintegrability of these equations fol-
lows since there is only one constant of the motion, the
energy. The RWA would add an additional constant of the
motion to the system, making the problem integrable. With-
out the RWA, the Hamiltonian may be made integrable un-

der two simple physical circumstances: the case in which
there is no transverse magnetic field@23#, and the case of a
sufficiently large transverse field so that the motion is adia-
batic @24#. We consider each case separately below.

In the absence of a transverse field (Bx50), nz becomes
an additional constant of motion, which results in an inte-
grable Hamiltonian,

H05
p2

2m
1C cos~2kz1D !, ~3!

C5U0A4 cos2QL1nz
2 sin2 QL, D5arctan~nz tanQL/2!.

~3a!

This is the Hamiltonian for a simple pendulum whose ampli-
tude and phase depend on the constantz projection of the
atomic moment, as was pointed out in@15#. We present here
another approach to understanding the chaos in this system
using action-angle variables. The action-angle variables de-
scribing the motion of a pendulum (J,c) are well known to
be functions of the complete elliptic integrals@25#. For ener-
gies close to the bottom of the sinusoidal potential, we may
expand the elliptic integrals in a power series, keeping only
the first few terms, and may therefore expressH0 as a func-
tion of J andmz /g, which we choose to be the other action.
The frequencies of precession of the corresponding angle
variablesc and x may then be computed from Hamilton’s
equations to be

v15ċ5
]H0

]J
5

p

2

v0

K~k!
, v25ẋ5g

]H0

]mz
5

]C

]nz

gH0

mBC
,

~4!

wherev05A4k2uCu/m is the oscillation frequency for a har-
monic approximation to the sinusoidal potential, 2k251
1H0 /uCu, andK(k) is the complete elliptic integral of the
first kind. The frequencyv1 represents oscillation of the cen-
ter of mass in the sinusoidal potential. A physical picture of
the anglex may be understood as follows. The magnetic
moment precesses around thez direction but at a nonconstant
rate since the effective fieldBz is changing in time. By mov-
ing to a frame that oscillates with the atom, the time depen-
dence in the field is removed, resulting in aconstantpreces-
sion frequencyv2 about thez axis. The precession angle in
this frame isx. The addition of a transverse magnetic field as
a small perturbation to the integrable Hamiltonian couples
the oscillations of the two angles, giving rise to nonlinear
resonances. The primary resonances occur when the ratio of
the unperturbed frequencies is a rational number, and may be
calculated for our system using Eqs.~4!.

In the current experiments@9#, a large transverse magnetic
field is applied, which cannot be treated as a perturbation as
outlined above. We therefore turn to the regime where the
motion is adiabatic, and treat the nonadiabatic coupling as a
perturbation. This perturbation leads to a break down of the
Born-Oppenheimer approximation for our system@16#. How-
ever, sufficiently far from the hyperbolic fixed points, the
system is near integrable, allowing us to determine the reso-

FIG. 1. ~a! Adiabatic potentials corresponding to the integrable
Hamiltonian of Eq.~5! for different values ofa. The lowest poten-
tial corresponds toa50. The mean energy of the state prepared in
experiments@9# is just greater than the lowest adiabatic potential
barrier energy~horizontal line!. The Poincare´ surface of section in
~b!, for p50 and dp/dt.0 using the parameters of@9#, with
E52186.8ER (ER /h52 kHz), shows the effects of the non-
adiabatic perturbation term, which makes the full Hamiltonian@Eq.
~1!# nonintegrable.
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nance conditions. The integrable adiabatic Hamiltonian is
obtained by setting the anglea betweenm and Beff to be a
constant, so that

H05p2/2m1UJ~z!1mBuBeff~z!ucosa. ~5!

