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Well-behaved dynamics in a parametrically damped pendulum

Binruo Wu
Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G

James A. Blackburn
Department of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
{Received 18 November 1991)

Well-behaved dynamical properties have been found in a parametrically damped pendulum. For vari-
ous dampings, all minimum forcing amplitudes E for chaos to occur are at the forcing frequency
2=1.66, and all minimum E for a stationary solution to be unstable are identical (E =2) and at =2 in
the Q-E state space. Between these two frequencies, the variation to chaos along stability boundaries
(where the stationary solution becomes unstable) is solely () dependent and insensitive to dampings.
These two frequencies separate parameter regions with distinct dynamical behaviors. For 1 < 1.66, the
route to chaos is due to an inverse boundary crisis while for £ > 1.66, it is associated with period dou-
bling. For Q <2 the transition from stationary solution to periodic solution is a jump, while for Q> 2 it

is a Hopf bifurcation.

PACS number(s): 05.45.+b, 03.20. +i

I. INTRODUCTION

Beginning with a damped but unforced pendulum, an
external excitation may be introduced in three distinctly
different ways. The first is the well-known forced and
damped pendulum,

X +yx + sin(x)=Fsin(Qz) , oy

the second is a damped pendulum with its pivot subjected
to vertical oscillations,

X +yx[1+E sin(Q¢)]sin(x)=0, (2)
and the third is a parametrically damped pendulum,
X +y[1+Esin(Qz)]x + sin(x)=0, (3)

where x and X represent the angular position and veloci-
ty, respectively, v is the damping coefficient, and F (or E)
and ) are the external forcing amplitude and frequency,
respectively. All variables and parameters are expressed
in dimensionless forms.

In contrast to Eq. (1), Egs. (2) and (3) admit a station-
ary solution x =x =0. Stability boundaries defined by
the onset of instability of this zero solution will arise in
these latter two cases.

In their investigations of Eq. (3), Smith and Blackburn
[1] numerically obtained a V-shape stability boundary for
¥ = 3, which was roughly symmetric about the vertical
line =2 in the Q-E state space. Another V-shape
chaotic boundary was situated inside the stability bound-
ary, with their left sides well aligned. It is not clear if
these features reflect well-behaved dynamical properties,
i.e., they occur not just for specific parameters. Some
commonly concerned questions, such as what the routes
to chaos are and how the stationary solutions become un-
stable, also need to be answered. Therefore a further sys-
tematic analysis and, especially, an analytical formula for
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stability boundaries are desirable.

However, an analytical discussion may not be possible
for this highly nonlinear system without approximation.
As a classical example, Eq. (1) can be treated by perturba-
tion and averaging only after the Taylor series of sin(x)
has been truncated, say, the Duffing equation [2,3]. The
Mathieu equation, the linearization of Eq. (2), is analyti-
cally solvable for its stability boundaries [4]. It is not
clear if these boundaries are also for Eq. (2) itself. In this
paper, a main conclusion has been reached that the sta-
bility boundaries of Eq. (3) can be obtained by analytical-
ly solving its linearized equation. This conclusion has, in
return, shown that the stability boundaries of the
Mathieu equation indeed serve Eq. (2) as well. It is valu-
able to reach such a conclusion for these highly nonlinear
systems.

Besides other fine dynamical properties, it will be
demonstrated in this paper that the variation of periodic
solutions along left sides of stability boundaries from
Q=2 to 1.66 is insensitive to dampings. That is, the solu-
tions are of identical periods and shapes in phase space at
a fixed forcing frequency in spite of different dampings.
It is this regularity that results in the occurrence of all
the lowest transitions to chaos at 1 =1.66.

It would seem natural to consider the application of
Melnikov’s method to predict the chaotic boundary for
Egs. (1)-(3). Unfortunately, unlike its partially successful
application to chaos occurring in Eq. (1) when damping
and forcing are small [5-7], this method is not suitable
for Eq. (3) when chaos occurs at large forcing values.

