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Mathematical Research Letters 12, 341–356 (2005)

JORDAN DECOMPOSITION OF BILINEAR FORMS

Dragomir Ž. D– oković and Kaiming Zhao

Abstract. Let V be an n-dimensional vector space over an algebraically closed
field K of characteristic 0. Denote by B the space of bilinear forms f : V ×V → K.
We say that g ∈ B is semisimple if the orbit Og = SLn · g is closed in B, in the

Zariski topology. We say that h ∈ B is a null-form if 0 ∈ Oh, the Zariski closure
of Oh. We introduce the Jordan decomposition for bilinear forms f = g + h (g
semisimple, h a null-form) in analogy with the well known Jordan decomposition
for linear operators. While the latter decomposition is unique, this is not the case
for the former. If f is not a null-form, we introduce the primary decomposition of
f and use it to construct all possible Jordan decompositions of f .

1. Introduction

It is well known that any linear operator on a finite dimensional vector space
over a perfect field can be uniquely decomposed into a sum of a semisimple op-
erator and a nilpotent operator which commute. This decomposition is known
as Jordan decomposition. In this paper we are going to introduce similar de-
composition for bilinear forms.

We work over an algebraically closed field K of characteristic 0. Fix an n-
dimensional vector space V over K and denote by B the space of bilinear forms
f : V × V → K. We shall use the natural action of GLn := GL(V ) and its
subgroup SLn := SL(V ) on B.

We say that f ∈ B is semisimple if the orbit Of := SLn · f is closed in
B. Let K[B] denote the algebra of polynomial functions on B. The categorical
quotient B//SLn, which parametrizes the closed SLn-orbits in B, is the affine
variety associated with the subalgebra K[B]SLn of SLn-invariants in K[B]. In
this case, this quotient is an affine space (see the next section). The inclusion
map K[B]SLn → K[B] gives rise to the canonical projection π : B → B//SLn,
which is known to be surjective [8, Theorem 4.6].

Let F(f) denote the fiber of π over the point π(f) ∈ B//SLn, i.e., F(f) :=
π−1(π(f)). The zero fiber F(0) is known as the Hilbert null-cone for the action
(SLn,B) and will be denoted by N . We shall refer to the bilinear forms f ∈ N
as the null-forms. If f ∈ B, we recall (see e.g. [8, p. 157]) that f ∈ N iff 0 ∈ Of ,
where Of is the Zariski closure of Of .
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342 D.Ž. D– OKOVIĆ AND K. ZHAO

Any fiber F(f) contains a unique closed SLn-orbit, which we denote by Cf .
For g ∈ Cf , the isotropy subgroups Z(g) = (GLn)g and (SLn)g are reductive.
As a Z(g)-module, B decomposes as B = Tg ⊕N , where Tg is the tangent space
of the orbit Cf = Og at the point g and N is a complementary submodule. Let
Ng denote the Hilbert null-cone for the induced action of (SLn)g on N (see [8,
§5]). Observe that Ng ⊂ N and that Ng depends on the choice of N .

Any f ∈ B can be decomposed as a sum of a semisimple bilinear form g ∈ Cf

and a null-form h ∈ Ng, but this decomposition is not unique due to the non-
uniqueness of N (see [8, p. 213]). Such decomposition f = g + h we will call a
Jordan decomposition if the additional condition: (GLn)f = (GLn)g ∩ (GLn)h

is satisfied. The Jordan decomposition is not unique in general, but we are able
to describe and construct all such decompositions.

A posteriori, it turns out that there is a link between the two kind of Jordan
decompositions: one for linear operators and the other for bilinear forms. This
link is visible in the case of nondegenerate bilinear forms. Thus assume that
f ∈ B is nondegenerate. Its asymmetry is the unique linear operator σ such that
f(y, x) = f(x, σ(y)) for all x, y ∈ V . If f = g + h is a Jordan decomposition
of f , as above, then g is also nondegenerate and its asymmetry is equal to the
semisimple component of the asymmetry σ of f (in its Jordan decomposition).

In Section 2 we state the Canonical Form Theorem 2.1 for bilinear forms in
our context. This theorem has been known for long time apart from the explicit
canonical forms given in part (b), which have been constructed very recently [6].
We also give an explicit formula for the canonical projection π : B → B//SLn.

In Section 3 we characterize the semisimple bilinear forms as well as the null-
forms in terms of their indecomposable summands. We also show how to find,
for a given f ∈ B, a representative of the unique closed orbit Cf contained in the
fiber F(f). Finally, we define the primary decomposition

(V, f) = ⊥λ̂∈K̂(V λ̂, f λ̂)

of a bilinear space (V, f). The primary components (V λ̂, f λ̂) are parametrized
by the subsets λ̂ of K which are either singletons {λ} if λ = 0,±1 or two-element
subsets {λ, λ−1} if λ �= 0,±1. The case when f is nondegenerate was treated in
[9] in more generality.