Whena50, we obtain the lowest adiabatic double-well po-
tential @Fig. 1~a!#. Other fixed values ofa correspond to
other adiabatic surfaces. The component ofm along the di-
rection of the magnetic field is now a constant of motion and
serves as our action variable. The other action of the system
is obtained in the standard way by integrating the momentum
over a closed orbit in the double well for a given energy and
choice of the parametera. The precession frequenciesv1
andv2 , of the conjugate angle variables correspond, respec-
tively, to the oscillation of the center of mass in the adiabatic
double-well potential and precession of the magnetic mo-
ment about the local magnetic-field direction in a frame os-
cillating with the atom as described previously. Unlike the
previous case however, we cannot obtain analytical expres-
sions for the frequencies and must resort to computing them
numerically.

For the experimental parameters given in@9#, Fig. 1~b!
shows a Poincare´ surface of section in thep50 plane and
with dp/dt.0, i.e., at turning points of the trajectories going
from left to right. This represents a ‘‘mixed’’ phase space,
with stable islands of periodic motion and stochastic layers at
the separatrices. The primary resonance atnz50.38 andf
50 corresponds to a ratio of the unperturbed adiabatic fre-
quencies ofv2 /v154. The nonadiabatic perturbative cou-
pling is strong enough at these parameters to cause the pre-
viously stable primary resonance atnz50.8 to bifurcate, and
secondary resonances to appear around the pointsnz50.38
andnz520.85. The secondary resonances result from cou-
pling between the motion around the primary islands to the
unperturbed periodic motion. As the energy is increased, the
primary resonances eventually disappear and global chaos
sets in.

IV. NONCLASSICAL DYNAMICS

A. Nonclassical evolution of the quasiprobability distribution

Given the classical description of the dynamics discussed
in Sec. III, we seek to determine whether the magnetization
oscillations observed in@9# are truly quantum in nature. We
accomplish this by calculating the dynamical evolution of
the mean magnetization in a purely classical description.
There are numerous approaches to a mixed quantum-
classical description that have been employed, primarily by
physical chemists seeking efficient numerical algorithms for
describing molecular dynamics. A good summary and com-
parison of the various methods is discussed by Burant and
Tully @26#. Here, we compute thefully classical evolution by
first representing the initial state prepared in the experiment
as a distribution of classical initial conditions for trajectories.
In order to do so, we employ the theory of quasiprobability
distributions on phase space for both the external and inter-
nal degrees of freedom~analogous to the slow and fast co-

ordinates in a Born-Oppenheimer treatment!, something not
typically employed in molecular dynamics@27,28#.

The state prepared att50 was an atomic wave packet
localized on one side of the double-well potential, with a
mean energy slightly above the lowest Born-Oppenheimer
potential barrier@Fig. 1~a!#. The relevant representations are
in terms of familiar coherent states for the motionua5z

1 ip&5D̂(a)u0&, which are translations of the harmonic-
oscillator ground-stateu0&, and spin coherent-statesun&5uj
5ue2 if&5exp@(jĴ12j* Ĵ2)/2#u2J& for the magnetic mo-
ment, which are rotations of the spin-down state. These rep-
resent a classical directionn of the moment on the Bloch
sphere@29#. General theories of quasiprobability distribu-
tions on the Bloch sphere have been developed analogous to
those in phase space@30#.

Given the initial quantum stater̂(0), we calculate the
Husimi or ‘‘Q’’ quasiprobability distributionQ(a,n,t50)
5^au^nur̂(0)un&ua&. We have employed theQ function as it
is everywhere positive and may be interpreted as a quasiclas-
sical probability distribution. In addition, we will be inter-
ested in first-order moments of observables, where issues of
operator ordering that typically makeQ behave badly do not
come into play. Phase-space distributions on the external
phase space for each internal component of a two-state sys-
tem have been analyzed before in a semiclassical model@11–
13,27,28#. We compute a joint Husimi distribution over both
external as well as the spin phase space in order to study the
dynamics on the full phase space. This four-dimensional dis-
tribution function is then evolvedclassically. This was ac-
complished by first sampling the initialQ distribution via a
Monte Carlo Metropolis algorithm@31#, and then propagat-
ing each point in the sample according to the classical equa-
tions of motion, Eq.~3!. The result gives a probability dis-
tribution at a later time, which we denoteQclass(a,n;t). With
this function, we may compute the evolution of the mean
magnetization, i.e., thez component of the mean angular
momentum, as given in@30#,

^F̂z&class~ t !52A~2F11!~F11!~2F12!!