I1. STABILITY BOUNDARIES
FOR STATIONARY SOLUTION

To test the stability of the stationary solution of Eq.
(3), an arbitrary initial perturbation (8x,8x ) to the origin
of the phase space (x,x ) is assumed. Because 6x =x and
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8x=x with respect to the origin, the validity of
sin(x)=x and the smallness of the term y(1+E sin{¢)x
in Eq. (3) are guaranteed. This simple but very important
point has distinguished Eq. (3) from, for example, Eq. (1),
where any perturbations 6x and 8x are with respect to
certain values of x and X and thus extra care is needed in
considering the validity of linearization. It should be em-
phasized that this perturbation is appropriate only for
stability boundaries, instead of periodic solutions, for Eq.
(3).

The method of Lindstedt-Poincaré perturbation has
been chosen. Let y =¢f3 and Q¢ =r, and replace sin(x)
with x. Equation (3) then becomes

Q2% +€BQ1+E sint)x +x =0, (4)

where the time derivative is with respect to 7.
Set

2 Q’l Q’
QoX+x,= Zﬂ—oa—ﬁb sin QQ + 2?2—;b+ﬁa
+1BEa | sin 1+Qi0 7+ sin 1——@

To eliminate the secular terms in Eq. (9) when Qy72, we
must have a =b =0, which means only the periodic solu-
tions with period 2 exist. When Qy=2, for nonzero a and
b, we must have

=+BLE*—1)'?, (10)

where E 2 2. Equation (10) is the formula of the stability
boundaries to first order when Q; is replaced with
(Q—2). Equation (9) now becomes

Q3% +x,=1BEa sin(37)+1BEb cos(3it) . (11)
Solving Eq. (11) for x,:
x,=—%BE[asin(37)+b cos(37)] . (12)

Substituting Eq. (12) into Eq. (7) we will obtain an equa-

tion for x,. To eliminate the secular terms in that equa-

tion, the following conditions must be met:
Qz+‘QZ+BEQ +iBE* la—1pQb=0, (13a)

1BQa— Qz+%ﬂ%—éEQI+iﬁzE2 =0. (13b)

For nontrivial solutions of a and b, the Wronskian of Eq.

(13) must be zero, thus
(Q,+103+ LBEY - 1B20ULE>—1)=0. (14)

Substitute Eq. (10) into Eq. (14) to get

Q=0Q,+eQ,+€XQ,+0(e) ,
x =xo+ex; +e*x, +0(€)

By substituting the above expressions for x and € into
Eq. (4), we have

Q%o +x,=0 (9, (5)

Q2% +x, = —2Q,Q,%, +B(1+E sinT)Qp%, (€1,  (6)

Q3%, +x,=—(2Q,0, + Q)% —2Q,Q,%,
—B(1+E sint)( Q%+ Q%) (€2) . @

From Eq. (5), the zeroth solution to Eq. (4) is

Xo=a sin

Q0

Substituting Eq. (8) into Eq. (6), we obtain

cos
0
1
1 —_ r—
+3BEDb | cos 1+Qo T— cos o 9
I
Q,=—LBE*+3p, (15a)
Q,=—LBE* - 1B . (15b)

We choose Eq. (15b) because the result obtained by Eq.
(15a) is too large for a second-order modification to Q. In
terms of Egs. (10) and (15b), we have

0=0Q,+€Q,+€Q,+0(e)

=2+ef(LE*— 2—

D!+ — )+0(e)

L
6

_2+7’(1E2_1)1/2+’V (— IEZ—%-)‘*‘O(E}) .
Hence we have obtained the final formulas for the stabili-
ty boundary:

Q=24+y(lE*- 1) =y LE>+1) for @>2, (16a)

L DR (16b)

Q=2—y(lE YU ELE*+1) for Q<2.
When Q=2, by equating Eqgs. (16a) and (16b), we have
E =2. Note this is the common minimum transition
value for all y’s.

