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Mathematical Research Letters 11, 615-628 (2004)

HIGHEST WEIGHT IRREDUCIBLE REPRESENTATIONS OF
RANK 2 QUANTUM TORI

S. EswarA Rao AND K. ZHAO

ABSTRACT. For any nonzero ¢ € C (the complex numbers), the rank 2 quan-
tum torus Cj is the skew Laurent polynomial algebra C[titl,tzil] with defining
relations: tot; = qtite and titi_1 = ti_lti = 1. Here we consider C; as the
naturally associated Lie algebra. We add the one dimensional center Ccq and
the outer derivation di to Cy4 to get the extended torus Lie algebra Cy (and
Cq, in a different manner), where we assume ¢ is a primitive m-th root of unity
for Cy. Before this paper, there appeared highest weight representations for Cy
and Cy with only positive integral levels. In this paper, we define the highest
weight irreducible (Z-graded) module V (¢) over Cyq and Cy for any linear map
¢ C[tétl} + Cec1 4+ Cdy — C, thus the central charge (level) can be any complex
numbers. We obtain the necessary and sufficient conditions for V' (¢) to have finite
dimensional weight spaces, thus obtaining a lot of new irreducible weight repre-
sentations for these Lie algebras. The corresponding irreducible Z x Z-graded
modules with finite dimensional weight spaces over Cj are also constructed.

1. Introduction

In the representation theory of infinite dimensional Lie algebras, one of the
main tasks is the construction of the “good” modules. Recently there has been
substantial activity in developing representation theory for higher rank infinite
dimensional Lie algebras, in particular toroidal Lie algebras, and quantum torus
algebras (see [1], [5], [6], [7], [8], [9], [10]).

Unlike rank one algebras (affine and Virasoro), the higher rank infinite dimen-
sional Lie algebras do not possess a triangular decomposition, which makes the
standard construction of the highest weight modules inapplicable. Nonetheless,
there have been found several explicit realizations of representations for these
algebras using the vertex operator approach (see the above mentioned papers).

In the vertex constructions the highest weight is replaced with a module for
the subalgebra of degree zero (the subalgebra is infinite dimensional). Let us
describe in brief these representations from the perspective of the highest weight
modules.

Let G be a complex Z-graded Lie algebra and let G = G~ @ G & Gt be a
decomposition of G relative to the Z-grading, where Z is the ring of integers.
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616 S. ESWARA RAO AND K. ZHAO

The subalgebra G(?) is an infinite-dimensional Lie algebra, not necessarily com-
mutative. We take some natural module V for G(©). Parallel to the construction
of a highest weight module, we let G act on V trivially, and introduce the
induced module

M(V)=Indg oV ~UG)@cV,

where C' is the field of complex numbers. Then M (V) is Z-graded.

The difficulty here is that M (V') will have infinite-dimensional homogeneous
components (and thus will not have a character formula). Nonetheless the ex-
plicit vertex operator constructions show that, in some cases, M (V) indeed has
an irreducible quotient with finite-dimensional homogeneous components. This
situation has been clarified in [6], where it was proved that M (V) has a graded
factor-module M (V') with finite-dimensional components for some V' over some
quantum tori C, defined below in (1.2) and (1.4). Now let us first recall the
definition for C.

Let ¢ € C be nonzero. The rank 2 ¢-quantum torus Cy; which (and higher
rank also) was studied in [11] is the unital associative algebra over C' generated
by tfd,tQjEl and subject to the defining relations

toty = qtaito, tit; ' =t = 1. (1.1)

In this paper we always consider C, as the associated Lie algebra. The reason
we consider only rank 2 quantum torus Lie algebras is the following. In many
references like [2], [8], [9], [10] (but not [6]), higher rank quantum torus Lie
algebras are studied but with the assumption that all the variables except t;
are commutative. Algebras under this assumption essentially have the same
properties which assure that they have the same type representations.