32p2

3
*Qclass~a,n;t !cos~u!d2adV

*Qclass~a,n;t !d2adV
. ~6!

This result may then be compared with the quantum-
mechanical prediction. The quantum and classical evolutions
were computed numerically using the exact Hamiltonian that
already implicitly contains all nonadiabatic coupling and ef-
fective gauge potential terms@32#. The distinction between
the quantum and classical dynamics are clearly shown in Fig.
2. Unlike the predictions of quantum mechanics, in the clas-
sical model, the mean magnetization never becomes nega-
tive. Due to the correlation between the atomic moment and
its motion in the well, an oscillation of the mean magnetiza-
tion between positive and negative values corresponds to the
motion of the atom from one minimum of the double well to
the other. Classical dynamics thus predicts that the mean of
the distribution remains localized on one side of the double
well. In contrast, the experimental data shows an oscillation
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between positive and negative values at a frequency well
predicted by the quantum model. The only discrepancy with
the ideal quantum model is that the amplitude of the experi-
mentally observed oscillations decay due to inhomogeneous
broadening in the sample@9#.

A closer look at the reduced classical distribution in the
phase space of position and momentum, obtained by tracing
over the magnetic moment direction, shows that a part of the
distribution does oscillate between wells, but the peak re-
mains localized in one well~Fig. 3!. This seems to indicate
that oscillation between the wells, while not classically for-
bidden, is instead improbable for this distribution of initial
conditions. This may been seen from the fact that the classi-

cal description of the state involves adistribution of energy
consistent with the distribution of positions, momenta, and
spin directions in theQ function. High-energy portions of
this distribution are not classically forbidden from hopping
between the left and right wells. Nonetheless, the experimen-
tally observed oscillations of the mean atomic magnetization
are much better described by the prediction of the quantum
dynamics than by the corresponding classical dynamics, in-
dicating a nonclassicalmotion of the atom between the
double wells. This is not surprising given the fact that for the
dynamical system and initial conditions at hand here, the
actions of the system are on the order of\.

A break between the dynamical predictions of classical
and quantum theory is expected for nonlinear systems. As
originally considered by Berry@2#, a Hamiltonian chaotic
system should exhibit observable nonclassical dynamics on a
time scalelogarithmic in \. This follows simply by noting
that in the chaotic system, the probability distribution
stretches exponentially fast~set by the local Lyapunov expo-
nent L!, and develops coherence over large distances. By
Liouville’s theorem, the momentum distribution in the con-
jugate direction to the stretching is also squeezed at an ex-
ponential rate, thereby making quantum corrections to the
Poisson bracket generated classical dynamics important. The
time at which the chaos-induced stretching of the phase-
space distribution causes the dynamics to depart from clas-
sical behavior is bounded from above byth

.5L21 ln(I/\)
where I is a characteristic action. In the limit\→0, or
equivalentlyI /\→`, classical mechanics is preserved for all
times. Using a calculated Lyapunov exponent characteristic
of phase space for the experimental parameters in@9#, L
51.63104 s21 @33#, and the smallest characteristic action of
the system~here the spin!, we find the time at which there is
a break between classical and quantum dynamics is bounded
by tbreak,t\

.589ms. As seen in Fig. 2,t\
. is clearly an

upper bound for the break between classical and quantum
dynamics, with the true break time occurring much earlier. A
more detailed analysis, identifying the scale over which the
effective potential is nonlinear, is necessary to establish this
time @34#.