In Section 4 we define the Jordan decomposition for bilinear forms f =
fss + fnl, with fss semisimple and fnl a null-form, and discuss some of its prop-
erties. The main result of this section (Theorems 4.5 and 4.6) shows that the
construction of Jordan decomposition reduces (in a straightforward manner) to
the same problem in the primary case. As mentioned in the abstract, the Jor-
dan decomposition of bilinear forms is not unique (in general). However, if f is
semisimple resp. a null-form then fss = f , fnl = 0 resp. fss = 0, fnl = f is the
unique Jordan decomposition of f .

In Section 5 we treat the primary case: (V, f) = (V λ̂, f λ̂). If λ �= ±1 and
f is not semisimple, then there are infinitely many Jordan decompositions of
f . These decompositions f = fss + fnl are parametrized by a scalar µ ∈ K ∪
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{∞}, µ �= λ. The null-form component fnl is symmetric resp. skew-symmetric
precisely when µ = 1 resp. µ = −1. Unexpectedly, it turned out that in the
cases λ = ±1 the Jordan decomposition is unique. In fact, fss = f+, fnl = f−

if λ = 1 and fss = f−, fnl = f+ if λ = −1. (By f+ resp. f− we denote the
symmetric resp. skew-symmetric component of f .)

As far as we know, the concept of Jordan decomposition in the general setting
of linear algebraic groups was introduced first by V. Kac and E.B. Vinberg
in their paper [7]. In an important paper [10], Spaltenstein has constructed
for bilinear forms a particular Jordan decomposition in the sense of Kac and
Vinberg. The definition that we have adopted is also in agreement with Kac
and Vinberg definition but is more demanding. As a consequence, the Jordan
decomposition constructed by Spaltenstein, using an ad hoc method, is not a
Jordan decomposition in our sense.

2. Preliminaries

For f ∈ B, we refer to (V, f) as a bilinear space. If f is fixed or known from
the context, we may say that V itself is a bilinear space.

The transpose of a bilinear form f : V × V → K is the bilinear form g :
V × V → K such that g(x, y) = f(y, x) for all x, y ∈ V . We shall denote the
transpose of f by f ′.

We have B = B+⊕B− where B+ = {f ∈ B : f ′ = f} is the space of symmetric
forms and B− = {f ∈ B : f ′ = −f} that of skew-symmetric forms. For f ∈ B
we have f = f+ + f− where

f+ =
1
2
(f + f ′) ∈ B+, f− =

1
2
(f − f ′) ∈ B−.

If V1 and V2 are subspaces of V and f(V1, V2) = 0 = f(V2, V1), we say that
V1 and V2 are orthogonal to each other with respect to f , and we write V1 ⊥ V2.
If also V = V1 ⊕ V2, then we write V = V1 ⊥ V2 and f = f1 ⊥ f2 where
f1 = f |V1×V1 , f2 = f |V2×V2 . We shall also express this situation by writing

(V, f) = (V1, f1) ⊥ (V2, f2)

and we say that (V1, f1) and (V2, f2) are summands of (V, f).
We say that (V, f) or f is decomposable if (V, f) has a nonzero proper sum-

mand. We say that (V, f) or f is indecomposable if V �= 0 and (V, f) is not
decomposable.

We fix a basis α = {v1, v2, . . . , vn} of V . Let f ∈ B. The n-by-n matrix
Aα

f = (aij), with aij = f(vi, vj), is the matrix of f with respect to this basis.
We denote the transpose of any matrix X by X ′. The matrix of f ′, with respect
to the same basis, is (Aα

f )′, i.e., Aα
f ′ = (Aα

f )′. Later we shall simply write
Af = Aα

f , or f = Af (if the basis is chosen).

If β is another basis of V , we know that Aα
f and Aβ

f are congruent, i.e., there
exists P ∈ GLn(K) such that Aβ

f = P ′Aα
f P .
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Let us consider a bilinear space (V, f) and a subspace U ⊂ V . Then we define
the subspaces

L(U) := {v ∈ V : f(v, U) = 0}
and

R(U) := {v ∈ V : f(U, v) = 0}.
If we need to indicate f , we shall write Lf and Rf instead of L and R, respec-
tively.

Some interesting properties of the operators L and R were established in [4].
We shall recall a few of them later when needed. We say that a subspace U is
totally isotropic if f(U, U) = 0, i.e., U ⊂ L(U) (or U ⊂ R(U)).

We say that f ∈ B is nondegenerate resp. degenerate if its matrix Af is
nonsingular resp. singular. This is equivalent to the condition L(V ) = 0 (or
R(V ) = 0). A bilinear space is totally degenerate if it has no nonzero nondegen-
erate summands.