For any a € Z?, we always write a = (ay,as), and denote t* = t{'t3>. For
any a,b € Z*, we define o(a,b) and f(a,b) by

t%° = o(a,b)t**, t%* = f(a, b)t’t".
Then
o(a,b) = ¢™", f(a,b) = ¢*" "%, and
f(a.t) = o(a, b)o(b,a) .

For properties of C,, please refer to [2] or [12]. Define radf = {a € Z°|f(a, Z*)

=1} and
1, if a € radf
0 radf — .
@ 0, otherwise.

Let CNZ'q = Cy®Ccy @ Cd; be the extension of the Lie algebra C; with defining
relations

[t tP] = t24P — 1Pt + datp0q 1 Pajcr, ¥V o,f € Z?, (1.2)

[Cl,ta] =0, [dl,ta + CCl] =ot*, V ae ZZ, (13)
where d4 3,0 is the Kroneker delta.
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If g is a primitive m-th root of unity (we assume that m > 1 otherwise Cj is
commutative, a case which does not concern us), we can similarly add the center
c1 and the outer derivation d; to C; to get the extended torus Lie algebras éq
with defining relations:

[1%,87] = t°47 — 74 + 601,000 4 prad, 4 P erer, YV o8 € ZP, (14)
[Cl,ta] == 0, [dl,ta + CCl] = Oélta. (15)

It is clear that 6’q and 6’q have a Z-gradation with respect to C'd:
Cq = Cy = DrezLi, (1.6)

where L;, = @pngtlftg@(skp(Ccl +Cd,). For a Z-graded module V' = @;c 2 Vi
over Cy or Uy, if it has finite dimensional homogeneous subspaces, i.e., dim V}, <
oo for all k € Z, its character is defined as

chV =) " (dim Vi)z~". (1.7)
keZ

Before this paper, there appeared only highest weight representations with
finite dimensional weight spaces for é’q and éq with level one or other positive
integral levels (see [2], [8], [9], [5], [6]). In this paper, we define the highest
weight irreducible (Z-graded) module V' (¢) over 5'q and 6(1 for any linear map
¢ : C[tE'] + Ccy + Cdy — C, thus the central charge (level) can be any complex
numbers. We obtain the necessary and sufficient conditions for V(¢) to have
finite dimensional weight spaces (Theorems 2.2, 2.4, 2.5), thus obtaining a lot of
new irreducible weight representations. The corresponding irreducible Z x Z-
graded modules with finite dimensional homogeneous subspaces over éq are given

in Section 3.

2. Highest weight representations for 6,1 and éq

In this section we denote L = 6'q (or éq). With respect to the Z-gradation
(1.6), let Ly = @®icz, Li, L = ®i<oLs.
Now we define highest weight modules over L. For any linear map

¢:C[ts'] + Cey + Cdy — C

with ¢(d1) = 0 (this is only for convenience since these values do not affect the
module structure), we define the 1-dimensional (Lo + L4 )-module Cvy via

Livg =0, if i >0; xvg = ¢(J})U0, V x € Lyg. (21)
Then we have the induced L-module
V(¢) = Ind£o+L+CUO =U(L) QU (Ly+Lo) Co,

where U(L) is the universal enveloping algebra of the Lie algebra L. It is clear
that, d; acts diagonally on V(¢), and V(¢) ~ U(L_) as vector spaces. Since
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the O-eigenspace of d; is 1-dimensional, the module V' (¢) has a unique maximal
proper submodule J. Then we obtain the irreducible module

(2.2)

It is clear that V(¢) is uniquely determined by the linear function ¢, and V' (¢) =
Dicz, V_i where

Vi={v e V(s) | div =iv}. (2.3)
Generally, not all weight spaces V; of V(¢) are finite-dimensional.