In order to quantify the nonclassical nature of these dy-
namics, we turn to a method recently presented by Habib
et al. in @18#. Given an initial stater̂(0), we maycompute
the Wigner function through the standard Weyl transforma-
tion @35#. If we evolve this quasiprobability function for a
time t according to the Poisson rather that Moyal bracket and
then perform the inverse Weyl transformation, we obtain a
‘‘pseudodensity operator’’r̂class(t). An inverse Weyl trans-
formation on the classical propagator will not generally yield
a unitary operator, and may generate nonphysical negative
eigenvalues forr̂class(t). This violation of the positive
semidefiniteness of the pseudodensity matrix~rho-positivity!
implies that the classical evolution leads to a distribution that
is not a valid quantum state and has thus diverged from the
quantum evolution. We have inverted the classically evolved
Q function to find the corresponding density matrix and nu-
merically calculated its eigenvalues. This was done by first
deconvolving theQ function with Gaussian coherent states
to find the Wigner function@36#, and then inverting the

FIG. 2. Predictions of mean magnetization dynamics. Ideal
quantum theory: two-level Rabi flopping~dashed dotted!; Ideal
classical theory: localized at positivêFz& ~solid!; Experimental:
~circles!with a damped sinusoid fit. The upper bound on the break
time between quantum and classical dynamics ist\

.589ms ~see
text!.

FIG. 3. ReducedQ distribution in positionQ(z), at different
times in the quantum versus classical evolution. The quantum dis-
tribution oscillates between wells, while the classical distribution
remains mostly on the left side, with a portion equilibrating be-
tween the wells.
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Wigner function to obtain the corresponding density matrix.
Figure 4 shows the classical eigenvalues att512.32ms. The
negative eigenvalues verify that the classical evolution does
violate rho positivity. The magnitude of the rho-positivity
violation is a measure of the importance of the quantum
corrections to the classical evolution, and has implications
for whether or not the classical limit may be recovered via
decoherence@18#.

B. Tunneling

A question that remains to be answered is whether or not
the experimentally observed nonclassical oscillations be-
tween the wells may be defined as tunneling. The ambiguity
in the definition of tunneling in this system arises from the
high dimensionality of the problem@17#. In one dimension, a
classical trajectory is uniquely specified by the energy, and if
the potential energy is greater than this energy at any point
along the trajectory, motion through this region is classically
forbidden. However, for nonseparable dynamics in higher
dimensions, this is no longer the case since there is no longer
one-to-one correspondence between energy and trajectories.
In such circumstances, the phenomenon of dynamical tunnel-
ing occurs if the phase space at a fixed energy has regions
bounded by separatrices. Motion between these regions is
classically forbidden, but quantum mechanically, the system
may tunnel between them. The tunneling in this case is not
defined by a potential barrier but by the classically forbidden
regions of phase space. The situation becomes even more
complex for nonintegrable systems, where the dynamics may
be chaotic. Tunneling between two regions of phase space
separated by a region of chaos may occur at a greatly en-
hanced rate—an occurrence known as chaos-assisted tunnel-
ing @17#.

In our system, the atomic spin is entangled with its mo-
tion, and thus, the atom effectively moves on a higher-
dimensional potential surface associated with both internal
and external degrees of freedom@19#. If the motion is adia-
batic, then tunneling occurs when the total energy is less than
the potential barrier between the adiabatic double wells.

However, fornonadiabaticmotion, the potential barrier that
defines the tunneling condition is not unique for a given
energy, but depends on the trajectory of the atom on this
higher-dimensional potential surface as described above.
Though oscillation between wells may represent quantum
coherent motion, it is not obvious that this motion may be
called ‘‘tunneling,’’ especially given the finite classical prob-
ability for oscillation discussed above.