We shall denote the (lower triangular) Jordan block of order m with eigenvalue
λ ∈ K by Jm(λ). For convenience, we define n-by-n matrices Hn(λ) and Γn by

Hn(λ) =
[

0 Im

Jm(λ) 0

]
, n = 2m, λ ∈ K,

and

Γn =




0 0 0 0 · · · 0 0 (−1)n−1

0 0 0 0 · · · 0 (−1)n−2 (−1)n−2

...
0 −1 −1 0 · · · 0 0 0
1 1 0 0 · · · 0 0 0


 .

Two bilinear forms f : V ×V → K and g : W ×W → K are equivalent if there
exists a vector space isomorphism ϕ : V → W such that g(ϕ(x), ϕ(y)) = f(x, y),
∀ x, y ∈ V .

Now we can state the Canonical Form Theorem for bilinear forms (see [6]
and, for an older version, [2]).

Theorem 2.1. (a) Any f ∈ B admits an orthogonal direct decomposition

f = f1 ⊥ f2 ⊥ · · · ⊥ fk,

where the fi’s are indecomposable bilinear forms which are unique up to equiva-
lence and permutation.

(b) If f ∈ B is indecomposable, then we can find a basis α for V such that Aα
f

is one of the following matrices:

(b1) Hn(λ), n = 2m, λ �= (−1)m+1;
(b2) Γn, n ≥ 1;
(b3) Jn(0), n = 2m + 1.
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(c) The matrices listed in part (b) are pairwise non-congruent except for the
fact that Hn(λ) and Hn(λ−1) are congruent when λ �= 0,±1.

We mention that, when n = 2m is even, Hn(0) is congruent to Jn(0).
Next we recall some pertinent results from [3, 10] concerning the geometry

of SLn-orbits in B. The natural (congruence) action of GLn on B is defined by
(a, f) → a · f , where a ∈ GLn, f ∈ B, and a · f ∈ B is given by

(a · f)(x, y) = f(a−1(x), a−1(y)), ∀x, y ∈ V.

The subspaces B+ and B− are GLn-submodules of B (both simple if n ≥ 2).
The stabilizer of a point f ∈ B in a subgroup G of GLn will be denoted by Gf .

Denote the Lie algebras of GLn and SLn by gln and sln, respectively. By
differentiating the action of GLn, we obtain an action (u, f) → u · f of gln on B.
The bilinear form u · f is given by

(u · f)(x, y) = −f(u(x), y) − f(x, u(y)), x, y ∈ V.

We set n = 2m if n is even and n = 2m + 1 if n is odd. For f ∈ B, we
define det(f) = det(Af ) = |Af |. This gives a polynomial function det : B → K
which is homogeneous of degree n. It is independent (up to a scalar factor) of
the choice of the basis of V . Next define

P (f, t) = |Af+ − tAf− |.(2.1)

The coefficients of the odd powers of t in the expansion of this determinant are
all zero. Hence we have

P (f, t) = P0(f) + P1(f)t2 + · · · + Pm(f)t2m,

where P0, P1, . . . , Pm ∈ K[B] are homogeneous polynomials of degree n. In
particular, P0(f) = det(Af+) and, if n is even, Pm(f) = det(Af−). Let us
extend the Pfaffian function Pf : B− → K to B by setting Pf(f) = Pf(Af−) for
any f ∈ B. Hence, if n is even, then Pm = Pf2.

The following basic result was obtained by A.O. Adamovich and E.O. Golov-
ina [1]. (They have also proved similar results for the SLn-modules B+ ⊕ B+

and B− ⊕ B−.)

Theorem 2.2. The algebra K[B]SLn is generated by the polynomials P0, P1,
. . . , Pm if n is odd and by P0, P1, . . . , Pm−1 and Pf if n is even. Moreover these
generators are algebraically independent.

By the above theorem, the categorical quotient B//SLn is an affine (m + 1)-
dimensional space over K. The canonical projection

π : B → B//SLn = Km+1,(2.2)

is defined by

π(f) := (P0(f), P1(f), . . . , Pm−1(f), Pm(f))

if n is odd, and by

π(f) := (P0(f), P1(f), . . . , Pm−1(f),Pf(f))
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if n is even.
The Hilbert null-cone N = F(0) is the set of common zeros in B of the

homogeneous polynomial generators of K[B]SLn listed in the above theorem.
Thus an element f ∈ B belongs to N iff the polynomial P (f, t), in the variable
t, is zero.

3. Primary decomposition of bilinear forms

The main objective of this section is to introduce the primary decomposition
of bilinear spaces (V, f). We define such decomposition only when f /∈ N . In
the nondegenerate case, this was done already in Riehm’s paper [9].

It is well known (see [8, Theorem 4.7, Corollary]) that every fiber F(f) con-
tains a unique closed SLn-orbit. We denote this orbit by Cf . Since Of contains
a closed orbit (see e.g. [8, p. 149]), we must have

Cf ⊂ Of ⊂ F(f).

We define (−)k to be the sign + if k is even and the sign − if k is odd.