Theorem 2.1. (a) The module V(¢) over éq has finite dimensional weight
spaces if and only if there exists a nonzero polynomial P(t2) = Y i a;th € C|ts]
with aga, # 0 such that

¢<t’5P(t2) — "tk P(qts) + a_kq) 0,V keZ, (2.4)

and further ¢(c1) = 0 if q is not generic (i.e., q is a root of unity), where a = 0
if k¢ {0,1,...,n}.

(b) Suppose q is a primitive m-th root of unity with m > 1. The module V(¢)
over éq has finite dimensional weight spaces if and only if there exists a nonzero
polynomial P(t2) = Y1 a;th € Clta] with aga, # 0 such that

¢(t’§P(t2) — ¢* 15 P(qt2) + E aicl) =0, VkeZ, (2.5)
i=—k mod m
where ar, =0 if k ¢ {0,1,--- ,n}.
Proof. (a) “=7. Since dimV_; < oo, there exist an s € Z and a nonzero
polynomial P(ty) = > a;th € Clta] with aga, # 0 such that
(715 P(ts)).vo = 0.
Applying t,t5 for any k € Z to the above equation, we obtain that

0 = (t1t5).(t; "5 P(t2))vo = ¢ F (t’§+SP(t2) — " TStETE P(gty) + a,k,sq)vo

= q7k¢<t§+sp(t2) — ¢" T Pgts) + a—k—scl)'U07
to give
¢<t§+5P(t2) — " TStETE P(gty) + a,k,scl) = 0.
If ¢ is a primitive m-th root of 1 where m > 1, and ¢(c;) # 0, by applying ¢t}
to >, bi(t7 "t vy = 0 we deduce that b; = 0, so {(t7 ™t )vo | i € Z} C V_p, is
a linearly independent set, contrary to the assumption. So ¢(c;) = 0 if ¢ is a

primitive m-th root of 1. Thus this direction follows.
“<”. For Vy, we know that

(t’gp(t2) — "tk P(gts) + a_kq).vo —0, V ke Z. (2.6)
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Since for any k,l € Z,
(t1t5).(t, 5P (t2)).vo = " <tk+ZP( 2) — "5 P (qty) +afk7101)’00

= q_k¢(tk+l (t2) — "5 P(qt2) + a—k—lcl)vo =0,
from the irreducibility of V' (¢) we see that
(t7 ' P(ta))vo =0, V I € Z. (2.7)

Note that L_ is generated by L_; and t* € L_ for a € radf, and L, is
generated by L1 and t* € L, for « € radf. For any t* € L_ with o € radf it is
clear that Lt%vg = 0, thus we deduce that t*V = 0 for any « € radf. Further

L\WV_;=V_ 1, VieZ,,

and, if v € V_; where ¢ > 0, satisfies L1v = 0 then v = 0.
Next, by induction on s we show
Claim 1. For anyi:0 < i < s where s € Z, we have nonzero finite sum

Pi(t2) =3 jema g)tj € Clts] such that
(tgp,.(m) — " tEPi(qta) + " Lc1>v =0, ¥V ke Z,
(T HEP(t)) Vo =0, V k€ Z.
Formulae (2.6) and (2.7) ensure the claim for s = 0 with Py = P. Suppose

the claim holds for s. Now let us consider the claim for s + 1.
The first formula in the Claim is equivalent to

(Q(t2) — Q(qt2) + GQ01>~V4 =0, (2.8)

for any Q(t2) € C[tF'] with P;|Q, where ag is the constant term of Q.

Let PS+1(t2) = Ps(th)Ps(t2)Ps(q_lt2) = Z]EZ ;S+1)t] For any k,l €
Z, noticing that Ps(t2)|PS+1(t2), PS(t2)|PS+1(qt2) and Ps(tg)’PS_;'_l(qiltg), by
induction we have

<t2ps+1(t2) — 'ty Pori(gta) + a5 Ve )-(tfltézvfs)
= (t;'th) <tl2Ps+1(t2) — ¢'th P (qta) + a(_sfrl)cl) Vs
+ [t2Ps+1(t2) — ¢'th P (gta) + a5 Ve, tfltﬂ Vs

= (tl_ltlzcﬂ(q*lpsﬂ(q*ltz) —2P41(t2) + qlPs+1(qt2))>V—s =0.