We examine first the question of adiabaticity in our sys-
tem by comparing the exact energy-level structure of the full
Hamiltonian with that in the adiabatic approximation. In ad-
dition to the usual Born-Oppenheimer~BO! potentials
$Vx(z)%, one must include the effect of ‘‘gauge potentials’’
arising due to geometric forces@32,37#. These give correc-
tions terms to the BO potentials in the form of an effective
gauge vector and scalar field, but still within the confines of
the adiabatic approximation. In the context of optical lattices,
these were discussed first by Dum and Olshanii@38# and
measured by Dutta, Teo, and Raithel@39#. As discussed
there, for one-dimensional lattices, the vector potential van-
ishes and the effective scalar gauge correction to the Born-
Oppenheimer potential is

Fx~z!52
\2

2m
^x~z!u]z

2ux~z!&, ~7!

whereux(z)& is the adiabatic eigenstate of the atom spin at
positionz. We solve then for the energy levels as solutions to

S 2
d2

dz2 1@Vx~z!1Fx~z!# Dcx~z!5Ecx~z!. ~8!

In Fig. 5, we plot the lowest BO potential and its gauge-
corrected version. Superimposed are the energy levels as ob-
tained from Eq.~8! and those obtained from the full Hamil-
tonian. It is clear that the adiabatic approximation is very
coarse and does not accurately reflect the true spectrum and
the resulting dynamics. For example, the energy splitting of

FIG. 4. The eigenvalues of the classically evolved pseudoden-
sity matrix at t512.32ms. The negative eigenvalues indicate that
the classical evolution violates rho positivity and thus diverges from
the quantum evolution.

FIG. 5. Lowest adiabatic potential with~dashed dotted!and
without ~solid! the scalar gauge potential correction. Superimposed
are the lowest two energy levels as obtained from Eq.~8! ~dotted!
compared to those obtained from the full Hamiltonian~dashed!. The
large difference between the dashed and dotted energy levels im-
plies that the adiabatic approximation is not valid in the regime
being considered in the experiment.
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the ground doublet in the exact solution is 1.7ER whereas the
BO1gauge potential approximate gives 3.6ER . This calcu-
lation shows that the dynamics of our system does not follow
the lowest adiabatic potential, even if we allow for gauge-
potential corrections to the BO potentials. The problem then
is to define a tunneling condition for the nonadiabatic mo-
tion.

An unambiguous definition of tunneling is that it corre-
sponds to motion in a classically forbidden region of phase
space where the momentum must be imaginary, resulting in
negative kinetic energy. In one dimension, the classical mo-
mentum at a given point ispclass(z)5A2m@E2V(z)#, al-
lowing us to examine the local kinetic energy. Here, we can
instead calculate the ‘‘kinetic-energy density,’’ so that the
mean kinetic energy at timet is ^T& t5*T(z,t)dz. The quan-
tum theory gives

^c~ t !uT̂uc~ t !&5^c~ t !u~Ĥ2V̂!uc~ t !&

5^E&2E dz(
x

Vx~z!ucx~z,t !u2, ~9!

where we have expanded the wave function in the complete
set ofadiabaticeigenstates,

uc~z,t !&5(
x

cx~z,t !ux~z!&. ~10!

Thus,

T~z,t !5(
x

@^E&2Vx~z!#Px~z,t !, ~11!

wherePx(z,t) are the time-dependent populations in the BO
potentials Vx(z). The state prepared in the experiment
mostly populates the lowest adiabatic potential, but at times
corresponding to a Schro¨dinger catlike superposition in the
two wells, there is a small component in the second lowest
potential due to a breakdown of the BO approximation. The
mean energŷE& of this state is higher than the lowest BO-
potential barrier but much lower than the next adiabatic po-
tential ~Fig. 6!. Thus the nonzero population in the second
adiabatic state causes the kinetic-energy density to be nega-
tive. The atom tunnels through a population weighted aver-
age of the two lowest BO-potential barriers. The nonadia-
batic transitions of the internal state thus cause the tunneling
barrier to be dynamical in nature.