Proposition 3.1. If f ∈ B is indecomposable (see Theorem 2.1), then a repre-
sentative fc of Cf is given by:

(b1) fc =
[

0 Im

λIm 0

]
if f = Hn(λ), n = 2m, λ �= (−1)m+1;

(b2) fc = f (−)n+1
if f = Γn;

(b3) fc = 0 if f = Jn(0), n = 2m + 1.

Proof. The bilinear forms fc listed in the proposition are semisimple by [3]. So
we need only show that fc ∈ Of in each case.

(b1) For t ∈ K∗ we have

X = diag(1, t−1, t−2, . . . , t1−m, 1, t, t2, . . . , tm−1) ∈ SLn.

Hence X ′fX = fc + t(f − fc), and so fc ∈ Of .
(b2) For t ∈ K∗ we set

X = diag(t−m, t1−m, . . . , t−1, 1, t, t2, . . . , tm) ∈ SLn

if n = 2m + 1, and

X = diag(t−m, t1−m, . . . , t−1, t, t2, . . . , tm) ∈ SLn

if n = 2m. Then again X ′fX = fc + t(f − fc) and fc ∈ Of .
(b3) This holds because f ∈ N since P (f, t) = 0.

Since the semisimple bilinear forms as well as the null-forms play an essential
role in this paper, it is important to have simple characterizations of these two
types of bilinear forms. The following proposition provides such characteriza-
tions.
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Proposition 3.2. Let f ∈ B and let f = f1 ⊥ f2 ⊥ · · · ⊥ fk, where each fi is
indecomposable. Then

(a) f ∈ N iff at least one fi is of type (b3) (see Theorem 2.1).
(b) For f �= 0, f is semisimple iff each fi = [λi] for some λi ∈ K∗ or

fi =
[

0 µi

νi 0

]
with µi �= νi;

Proof. The first assertion follows from [3] and the second from the previous
proposition.

The following proposition follows immediately from Proposition 3.2 (a) and
[4, Theorem 3.2 (d)].

Proposition 3.3. For f ∈ B \ N there is a unique decomposition

(V, f) = (V tdeg, f tdeg) ⊥ (V ndeg, fndeg),(3.1)

where the first summand is totally degenerate and the second nondegenerate.

We give some more details. The subspaces L2k+1(V ) (resp. L2k(V )) are all
equal for large k and we denote this subspace by Lodd(V ) (resp. Leven(V )).
They satisfy Lodd(V ) ⊂ Leven(V ). The subspaces Rodd(V ) and Reven(V ) are
defined similarly and satisfy Rodd(V ) ⊂ Reven(V ). With these notations, and
assuming that f /∈ N , we have

V tdeg = Lodd(V ) ⊕ Rodd(V ), V ndeg = Leven(V ) ∩ Reven(V ).(3.2)

For λ ∈ K we set λ̂ := {λ, λ−1} if λ �= 0 and λ̂ := {0} if λ = 0. We also set
K̂ := {λ̂ : λ ∈ K}.

When f is nondegenerate, the asymmetry of f is the unique σ ∈ GLn such
that f ′(v, w) = f(v, σ(w)) for all v, w ∈ V . It follows that the matrix of σ with
respect to the same basis is A−1

f A′
f .

We can now refine the previous proposition.

Proposition 3.4. For f ∈ B \ N there is a unique decomposition

(V, f) = ⊥λ̂∈K̂(V λ̂, f λ̂)(3.3)

such that V tdeg = V 0̂ and for λ �= 0, (V λ̂, f λ̂) is nondegenerate and λ̂ is the set
of eigenvalues of the asymmetry σλ̂ of f λ̂. Consequently,

GL(V )f =
∏
λ̂∈K̂

GL(V λ̂)f λ̂ .

Proof. We first make use of Proposition 3.3 to decompose V into orthogonal
direct sum of V 0̂ := V tdeg and V ndeg. Next, let σndeg be the asymmetry of
fndeg. For λ �= 0, we define V λ̂ to be the sum of the generalized eigenspaces of
σndeg associated with the eigenvalues λ and λ−1. It is easy to show (or see [9])
that V λ̂ ⊥ V µ̂ if λ̂ �= µ̂.
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Definition 3.5. For f ∈ B \ N , we refer to the decomposition (3.3) as the
primary decomposition of the bilinear space (V, f). This decomposition will also
be written as

V = ⊥λ̂∈K̂V λ̂
f ,

where V λ̂
f = V λ̂. The summand (V λ̂, f λ̂) is its primary component of type λ̂. If

V = V λ̂ for some λ̂, we say that the bilinear form f is λ̂-primary.

4. Jordan decomposition of bilinear forms

In this section we define Jordan decomposition for bilinear forms and discuss
some of its properties.

Proposition 4.1. Let f ∈ B be semisimple. Then (GLn)f and (SLn)f are
reductive groups. If f �= 0, these groups have the same dimension.

