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PHYSICAL REVIEW B

VOLUME 21, NUMBER 1

1 JANUARY 1980

Voltage locking and other interactions in coupled
superconducting weak links. 1. Theory

M. A. H. Nerenberg
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada

James A. Blackburn
Physics Department, Wilfrid Laurier University, Waterloo, Ontario, Canada

D. W. Jillie
Sperry Research Center, Sudbury, Massachusetts 01776
(Received 26 April 1979)

A perturbation calculation is shown to give a satisfactory analytical description of the dc voi-
tage characteristics of a coupled pair of superconducting weak links. In particular it predicts
locking intervals over which the individual voltages of the junctions will either be equal or in-
teger multiples of each other. Numerical simulations corroborate the perturbation approach
and, as well, reveal the phenomenon of phase slippage between the junctions.

I. INTRODUCTION

The behavior of superconducting weak links has
come to be fairly well understood during the past few
years. It has been possible to predict current-phase
relationships! and so relate the family of Josephson-
type devices: microbridges, point contact, and tun-
neling junctions. Various studies®? have investigated
equivalent circuits, and it has been found that thin-
film microbridges can be represented adequately by a
pure Josephson element with sinusoidal current-
phase dependence, shunted by a resistance.* This
so-called RSJ model has been employed successfully
in simulations of both thin-film interferometers® and
superconducting logic circuits.® With the advent of
the latter category of devices, the objective of high
density has come to the fore. Thus it becomes essen-
tial to understand not only the properties of isolated,
individual weak links, as discussed above, but also
their behavior when located in close proximity to one
another.

Recently Varmazis et al.” reported studies of micro-
bridges in which coupling was forced by the addition
of gold shunt resistors to the samples. The radiated
power from such weak-link pairs was shown to reflect
coherence in the system, that is, the total power out-
put was typically four times that of a single bridge,
while the bandwidth was narrowed by a factor of 2.

It is also noteworthy that these results were found to
be independent of the sense (relative directions) of
the bias currents.

In this paper we examine theoretically the proper-
ties of such resistively shunted weak-link pairs, with
particular emphasis on the appearance of phase
coherence and voltage locking in the characteristics.
The experimental situation is reviewed in Paper II,

which deals extensively with nonshunted proximity-
coupled links. The equations governing this latter ar-
rangement are, however, formally the same as those
for the system to be discussed here. Thus we choose
for the moment to view the interaction as being in-
duced by a shunt resistance, although other mechan-
isms can be accomodated.

II. COUPLED WEAK LINKS

We assume a series-connected pair of microbridges
with critical currents (i.,i.,), phases (¢1, ¢,2), and
resistances (R(,R,). The system is externally shunt-
ed by R; and, as indicated in Fig. 1, is biased by
currents (i1,i;). We suppose a sinusoidal current-
phase relationship for each link, and also we presume
¢ =2eV /i for each device.

For convenience we define

iR (R, +Ry)

Vom o2 - TSl
0" (R, +R,+Ry)

and employ normalized time #* = (2eV,/#)t and indi-
cate derivatives of phases in this dimensionless time
with a (*) rather than a (). i is the average of i

and i, the Josephson zero-voltage current ampli-

tudes. The resulting equations will now involve
currents measured in units of /.. It is easy to show
that, for the series-opposing case illustrated in Fig. 1,

¢*1=11“ clsin¢1+a(12—1czsind)2) B (1)
b= 8L, — Lysingy) +all;— I, sing;) ,
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FIG. 1. Equivalent-circuit representation for two RSJ
weak links coupled by an external shunt resistance.

where
a=(1+R,/Ry)™ ,
_ (1+R,/Ry)
(1+Ry/Ry) ’
and
11——2— , Iz—ii R Icl-ii—l , Icz—i?—

The voltages é&, and <}52 are, by convention in this
configuration, measured across the links in opposite
directions outward from the common midpoint.

For the series-aiding case, one of the bias currents
in Fig. 1 must be reversed in direction. Now if we
measure the link voltages ¢, ¢, in the same sense,
then it can be shown that

$i=1,—Lising,— all,— Lysingy) ,  (3)
‘£2=8(12—I¢25in¢2)—a(11— c]Sind)l) . (4)

It should be noted that, mathematically, the series-
aiding case can be obtained from the opposing case
by reversing the sign of «, and vice versa.

The problems represented by the pairs of
Eqgs.(1)—(4) were solved in two ways: a perturba-
tion approach and a direct numerical simulation of
these systems.