V. SUMMARY AND DISCUSSION

Atoms in optical lattices provide a very clean setting in
which to study dynamics arising from nonseparable cou-
plings between two quantum subsystems that are very differ-
ent in nature from one another. We have studied the chaotic
dynamics for such a system and given a physical interpreta-
tion of the primary resonances. The theory of quasiprobabil-
ity distributions on the tensor product of spin and motional
phase space was used in order to compare the quantum and
classical phase-space dynamics. Our results showed that the
experimental data for the atomic dynamics are best described

by the prediction of quantum mechanics. Furthermore, we
have clarified that this nonclassical oscillation between the
wells does correspond to tunneling through a potential bar-
rier where the kinetic-energy density is negative. The impor-
tant difference between tunneling in this system versus tun-
neling in a standard one-dimensional double well is that the
barrier is not static, but depends on the evolution of the spin.

Given the disparity between the classical and quantum
phase-space dynamics, one may ask under what circum-
stances classical dynamics is recovered. One possibility is to
introduce decoherence into the system. A break between the
predictions of quantum and classical dynamics occurs due to
rapid stretching of the chaotic phase-space distribution. De-
coherence acts to limit the exponential squeezing in the mo-
mentum distribution and thus diffuses the momentum uncer-
tainty @34#. The balancing of stretching by chaos and
diffusion by the environment limits the coherence length to a
steady-state value ofDxcoh5Dxres(L/G)1/2, whereDxres is
the minimum localization length induced by the reservoir,L
is the Lyapunov spreading rate, andG is the damping rate.
Quantum corrections to the classical Poisson bracket gener-
ated dynamics may be neglected if the wave function has
spatial coherence much less than the characteristic distance
in which the potential is nonlinear,DxNL , thereby recovering
classical dynamics@40#. However, it has been shown that in
systems that show a large violation of rho positivity, deco-
herence does not succeed in recovering classical dynamics
@18#. In future work we plan to explore this issue in our
system through realistic models of decoherence occurring via
spontaneous photon scattering. As discussed above, another
intriguing aspect of our system is the intrinsic coupling be-
tween the system’s internal degrees of freedom with its ex-
ternal motion. In some sense, the ‘‘size’’ of\ for these two
subsystems can be quite different. One consequence of this

FIG. 6. Kinetic-energy densityT(z) ~solid curve!at ~a! t50 and
~b! t558 ms shown superposed on the lowest two adiabatic poten-
tials ~dashed-dotted!. The mean energy of the wave function^E& lies
just above the lowest adiabatic potentialV1(z), but well below the
second adiabatic potentialV2(z). Populations in these adiabatic
states are shown in~c! and~d! at times corresponding to~a! and~b!.
Most of the population lies inV1(z), but the small population
P2(z) in the second adiabatic state as shown in~d! causesT(z) to
be negative, indicating tunneling between the wells.
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disparity is that decoherence may act to reduce the coherence
length below the nonlinear length scale associated with one
subsystem but not the other. Because these systems are en-
tangled, an interesting question is whether the resulting dy-
namics may be described classically or not.

Decoherence may lead to classical behavior formean val-
ues of observables@41#. However, it does not succeed in
extracting localized ‘‘trajectories’’ from the quantum dy-
namics. Such trajectories are crucial for quantifying the ex-
istence of chaos both theoretically and in experiments
through the quantitative measure of the Lyapunov exponents.
One may recover trajectories from the quantum dynamics
through the process of continuous measurements when the
record is retained. Ehrenfest’s theorem then guarantees that
well-localized quantum systems effectively obey classical
mechanics. The quantum ‘‘trajectories’’ possess the same
Lyapunov exponents as the corresponding classical system
@42#. The ability of a quantum measurement scheme to re-

cover the classical dynamics increases with the size of the
system action. A study of how the ratio of the internal to the
external action affects the quantum-classical transition under
continuous measurement of position, is currently in progress.
The atom/optical system presented here provides a clean test
bed in which these issues may be explored both theoretically
and in the laboratory.
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