Proof. Since f is semisimple, Of is closed in B. Hence this orbit is an affine
variety. Since the homogeneous space SLn/(SLn)f is isomorphic to Of (as an
algebraic variety with SLn-action, see e.g. [8, p. 152]), this homogeneous space
is also an affine variety. By Matsushima’s criterion [8, Theorem 4.17], (SLn)f is
a reductive group. As

GLn · f = {λg : g ∈ Of , λ ∈ K∗},
we have dim(GLn ·f) = dim(SLn ·f)+1. Since dim GLn = dim SLn +1, we infer
that (GLn)f and (SLn)f have the same dimension. Consequently, they share
the same identity component and so (GLn)f is reductive too.

For brevity, we denote the stabilizer of f in GLn by Z(f), i.e.,

Z(f) = (GLn)f = {a ∈ GLn : a · f = f}.
The tangent space of Of at the point f will be denoted by Tf . Note that

Tf = sln · f = {x · f : x ∈ sln}.
Let g ∈ B be semisimple. By the above proposition, Z(g) is a reductive

subgroup of GLn. The tangent space Tg is Z(g)-invariant. Since Z(g) is reduc-
tive, B = Tg ⊕ N where N is a Z(g)-invariant subspace. We denote by Ng the
null-cone of the induced action of (SLn)g = Z(g) ∩ SLn on N .

We shall denote by N# the largest (SLn)g-submodule of N which contains no
1-dimensional trivial submodules. This submodule is important because Ng ⊂
N#. To prove the last assertion, observe that N = N1 ⊕ N#, where N1 is the
trivial (SLn)g-module, and that every (SLn)g-orbit in Ng must contain 0 in its
closure.

Now we can define Jordan decomposition for bilinear forms.

Definition 4.2. For f ∈ B, we say that the decomposition

f = fss + fnl(4.1)

is a Jordan decomposition of f if
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(J1) fss ∈ Cf ;
(J2) fnl ∈ Nfss (for some choice of a Z(fss)-invariant complement N of Tfss in

B); and
(J3) Z(f) = Z(fss) ∩ Z(fnl).

It is immediate from this definition that if (4.1) is a Jordan decomposition of
f and a ∈ GLn, then a · f = a · fss + a · fnl is a Jordan decomposition of a · f .

Note that if f ∈ B is semisimple (resp. a null-form) then it has a Jordan
decomposition (4.1) with fss = f , fnl = 0 (resp. fss = 0, fnl = f). In fact
if f is a null-form this is the only Jordan decomposition of f because in that
case Cf = {0}. As we will see later, the analogous assertion is valid when f is
semisimple.

In the following lemma we show that fss and fnl preserve the orthogonal
decompositions with respect to f .

Lemma 4.3. Let f ∈ B \ N and let (4.1) be a Jordan decomposition of f . If

(V, f) = (V1, f1) ⊥ (V2, f2),

then V1 and V2 are orthogonal to each other with respect to fss and fnl.

Proof. Let a ∈ GLn be the involution which is 1 on V1 and −1 on V2. The
assertion now follows from the fact that a ∈ Z(f) = Z(fss) ∩ Z(fnl).

Assume that f ∈ B \ N and consider its primary decomposition (3.3).
For λ̂, µ̂ ∈ K̂ we denote by B(f ; λ̂, µ̂) the subspace of B consisting of all forms

g such that g(V ξ̂, V η̂) = 0 if ξ̂ �= λ̂ or η̂ �= µ̂.
We have B = Bf ⊕ Bf where

Bf :=
⊕
λ̂∈K̂

B(f ; λ̂, λ̂)

and

Bf :=
⊕
λ̂�=µ̂

B(f ; λ̂, µ̂).

Lemma 4.4. If f ∈ B \ N , then Bf ⊂ Tf .

Proof. It suffices to show that B(f ; λ̂, µ̂) + B(f ; µ̂, λ̂) ⊂ Tf for λ̂ �= µ̂. Thus we
may assume that V = V λ̂ ⊕ V µ̂. We may also assume that our basis α of V is
chosen as the union of bases of V λ̂ and V µ̂. Then the matrix of f has the form
A = B ⊕ C, where B resp. C is the matrix of f λ̂ resp. f µ̂. Let us take X ∈ sln
of the form

X =
[

0 Y
Z 0

]
.



350 D.Ž. D– OKOVIĆ AND K. ZHAO

Then the bilinear form −X · f belongs to the tangent space Tf and is given by
the matrix

X ′A + AX =
[

0 BY + Z ′C
CZ + Y ′B 0

]
.

We complete the proof by an obvious dimension argument: It suffices to show
that the matrix equations

BY + Z ′C = 0, CZ + Y ′B = 0

have only the zero solution, i.e., that they imply Y = Z = 0. Without any
loss of generality, we may assume that µ �= 0, i.e., that C is invertible. Then
Z = −C−1Y ′B and it remains to show that the equation BY C−1C ′ = B′Y
implies Y = 0. This is indeed so if also λ �= 0 since the asymmetries of f λ̂ and
f µ̂, with matrices Sλ := B−1B′ and Sµ := C−1C ′ respectively, have no common
eigenvalues.