The perturbation approach has the advantage of
determining analytically, as a function of the various
parameters, the characteristics of the system. In par-
ticular, it predicts a "frequency-locking" region as well
as the concomitant rapid change of the locked dc vol-
tage in this region. The computational time using the
perturbation result to determine the dc-voltage

characteristics was miniscule compared to that re-
quired for the numerical simulation, which required
long-time runs to determine a reliable dc volitage.
The perturbation approach is limited, however, by
being only approximate and having some difficulty in
giving as accurate results just outside the frequency-
locked region as it does in the other regions.

HI. PERTURBATION CALCULATION

To be specific, we consider the series-aiding case:
the opposing case being obtained from this one by
changing the sign of «. Making reasonable assump-
tions about the relative values of R;, R, R, I, and

I, would lead us to treat the coupling between ¢,

and ¢, in Egs. (3) and (4) as a perturbation of the
uncoupled system (R; —oo; i.e., « —0). A perturba-
tion expansion using « as the "small" parameter was
therefore carried out.

A priori, such an expansion may be expected to be
not very good as the equations are not approximately
linear, and we require the knowledge of ¢ and ¢, for
very large ¢*, in principle in the limit as r*— oo. This
latter problem is mitigated, however, by the fact that
we are primarily interested in the dc voltages, viz.

tim 210
T—*00 T
and
lim —¢2( D ;)
T—o0
so that errors in ¢; and ¢; tend to be squelched in
the voltages, at least provided they at worst grow
linearly with time with only small coefficients.
We therefore write ¢; and ¢, as expansions in a.

oo

d1= 3 a"fula,t) , )
n=0

b2= 3 argy(art) )
: n=0

where f, and g, can be shown from the resulting dif-
ferential equations to be analytic at @ =0, thus ensur-
ing the asymptotic nature of these expansions. Sub-
stituting into Eqs. (3) and (4), we obtain the dif-
ferential equations that fy, f1, g0, and g; satisfy

Jo=I-ILysinfy , (72)
‘go=38I,—b8l,sing , (7b)
as the zeroth-order pair of equations, and

f‘"l+(1c1605fo)f1=Iczsingo“12 ) (82)
§1+(Slczcosgo)gl=Iclsinf0—h , (8bH)
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as the pair of equations governing the first-order

coirection. Equations (7) can be solved analytically,

as in turn can Eqs. (8). However the latter equations
. * . .

predict an oscillating average }”1 and g in the limit as

t* == oo,

To overcome this, a "renormalization" can be car-

ried out self-consistently so that

Al g™

lim N ——=0= lim LI ¢

K
t* —00 l* —,00

To make this renormalization process clear, Egs. (3)
and (4) are rewritten, adding and subtracting a con-
stant term.

d:1=w1—lclsind)l+a([czsinq’)2—12—-K) ’ (10)

(£2=w2—5102$in¢2+O((I¢1Sin¢1“Il—L) , (11)

where w)=/[; +aK and w;=8/,+al. Kand L are
constants ultimately to be chosen to make Eq. (9)
true. The new versions of Eqgs. (7) and (8) are,
respectively,

fo=wy— Lysinfo | (12a)

go=w;—8l;sing, , (12b)
and

Fi+ Ly cosfo) fi=1Lasingg— L, — K (13a)

& + (8l c0880) g1 =1Ly sinfo— I, —L . (13b)

This "renormalization" is crucial in displaying fre-
quency locking and in giving excellent agreement in
general with the numerical simulation of the exact
equations.

The nonlinear equations (12) are easily solved and
give

1 Q¢
Sfo(#*) =2tan™1— I, + Q tan +y| . (14a)
. ®1
Q,t*
go(t*)=2tan‘1—1—— 8L, + Qytan 2 +yll . (14b)
w3 2

where
Q] = ((O%""Iczl )1/2 »

Q= (w} -84,

Yy =tan"~

o tan[ £6(0)/2] - I ]
o ’

3

where Z1=1,/w,, and Z,=381,/w,. Using Eq. (15) we get

IJZ)TZI

n LJ‘T Z; +sin(Qyr* +6,)
1o T Jo

K=—L+I
2T e TJ0 1+ Z,sin( Qy* +0,)

dr*+ lim —
+im 7

and
wytan( g(0)/2] - 81,

2,

Py=tan"!
It follows that

I +w Sin(Q|I*+91)

sinfy= o L sin (0,7 50 (15a)
and
. 819+ w;y sin( 02!* +8,)
singy = , 15b
g wy +81,sin(Q,* +6,) ( )
where

91 = tan‘l(lcl/ﬂl) +2dj1

and
62= tan"'(81,,/ Q) +2¢, .