For applying this formula at given { and ¥, only sim-
ple iterations are needed to find the corresponding E.
Figures 1(a) and 1(b) show comparisons between the sta-
bility boundaries obtained by numerical calculation,
ﬁrst-order perturbation, and second-order perturbation,
for y = 5 and 1, corresponding to light and intermedi-
ate dampings, respectively. It is evident that Eqgs. (16a)
and (16b) are quite accurate.
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4 S Lyapunov exponents are marked by the triangles. The transi-
tion boundaries marked by the solid lines are obtained from the
o8] second-order perturbation.
2 A numerical |
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— 2nd order different initial conditions within the distance of 10~ ® for
the computation time up to 5000 forcing cycles, by using
0 a seventh-order integration method. Compared with
1 2 3 their results, we believe that the chaotic boundaries cal-

Q

FIG. 1. Stability boundaries in the Q-E state space: (a) for
Y= 15,]33 and (b) for 1/=%, respectively. The results by the nu-
merical simulations, the first-order perturbation, and the
second-order perturbation are shown and compared.

III. CHAOTIC BOUNDARIES
DETERMINED
BY LYAPUNOV EXPONENTS

For our three-dimensional, non-Hamiltonian system
Eq. (3), the Lyapunov spectra would be (+,0, —) when it
is chaotic. To indicate the onset of chaos, we only need
to calculate the largest Lyapunov exponent. Based on
the method developed by Shimada and Nagashima [8], as
well as by Wolf et al. [9], an interactive computer pro-
gram was written for this purpose.

As indicated in Ref. [1], transient chaos is likely to
occur just below the upper-left-side stability boundary.
An estimate of the positive Lyapunov exponent when
transient chaos is not over will indicate a lower chaotic
boundary in that area. Hence an initial interval of 2000
forcing periods is computed before we begin the evalua-
tion of another 2000 forcing periods. To determine a
possible chaotic trajectory accurately over such a long
time, a higher-order Runge-Kutta-Verner algorithm, the
RKYV-7 [10], was selected. Grebogi et al. [11] reported
that, for a driven Hamiltonian pendulum, a noisy trajec-
tory is shadowed by a true trajectory with slightly

culated by our program are reliable.

These chaotic boundaries are indicated by the empty
triangles in Fig. 2 for four different dampings. This figure
reveals that the minimum FE’s of these boundaries occur
at a frequency 1= 1.66, while the stability boundaries all
have a minimum at Q=2 and E =2. This figure also
shows that the chaotic boundaries coincide with the tran-
sition boundaries for Q2 <1.66. It will be demonstrated
that the transition mode for 2 <2 is a jump from the sta-
tionary solution to periodic solutions. It is possible that
this jump may be a leap into chaos rather than to a
periodic solution. This route to chaos can be categorized
as an inverse boundary crisis [12]. Such a crisis has been
detected in Eq. (1) by Kautz and MacFarlane [13]. A
similar coincidence between the jump boundary and the
hopping boundary to chaos for Eq. (1) was earlier report-
ed [14]. We may thus conclude that chaotic boundaries
due to crises in systems of the pendulum type could be
predicted by locating their jump boundaries.

IV. TWO BIFURCATION MODES
AT STABILITY BOUNDARIES

Based on a symmetry analysis, as applied to Eq. (1) by
Kerr et al. [15], the periodic solution of Eq. (3) will be
composed by a series of harmonics (we suppose no
subharmonic bifurcation): $+Q,2Q,2Q,. ... The constant
component and all even harmonics will be missing. Then
a stable periodic solution at the transition boundaries
may be approximately expressed as

x=asin($Q¢)+b cos(1+Qt)=rsin[ Q1 +4¢)] , (17)

L
2
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where r =(a%+5?%)!/?, and ¢= arctan(b /a). Substituting
Eq. (17) into Eq. (3) and using the Fourier-Bessel identity

sin{r sin[ :(Qt +¢)]} =2J,(r)sin[ 1(Qz +¢)]
+2J,(r)sin[ 2(Qr +6)]
+ RN

then we obtain the following amplitude equation from
harmonic balance [3]:

2 lz‘ll(r) _&2 i
r

+1

172

E=24y720" (18)

4

Equation (18) reveals two distinct transition modes.
When Q>2, Q%/4> 1, so E(r=0) is its minimum [the
maximum value of 2J,(r}/r is 1 when r=0]. E(r >0)
will monotonically increase while r increases. It is quite
different when @ <2. Now Q?/4<1 and E (» =0) is a lo-
cal maximum. E will first decrease to 2, then rise again

9
Q=2.1 .
y=1/18.33 e numerical .
8 HB o
2.5 ’ .
7| %
o
S
6 .
5 5
4 . . @
0.0 0.2 0.4 0.6 0.8 1.0
T
6 " !
Q=1.9 )
v=1/18.33 ¢ numerical
5t numerical
_ --- HB
4 "1.‘<i:: """"""""""" ]
L AN 1
“a I
m3r 3\.\ :
LY 1
- '
2} " l
| |
0 !
. R
000 025 050 075 1.00 1.25 1.50
T

FIG. 3. Two bifurcation modes at stability boundaries. (a)
The Hopf bifurcation for >2. The results obtained by har-
monic balance (HB) and numerical simulations are shown and
compared. The inset is a fit to the numerical data in order to
show that r ~(E —E,)!”2. (b) The jump bifurcation for Q1 <2.
The unstable periodic solutions marked by the solid circles are
obtained by the Newton-Raphson method.
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as r continues to increase. This gradual increase of 7 is
not physically possible because there will be a jump from
r=0 to ry, under the condition E(r =0)=E(r=rg).
These two cases (one for 2=2.1 and the other for
Q=1.9) are depicted in Figs. 3(a) and 3(b), respectively,
where the numerical results are also shown for compar-
ison. The inset of Fig. 3(b) is a regression curve of
(E—Ey)">~r where E, is obtained from Eq. (l6a),

3 ,
- =17 (E=3 .4)
v =175 Y Q-18(E=27)

=1.7 (E=6.1)
Q=1.8(E=4.2)
[ Q=19

/

-0

-2

-3

Q=1.7 (E=15.68)
A Q=1.8(E=10.69)
L Q=19 ]

©)

FIG. 4. Phase plots after the jump at 2 =1.9, 1.8, and 1.7 for
y=1 (a), 5 1), and L (c), respectively. These pictures clearly
show that the amplitude of the solution for 1.7 <€ <2 is only Q
dependent.
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FIG. 5. Numerical results for the transition to chaos along
the stability boundary for 1.66 <} < 1.7 in the Q-E state space.
Insets: (a) The jump to a symmetry-breaking period 2 at
0 =1.667; (b) the jump to a period-4 solution at {1 =1.666; and
(c) the jump to a phase-locked chaos at  =1.664.

which shows that it is indeed a Hopf bifurcation at the
transition boundaries for Q> 2.

Another important conclusion which may be drawn is
that the jump amplitude r is only ) dependent for £} <2.
It is not difficult to see from Eq. (18) that

Jl(ro) =:—£}i>_._l_ (19)
I 4 2

According to Eq. (19), for @=1.9, 1.8, and 1.7, r;=1.13,
1.88, and 2.37, respectively. The numerical values in
Figs. 4(a), 4(b), and 4(c) are for 2=1.9, 1.8, and 1.7,
ro=1.53, 1.712, and 2.064, respectively. The ry’s show
little difference when Q is fixed but damping was changed
from y=1to &.