Assume now that λ = 0. By using a suitable basis of V λ̂,

B =
[

0 Ir

J 0

]
,

where J is an r-by-r nilpotent matrix. Let us partition Y into two blocks: The
top block Y1 and the bottom block Y2, each having r rows. Then the equation
BY Sµ = B′Y gives Y1 = JY1Sµ and Y2Sµ = J ′Y2. Thus Y1 = JY1Sµ =
J2Y1S

2
µ = · · · , so Y1 = 0. Similarly, Y2 = 0. Hence the lemma is proved.

We now show that the construction of Jordan decompositions can be reduced
to the primary case.

Theorem 4.5. Let f = g + h be a Jordan decomposition (g semisimple, h a
null-form) of f ∈ B \ N . Then the primary decompositions of f and g have the
same underlying orthogonal direct vector space decomposition

V = ⊥λ̂∈K̂V λ̂.

Moreover, the restrictions f λ̂, gλ̂ and hλ̂ of f , g and h, respectively, to V λ̂ ×V λ̂

give a Jordan decomposition f λ̂ = gλ̂ + hλ̂.

Proof. Let us assume that the primary components of (V, g) are (V λ̂, gλ̂).
By Proposition 3.4 we have

Z(g) =
∏
λ̂∈K̂

Z(gλ̂) .

Denote by Eg the elementary abelian 2-subgroup of Z(g) consisting of all oper-
ators which leave each V λ̂

g invariant and act on it as ±1.
Let N be the Z(g)-invariant complement of Tg used in the construction of

Jordan decomposition f = g + h. Since N is invariant under the action of Eg,
N must be the direct sum of its intersections with the subspaces B(g; λ̂, µ̂) +
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B(g; µ̂, λ̂). By Lemma 4.4 we have Bg ⊂ Tg, and since N ∩ Tg = 0 we conclude
that

N =
⊕

λ̂

N ∩ B(g, λ̂, λ̂).

Since a nontrivial simple Z(g)-submodule of B(g; λ̂, λ̂) cannot be isomorphic
to a nontrivial simple Z(g)-submodule of B(g; µ̂, µ̂) if λ̂ �= µ̂, we also have

N# =
⊕

λ̂

N# ∩ B(g, λ̂, λ̂).

Now, the fact that h ∈ Ng ⊂ N# implies that the primary decomposition with
respect to g is also orthogonal with respect to h (and consequently f). We can
now define f λ̂ and hλ̂ to be the restrictions of f and h, respectively, to V λ̂ ×V λ̂.

Note that hλ̂ ∈ N# ∩ B(g; λ̂, λ̂) and that, by Proposition 3.2, each gλ̂ is
semisimple. Hence, Z(gλ̂) is reductive and we can choose Z(gλ̂)-invariant sub-
space Nλ̂ ⊃ N# ∩ B(g; λ̂, λ̂) such that

B(g; λ̂, λ̂) = Tgλ̂ ⊕ Nλ̂.

By the Hilbert–Mumford criterion (see [8, Theorem 5.2]) there exists a 1-
dimensional torus X(t) ⊂ Z(g) such that 0 ∈ X(t) · h. If Xλ̂(t) is the image
of X(t) under the projection Z(g) → Z(gλ̂), then Xλ̂(t) · gλ̂ = gλ̂. It follows

that Xλ̂(t) ∈ SL(V λ̂). Since 0 ∈ Xλ̂(t) · hλ̂, we conclude that hλ̂ ∈ Ngλ̂ and,

consequently, gλ̂ ∈ Cf λ̂ .

It is now easy to verify that f λ̂ = gλ̂ + hλ̂ is a Jordan decomposition of f λ̂.
Hence, V λ̂

g = V λ̂
f for each λ̂ and the proof is completed.

We shall now prove the converse.

Theorem 4.6. Let (3.3) be the primary decomposition of f ∈ B \ N . If f λ̂ =
gλ̂ + hλ̂, λ̂ ∈ K̂, are Jordan decompositions (gλ̂ semisimple, hλ̂ a null-form),
then

g := ⊥λ̂∈K̂ gλ̂ and h := ⊥λ̂∈K̂ hλ̂

give a Jordan decomposition of f .

Proof. By Proposition 3.2, g is semisimple. By Proposition 3.4, Z(g) is the
direct product of the groups Z(gλ̂), λ̂ ∈ K̂.

Let B(f, λ̂, λ̂) = Tgλ̂ ⊕Ngλ̂ be the decomposition of Z(gλ̂)-modules such that

hλ̂ ∈ Ngλ̂ . By using Lemma 4.4 and the fact that Z(g) is reductive, we can

choose a direct decomposition B = Tg ⊕N of Z(g)-modules such that N ⊃ N#

gλ̂

for each λ̂. Thus h ∈ Ng, proving that f = g +h is a Jordan decomposition.
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We can now prove the uniqueness of Jordan decomposition for semisimple
bilinear forms.