It is clear from Egs. (15) that sinf, and sing, aside
from a zero-frequency component, contain, respec-
tively, only the (angular) frequencies € with its har-
monics and £, with its harmonics. As we shall see
below, this implies that frequency (voltage) locking
occurs when Q= (,, or when one of these frequen-
cies is a harmonic of the other.

To determine Q; and Q; explicitly we need to
evaluate K and L. This is done as follows. The in-
tegrating factor for Eq. (13a) is

exp[ f]cl cosfy dt*] .

Since dr*=( f3)~dfo, and in view of Eq. (12a), the
integrating factor becomes

expf le1c0s /o dfo | = 1

w1 — L sinfy w1 — Iy sinfy

Similarly for Eq. (13b) the integrating factor is

1
wy — 81,,singy

Using the integrating factors in Egs. (13) to obtain
expressions for f and g;, and then invoking Eq. (9),
we arrive at the following conditions on K and L:

.1 (T—K~—1I,+1,sing
lim — *_
Jim Tj; ] Sinde dr*=0 , (16a)

T L — I+ Lysi
1imi_]; L lasinfo La_o (16b)

1-2Z;singy

Z; +sin( Q2t* +02)
1+ Z, sin( ta* +92)

sin( Qe +0) dr*| . (17)
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The last term in this expression for K vanishes except when

Ql=n02, n =1,2,... )
while in the corresponding expression for L,

T Z] +Sin(01t*+01)

S S
L P TJ0 1 +2Z,sin(Qr*+0))

The last term vanishes except when
92=m01, m=1,2,... .

We will call the cases when either Q= n,, or
Q,=mQ,, mand n positive integers, "resonant”. We
see that both K and L will have nonvanishing extra
terms when the frequency-equality condition Q;=Q,
is satisfied. These terms lead to abrupt changes in
the dc-voltage characteristics as this condition is met.
Similarly, in the other resonant cases we have extra
terms (this time in either X or L but not both) that
give rise to abrupt changes in the dc-voltage charac-
teristics as the corresponding frequency condition is
met.

We obtain in the nonresonant case, i.e., when
Q; # 0, and furthermore when neither is Q; a har-
monic of ; nor vice versa

K=%‘(w2—ﬂz)—12 > (19)

L=w1—ﬂ.1—11 . (20)

In the resonant case we restrict ourselves to listing
the effect of resonances only up to the third harmon-
ic, as beyond that the changes in K and L become
extremely small. When Q,=Q,

— Q
g=tem @)l 2D oy |-1, L @D
d Zz w)
. Z; Q
L=(w;—Q) 1+—2-—icos(91—02)]~11 . Q2
Z1 w

When 913292

-Q 0
K=(_a‘,‘2—8""?‘)—1+22l2 2(0)2 Qz)
><sin(01_202)]——12 23)

and L is given by Eq. (20); when Q,=30Q,

(wz—ﬂz) Zl Qz 2
K 5 1“"723-—0)-%—0»2 Qz)
XCOS(91—302)]—12 (24)

hml : dt"+1m1f22

Z +sin(ﬂlt"‘+91)
1 +Zl sin(le*+9|)

sin( Q,¢* +6,) dt’*l .

(18)

{
and L is again given by Eq. (20). However, when
Q,=2Q, K is given by Eq. (19) and

Z, Q
1+=2 l( 1— Q)

L=(a)1-—~01) 22

Xsin(02_201)]—11 , (25)

when Q,=3Q, K is again given by Eq. (19) and

Q
L=(wo;—Qy) [1 —E-(;%l—(wx_ Q,)?
XCOS(OZ...301)] -1 . (26)

Having now found K and L, we see from Eq. (14)
that the dc voltages ¥ and V,

V1 2= Vg 11m - d¢1 2

im T pr —=dr*

become, to first order of perturbation theory
=V, , 7
Va=Vody . (28)

Equations (27) and (28) give the dc-voltage charac-
teristics across each circuit as functions, say, of I;
and I via the frequency functions ; and Q,. Since
only a constant of proportionality distinguishes the
voltages from the frequencies, we will use these
terms interchangeably.