Equation (19) is no longer valid for  <1.7 where the
periodic solutions lose their symmetry in phase space.
But the conclusion that the variation of solutions is only
Q dependent follows from a slightly different argument.
For 1.66 < < 1.7, all transitions which take place at a
fixed frequency but corresponding to different dampings
will be jumps to the states with identical dynamical prop-
erties. For example, it is a jump to period 2 with broken
symmetry at 1=1.667, a jump to period 4 at Q=1.666,
and a jump to phase-locked chaos at 1=1.664, as shown
by Figs. 5(a), 5(b) and 5(c). We believe that it is this
dependence only on frequency that results in the oc-
currence of all lowest chaos at Q=1.66 for various
dampings.

V. TWO ROUTES TO CHAOS

Equations (1)—(3) may have similar routes to chaos be-
cause their unperturbed equations of motion are the
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same. One route is due to the intersections of the stable
and unstable manifolds of the perturbed homoclinic orbit
associated with the unforced and undamped pendulum,
which, we believe, follows the period-doubling scenario to
chaos. The numerical simulations in Refs. [13] and [14]
showed that a crisis (or hopping) also could lead to chaos
for Eq. (1). With the coincidence between its chaotic
boundary and stability boundary for Q=<1.66, Eq. (3)
may have one route to chaos by crises for O <1.66 and
the other period doubling for 0 > 1.66.

To confirm this speculation, a Poincaré map has first
been made at (1 =1.68, as shown in Fig. 6(a). Starting at
E =3.6 with the initial conditicns x =0.01 and x =0, and
taking the transient time as 100 forcing periods after
every increment of AE =0.01, we sample another 100
forcing periods by picking up the first x value [x(1) in
the figure] of every forcing cycle. Figure 6(a) shows that
the zero solution becomes unstable at £ =3.61 and jumps
to a symmetric period 2. Then it undergoes symmetry
breaking at £ =3.69. Period doubling begins at E =3.92

s ) ' i
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:':i" L B

RTINS
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FIG. 6. Two routes to chaos. (a} A route to chaos through
period doubling at (1=1.68, anticipated by a symmetry break-
ing at £ =3.69. (b) A route to chaos by the inverse boundary
crisis at 1 =1.66. The unstable period 2 collides with the stable
stationary solution at E =3.82, just before full chaos occurs.
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with the pattern of period 4,8,.... After the phase-
locked chaos appears at E =3.97, the system switches to
another rotating period 2. The following is also a period
doubling which eventually reaches full chaos at E =4.06.

A Poincaré map for 1=1.64 was generated in a slight-
ly different fashion. The initial conditions x =0.01 and
X =0 are set for every new E after AE is added. In addi-
tion, the transient time has been taken as long as 2000
forcing periods when E approaches the transition bound-
ary (E=3.8). Furthermore, the Newton-Raphson
method [16] was used to look for possible unstable solu-
tions in order to find any sign of the collision between
stable and unstable solutions. Figure 6(b) shows the re-
sult we expected. There is indeed an unstable period-2
solution [it should appear at E =2, as Fig. 3(b) shows].
The amplitude of this unstable period 2 continues to de-
crease until it collides with the stable stationary solution
at E=3.82. At E=3.83, the Poincaré data expand to
cover the interval —m <x <, which means that full
chaos occurs in a sudden manner. The Lyapunov ex-
ponent calculated at £ =3.9 is 0.176 (the resolution for
calculating the Lyapunov exponent is taken to be
AE=0.1).

VI. CONCLUSION

The well-behaved dynamical properties of the parame-
trically damped pendulum appear mainly in three as-
pects. First, the minimum forcing amplitudes E needed
to drive this system into chaos are all at the forcing fre-
quency 2=1.66 in the Q-E state space. Secondly, the
minimum forcing amplitudes to destabilize the stationary
solution are all equal to the same value of E =2 and at
the forcing frequency ©2=2. Thirdly, at a fixed forcing
frequency between Q=2 and 1.66, periodic solutions at
the stability boundaries corresponding to different damp-
ings are identical in their periods and almost identical in
their orbital shapes in phase space. All these properties
may be summarized as an insensitivity to damping and it
is this behavior that makes this system unique.
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