Proposition 4.7. If f ∈ B is semisimple, it has only one Jordan decomposition:
fss = f , fnl = 0.

Proof. We may assume that f �= 0 and so f /∈ N . Let (4.1) be a Jordan
decomposition of f . We have to show that fss = f . In view of Theorem 4.5,
it suffices to consider the primary case, i.e., we may assume that the primary
decomposition (3.4) reduces to V = V λ̂ for some λ̂ ∈ K̂.

Assume first that λ �= ±1. Since f is semisimple, Proposition 3.2 implies that
there exists a basis of V such that

f =
[

0 Im

λIm 0

]
.

If a := b′⊕b−1, where b ∈ GLm, then a ∈ Z(f). By (J3) we also have a ∈ Z(fss).
It follows that

fss =
[

0 µIm

νIm 0

]
for some µ, ν ∈ K. As fnl = f − fss ∈ N , we must have µ = 1 and ν = λ, i.e.,
fss = f .

Next assume that λ = 1. Since f is semisimple, its asymmetry σ = 1, i.e.,
f is symmetric. By using Proposition 3.2, we conclude that we can choose a
basis of V such that f = µIn for some µ ∈ K∗. Hence Z(f) is the orthogonal
group. As Z(f) ⊂ Z(fss), it follows that also fss = νIn for some ν ∈ K∗. As
fnl = f − fss ∈ N , we must have ν = µ, i.e., fss = f .

The case λ = −1 is similar to λ = 1.

5. Jordan decomposition in the primary case

In view of Theorem 4.5 and 4.6, the construction of Jordan decomposition for
bilinear forms f ∈ B \ N has been reduced to the primary case. In this section
we shall assume that f is λ̂-primary.

We start with the case λ �= ±1. Then the indecomposable components of f
are necessarily of type (b1) (see Theorem 2.1). Consequently, n = 2m is even.

It is easy to check that f −λf ′ /∈ N and is 0̂-primary. Let V1 := Rodd(V ) and
V2 := Lodd(V ) with respect to f − λf ′. These subspaces are totally isotropic
for both f and f − λf ′. They have the same dimension and V = V1 ⊕ V2. For
instance, if f is given by the matrix Hn(λ), then V1 resp. V2 is spanned by the
last resp. first m basis vectors of V .

We remark that if also λ �= 0, then V1 resp. V2 is the generalized eigenspace
of the asymmetry σ of f for the eigenvalue 1/λ resp. λ.

Let µ ∈ K ∪{∞}, µ �= λ. We define bilinear forms gµ, hµ ∈ B via “matrices”:

gµ =

[
0 f ′−µf

λ−µ

λ · f−µf ′

λ−µ 0

]
, hµ =

[
0 λf−f ′

λ−µ

µ · λf ′−f
λ−µ 0

]
.(5.1)
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More precisely this means that the subspaces V1 and V2 are totally isotropic with
respect to gµ, the restriction of gµ to V1×V2 coincides with that of (f ′−µf)/(λ−
µ), and the restriction of gµ to V2×V1 coincides with that of λ(f −µf ′)/(λ−µ).
The interpretation of the definition of hµ is similar. If µ = ∞ then one should
interprete the above “matrix” entries in the usual way, e.g. (f ′−µf)/(λ−µ) = f .

We shall prove below that gµ is semisimple, that hµ is a null-form, and that
f = gµ + hµ is a Jordan decomposition.

Theorem 5.1. Let f ∈ B \N be a λ̂-primary bilinear form with λ �= ±1. Then
for µ ∈ K ∪{∞} and µ �= λ, we have a Jordan decomposition f = gµ +hµ where
gµ and hµ are as defined above. Moreover, these exhaust all possible Jordan
decompositions of f .

Proof. Let f = g+h be an arbitrary Jordan decomposition with g semisimple and
h a null-form. By the Canonical Form Theorem, each indecomposable summand
of (V, f) is of type (b1), i.e., its matrix in a suitable basis is H2k(λ) for some
positive integer k. It follows that, with respect to a suitable basis of V , the
matrix of f will be

f =
[

0 Im

λIm + J 0

]
,

where J is a nilpotent matrix in its lower triangular Jordan canonical form.
The stabilizer Z(f) also fixes the form f ′ and the form ϕ := f − λf ′. As

V1 = Rodd
ϕ (V ) and V2 = Lodd

ϕ (V ), V1 and V2 are Z(f)-invariant subspaces. Now
an easy computation shows that

Z(f) =
{[

A 0
0 (A′)−1

]
: A ∈ GLm, AJ = JA

}
.

By (J3), Z(f) fixes g. Hence we must have

g =
[

0 X
Y 0

]
.