IV. VOLTAGE LOCKING

If we think of 7, as well as 1.y, I5, Ry, R,, and R,
as being constants, the two voltages V; and ¥V, vary
only with I,. Putting V=V, therefore would seen at
first glance to determine one (positive) value of I, at
which this occurs. However, Eqs. (21) and (22)
show that this is not the case, as another variable,
cos(0; —6,), related to a fixed average relative phase
of the two circuits, intervenes and allows the equa-
tion Q= (),, (and, therefore, ¥;=V,) to have solu-
tions over an interval of I, corresponding to the in-
terval [—1, 1] for cos(#, —8,). (This interval in I,
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nonetheless shrinks to a point when the circuits hap-
pen to be identical.)

The results indicate that one may envisage events
in the following way when in the neighborhood of
Q= Q,. For I, sufficiently small V, < Vy; then as I,
is increased the voltage difference diminishes up to a
certain point where a further arbitrarily small increase
in 1, abruptly allows the circuits to come into syn-
chronization. That is, the requirement ; =, is
suddenly satisfied because Eqs. (21) and (22) have
become compatible with it.}® As I, is increased fur-
ther, the junctions remain locked at changing fre-
quencies (and hence voltages), corresponding to dif-
ferent fixed average phase differences until the other
extreme of the interval [—1, 1] for cos(8, —6,) is
reached; at this point synchronization ceases to be
possible, and the circuits jump into a state having a
finite difference in their frequencies (and hence their
dc voltage). This is illustrated in a particular case in
Fig. 2.

The reference in the above discussion to fixed
average phase differences is based on the fact that the
first-order terms have the property that

. fl(T) n_ gl(T)
}11»130 T _O_T—r{}o T
16—

VOLTAGE {NORMALIZED UNITS)
o

- 1
16 18 20 22 24 26 28
Iz (NORMALIZED UNITS)

FIG. 2. Comparison of the voltage characteristics ob-
tained from the numerical simulation of the exact equations
with the perturbation calculation. Series-aiding case with:
5L=2,1,4=12,1,=08, 8= % and a«=0.2. Inset: a blow-
up of the voltage-locked region and immediate environs
when ;= Q,. Triangles represent the results of the per-
turbation calculation, while the solid lines represent the nu-
merical simulation. Where sufficient differences exist
between the two calculations, dashed lines with triangles are
used to represent the perturbation calculation. Voltages are
in units of ¥

But f7 and g are not identically zero; therefore, one
would expect the junctions when frequency locked
not to keep a fixed relative phase, but that the rela-
tive phase would oscillate around a fixed value deter-
mined by 8; —6,. Indeed the numerical simulation of
the exact equations described below corroborated this
point,

Voltage locking when ¥V is a fixed multiple of V5,
or vice versa, will also occur when one of the fre-
quencies ; and (2, is a harmonic of the other. This
harmonic frequency locking is evident from reasoning
similar to that employed in the equal-frequency case,
but applied to Eqs. (23)—(26). The appropriate
function of the initial phases of the two circuits piays
the role of creating a locking 7, interval, and in deter-
mining together with the other parameters involved,
both the extent of the interval and the voltage
changes associated with the locking. We do not have
to consider an infinite set of harmonics as the ampli-
tude of the voltage change and the width of the lock-
ing interval diminish rapidly as the order of the har-
monic increases. For the case considered in Fig. 2,
the locking at ; =2}, is discernible and at
0,=3Q, is barely so on the scale utilized. Locking
regions with , > Q, are out of range.

It is no longer 8; — 6, which maintains a fixed aver-
age value when the circuits are harmonically locked,
but, for example, 6; —28, in the case },=2, and
#; — 30, in the case 1; =3}, which maintain fixed
average values. This too was corroborated by the nu-
merical simulation. :

V. NUMERICAL SIMULATION

Equations (1) and (2) as well as Egs. (3) and (4)
were also solved numerically using Hamming’s
method,’ a predictor-corrector scheme with a trunca-
tion error O (h®), where h is the step size. This
method is well suited to the long-time runs required
for ensuring accurate values of the dc voltages. In
some cases runs of 10000 ¢* units were used with an
h of 0.0625 in the same units. The accuracy was ver-
ified by halving the step size without finding signifi-
cant change in the values of ¢, and ¢, at the end
time. The use of a CDC Cyber 73 with its large word
size undoubtedly aided in keeping roundoff error
from being significant.