This proves the first formula in Claim 1 for i = s + 1.
Using this newly established formula, for any k,I,r € Z, noticing that
(t7 1 Poq(t2)). Vg = 0, we deduce that

(trt). (7 th Pocr (82)). (7 5 V)
= [tat, 17 Py () (6 V) + (17 b Paa (1)) (183).(1 5 V)
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= [tath, t7 5 Py (b)) (¢ 5 V)
=q " (tg+lPs+1(t2) — TP (gts) + afjj;q) TRV ) =0,

which implies that (t7'thPsy1(t2)).(t7t5V_,) = 0 for all k,l € Z. Thus
(t7 Py 1(t2)).Vos_1 = O for all | € Z. This proves the second formula in
Claim 1 for ¢ = s + 1. By inductive principle, therefore our Claim follows.

From the second formula of Claim 1, we see that
dimV_s_1 <deg Psyq-dimV_g, V s€ Z,.

Thus Part (a) holds.
(b) “=". This is similar to the proof of the corresponding part of (a). We
omit the details.

“<”. If ¢(c1) = 0, this is (a). Next suppose ¢(c1) # 0.

Let H = ®,1qq,Ct"®Cc1®Cdy, L' = [L,L] and K = @, zCt7" ® Ce1 @
Cd;y. Then H, K and L’ are Lie subalgebras of L, L = H + L' with [H, L'] =0,
and K is the standard Heisenberg algebra with the degree operator d;.

Let W = U(H)vg. We see that V. =U(L")U(H)vo,

t“U(H)vg =0, ¥V t*e Ly NL, (2.9)

Claim 2. t7"it] |y = t7|y for alli,j € Z.
We show this claim by induction on W_,,; for k € Z . It is easy to verify
that
(Y — Y Wo) =0, ¥V t* € Ly.
Then (#7¥t5 — tP)Wo = 0, i.e., t7157 |, = t7|ws, -
Suppose t7t5"” | _p = t7""|w_,,, for all k < ko. For any w € W_(541)m, by
computing

() — P w) = (7)) (% (w) = 0, ¥ 1° € Lo,

we see that ¢77¢5" |y, 1 = 7w, Hence Claim 2 follows.
From Claim 2 we know that W = U(K)vg, W is an irreducible K-module,
and

dim Wy, < oo, V ke Z. (2.10)
Let L' =L'NL_and L', = L'N L. It is clear that
Vie= Y. U@TL)iW_py, (2.11)

520, i+mj=k

where U(L")_; = {u € U(L") | [d1,u] = —iu}, and the right hand side of (2.11)
is a finite sum.
Since L’ is generated by L’ ;, and L/, is generated by L7, we deduce that

LL1W—i =W_,_1, Vie Z+,
and, if v € W_; satisfies Ljv = 0, where ¢ > 0, then v = 0.
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From (2.10) and (2.11), it suffices to show that, for any homogeneous u € W,
the L’-module W’ = U(L')u has finite dimensional weight spaces. Since V' is an
irreducible L-module, W’ is an irreducible L’-module.

We simply write W, = U(L')_;u. For W/, from (2.5) we know that

(téP(tg) — "tk P(qty) + Z aicl).u =0, Vke Z. (2.12)
i=—k mod m
Since for any k,l € Z,

(t285). (87 "5 P(t2))u = g " (tISHP(tz) — "5 P(qty) + > “m)“
i=—k—1 mod m

_ q*’w(t’;“P(tz) — T Pgt) + Y aicl)u —0,
i=—k—l mod m
from the irreducibility of W’ we see that
(t7 1 P(ta)u=0, VI € Z. (2.13)

Next, using the same technique as in the proof of Claim 1 by induction on s
we show
Claim 3. For anyi:0 < i < s where s € Z, we have nonzero P;(t2) =

ez agi)t% € Clta] such that

(t’;Pi(tg) — ¢"t5 Pi(qts) + Z aqu)W_i =0, VkeZ,
i=—k mod m

(AP ()W =0, ¥V k€ Z.