Furthermore, a computation shows that A′X = XA′ and AY = Y A for all
A ∈ GLm such that AJ = JA. We conclude that X = ϕ(J)′ and Y = ψ(J) for
some ϕ(t), ψ(t) ∈ K[t].

Since h ∈ N , we deduce that ϕ(0) = 1 and ψ(0) = λ. Hence

ϕ(t) = 1 − tϕ0(t), ψ(t) = λ(1 − tψ0(t)),

for some polynomials ϕ0(t) and ψ0(t). We now see that the matrix of g is
congruent to [

0 Im

λ(Im − Jψ0(J))(Im − Jϕ0(J))−1 0

]
.

It is immediate from Proposition 3.2 that, since g is semisimple and nondegen-
erate, its asymmetry has to be semisimple. We conclude that Jψ0(J) = Jϕ0(J).
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The matrices of g and h are given by:

g =
[

0 Im − J ′ϕ0(J ′)
λ(Im − Jϕ0(J)) 0

]
, h =

[
0 J ′ϕ0(J ′)

J(Im + λϕ0(J)) 0

]
.

If f is semisimple, then J = 0 and so g = f and h = 0 (which agrees with
Proposition 4.7). Hence, we may assume that f is not semisimple, i.e., J �= 0.

For the sake of brevity set P := Im − Jϕ0(J). Further computations show
that

Tg =
{[

x y′P ′

λPy z

]
: y ∈ slm, x, z ∈ glm

}
and

Z(g) =
{[

P−1x′P 0
0 x−1

]
: x ∈ GLm

}
.

If N is a Z(g)-invariant complement of Tg in B, then N is a direct sum of
three simple Z(g)-modules, exactly two of which are 1-dimensional. Hence, we
must have

N# =
{[

0 y′P ′

µPy 0

]
: y ∈ slm

}
, µ ∈ K,

for some fixed µ �= λ or

N# =
{[

0 0
Py 0

]
: y ∈ slm

}
,

in which case we set µ = ∞.
Assuming that µ �= ∞, from h ∈ Ng ⊂ N# we obtain that J(Im + λϕ0(J)) =

µJϕ0(J), i.e.,

J(Im + (λ − µ)ϕ0(J)) = 0.

Since J is nilpotent and nonzero, this equation implies that ϕ0(J) = (µ−λ)−1Im.
Hence

g =
[

0 Im + (λ − µ)−1J ′

λ(Im + (λ − µ)−1J) 0

]
, h = (µ − λ)−1 ·

[
0 J ′

µJ 0

]
.

It is clear that these g and h indeed provide a Jordan decomposition of f .
By comparing with (5.1), we see that g = gµ and h = hµ.
The case µ = ∞ can be treated similarly.

We remark that if f in the above proposition is not semisimple, then the null-
form component hµ is symmetric resp. skew-symmetric iff µ = 1 resp. µ = −1.

Now let us assume that λ = ±1. In this case we have the following, somewhat
unexpected and surprising, result.

Theorem 5.2. Let f ∈ B \N be a λ̂-primary bilinear form with λ = ±1. Then
f has precisely one Jordan decomposition f = fss + fnl. It is given by fss = f+,
fnl = f− if λ = 1 and by fss = f−, fnl = f+ if λ = −1.
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Proof. We shall give the proof for the case λ = 1, the other case being similar.
We have to verify that f = f+ + f− is indeed a Jordan decomposition. The

conditions (J1) and (J3) are clearly satisfied. The condition (J2) follows from
the proof of Proposition 3.1, the fact that Tf+ ⊂ B+, and that we can choose N
to contain B−. It is easy to verify that the decomposition given in the theorem
is indeed a Jordan decomposition. We leave this verification to the reader.

Let f = g + h be a Jordan decomposition of f with g semisimple and h
a null-form. As f is nondegenerate, so is g. Since λ = 1, the indecomposable
summands of f are of type Hk(1) with k divisible by 4 or Γk for odd k. It follows
from Proposition 3.1 that Cf ⊂ B+. Consequently, g ∈ B+ and we conclude that
Z(g) = O(g) and (SLn)g = SO(g). Hence, Tg is a hyperplane in B+. More
precisely,

Tg = {ϕ ∈ B+ : tr(A−1
g Aϕ) = 0},

and we have B+ = Kg⊕Tg. Note that Tg and B− are simple but non-isomorphic
Z(g)-modules. It follows that if N is any Z(g)-invariant subspace of B such that
B = Tg ⊕ N , then N# ⊂ B−. Therefore h ∈ Ng ⊂ N# shows that h ∈ B−. It
follows that g = f+ and h = f−.

The following corollary follows from Theorems 4.5, 5.1 and 5.2.

Corollary 5.3. Let (V, f) = (V1, f1) ⊥ (V2, f2) and let f = g + h be a Jordan
decomposition of f with g = g1 ⊥ g2 semisimple and h = h1 ⊥ h2 a null-form.
Then fi = gi + hi is a Jordan decomposition of fi.
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