In most instances, including the frequency locked

- regions, a final * of 2500 is more than adequate for

determining stable values of the dc voltages. Howev-
er, just outside the locked regions longer-time runs
are required to achieve the same end. This phe-
nomenon is illuminated somewhat by the perturba-
tion approach, as it predicts that ¢, and ¢, will con-
tain, near a frequency-locked region, admixtures of
two nearly equal frequencies, which due to the non-
linearity of the systems lead to oscillation with a low
difference frequency.
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V1. COMPARISON OF PERTURBATION THEORY
WITH NUMERICAL SIMULATION

In general there is excellent agreement between the
perturbation calculation and the numerical simulation
as shown in Fig. 2. The dc voltages, the positions,
and widths of the intervals of frequency locking were
all found to be in very close accord. The appropriate
average phase difference as predicted by perturbation
theory (related to 8; — 8, when ;= Q,, to 6, —26,
when Q1=20,, etc.) that corresponds to each /I, in
the locking intervals are corroborated extremely well
by the numerical simulation.

The only area of disagreement one finds between
perturbation "theory" and numerical "experiment” is
just outside the frequency-locked regions. As men-
tioned above, and what is particularly visible in the
inset of Fig. 2, the voltages are discontinuous in I,
at the end points of the intervals of locking, accord-
ing to perturbation theory. However the numerical
simulation displays rapid but continous variation of
the voltages when entering or leaving a locking inter-
val.

Furthermore, in extreme proximity to the locking
region, the numerical calculation demonstrates in-
teresting behavior for ¢; and ¢,: when [, is near the
interval where Q= (),, the relative phase (¢;— ¢,),
averaged over suitable short-time intervals, changes
very slowly when it is near 0 (modulo 27) or 7
(modulo 27); the choice depends on which border of
the locking interval one is at. Then after a lapse,
during which this average remains essentially con-
stant, it suddenly accelerates relatively rapidly until
the average phase difference has changed by 2.
Once more it slows for a certain duration, after which

1
[¢] 1000 2000 * 3000 4000

FIG. 3. Plot of (¢, — ¢,) as a function of ¢* for
0 =< * =< 4000, as determined by the numerical simulation.
The parameters [, 1.y, I3, 8, and a are the same as for the
case of Fig. 2; again this is the series-aiding case.
1,=2.177 50. See text for discussion.

VOLTAGE {NORMALIZED UNITS)
2
]
T

IVTS 178 : [} '80 * Ié2 * l.i84 ! éG * |ée
1, ( NORMALIZED UNITS )

FIG. 4. Example of the voltage characteristics in the
neighborhood of voltage locking when Q= Q,, for the
series-opposing case, obtained by numerical solution of the
exact equations. [, =2.0, [,; =12, [,,=0.8, 3=1, and «=0.2
were the parameters chosen. Voltages are in units of V.

it accelerates until the phase difference has again
changed 27, and so on. This is illustrated in Fig. 3,
where (¢ — ¢,) is plotted against #*, for the same
junctions as are considered in Fig. 2. The I, chosen
in Fig. 3 is just outside the locking interval.

As I is changed to bring it in greater proximity to
the locking interval, this phenomenon of relative sta-
bility followed by rapid "slip" by 27 becomes more
pronounced, until at one point for I, the average
phase difference no longer slips, and the junctions
are now locked.

This behavior might serve to explain the observa-
tions of Varmazis er al.” and Sandell et al.'® of

_ coherent radiation being emitted by such junctions

without the latter being in the dc-voltage locking
state.

Similar behavior is observed when in the vicinity of
the intervals in which there is harmonic locking of
the dc voitages. There, rather than the average
1 — ¢, that stabilizes and then slips, it is the average
¢1—2¢, when Q;=2Q,, and the average ¢; — 3¢,
when Q; =3Q,, etc.; which behave in this fashion.

Finally, in Fig. 4 we present an example of voltage
locking in the series-opposing case.

VII. SUMMARY

A perturbation-theory approach was adopted to
solve the problem of two coupled superconducting
weak links. The results give insight into the behavior
of such systems including the phenomenon of syn-
chronization or voltage locking which is observed in
the corresponding physical systems. A numerical
simulation corroborated the results of the perturba-
tion calculation, and complemented it by demonstrat-
ing a phase-slip phenomenon on the borders of the
voltage-locking intervals. On the other hand, the
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perturbation calculation complemented the numerical
simulation, for, without it as a guide, the intervals of
locking might be overlooked, as in general they tend
to be quite small.

The perturbation theory can be generalized to an
extended system of coupled weak links, which the
authors are currently carrying out. It is here that this
approach is essential, for the computing time of the
numerical simulation would be prohibitive for even
an extended system of modest size.
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