Formulae (2.12) and (2.13) ensure the claim for s = 0 with Py = P. Suppose
the claim holds for s. Now let us consider the claim for s 4 1.
The first formula in Claim 3 is equivalent to

(Q(tg) Q)+ Y bicl).W_i —0, (2.14)
i=0 mod m
for any Q(t2) = . b;th with P;|Q.

Let Pyyi(tz) = Pu(at2)Ps(t2)Pi(q 't2) = Xz a1}, For any k1 €
Z, noticing that Py (t2)|Psy1(t2), Ps(t2)|Psi1(qta) and Py(t2)|Psy1(q~t2), by
induction we have

(hPoialts) = dPoilat) + > ol Ve) (W)

i=—1i mod m
= (') (P () — P (at2) + Y al ey )W,
i=—l mod m

+ [tlzpsﬂ(b) — q'ty Py (qta) + Z al* ey, tflté} W_s
i=—l mod m
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= (tf1t§+l(q_lps+1(q_lt2) = 2Psy1(t2) + qlP5+1(qt2)))V_s =0.
This proves the first formula in Claim 3 for ¢ = s+1. Using this newly established
formula, for any k, 1,7 € Z, noticing that (] 'thPsy1(t2)).W_, = 0, we deduce
that
(t1t5). (87t Pasr (2))-(t7 5 W)
= [tath, 7 85 Poga (82))- (8 5 W) + (87 5 Py (t2)).(t15) (17 45 W)
= [tath, 1 5 Pga ()] (6 W)
- q*r(tg+’Ps+1(t2)—qr“tg“Psﬂ(qtz)Jr 3 a§3+1)cl).(t;1t’§w_s) — 0,
i=—r—1l mod m
which implies that (t]'t5Ps 1 (t2)).(t; " t5W_s) = 0 for all k,l € Z. Thus
(t7 Py 1 (t2)). W_s_1 = 0 for all I € Z. This proves the second formula in
Claim 3 for i = s + 1. Therefore our Claim follows.

From the second formula of Claim 3 we see that
dimW_s;_1 <degPsy1-dimW_g, V se Z,.
Thus Part (b) holds. Our theorem follows. O
Theorem 2.2. Suppose q is generic. Then the module V (¢) over 5q :éq has

finite dimensional homogeneous subspaces if and only if there exist a positive
integer v and big, b11, ..., 15,5 s br0, bp1,y ooy bps,. € C) ., € C* such that

(b1 + b117 + ... + b1g, %)l + ... + (bpo + bp1d + ... + by 157

o(t) = o

Vie Z\ {0},
¢(Cl) = b10+b20+...+br0.

Proof. “=". Suppose fi = ¢((1 — ¢*)t}) for i € Z \ {0} and fo = ¢(c1). Then
(2.4) becomes

D aifiri=0, VEkeZ (2.15)
1=0

Suppose aq, ag, ..., a,. are all distinct roots of the equation P(t3) = 0 with multi-
plicity s1 + 1,82+ 1, ..., s,- + 1 respectively. Then by a well-known combinatorial
formula, we know that there exist b1, b11, ..., 015, s br0, br1, ..., bps, € C such
that

fi = (bro+birit...+bis i )i 4.4 (brot+brit...+bys, i )al, ¥V i€ Z. (2.16)
Then, for all i € Z \ {0},
(1—q")o(th) = (bro + bi1i 4 ... + bis, i)t + ...
+(bro + bp1d + ... 4+ bps, i)l and
o(c1) = bro+boo+...4+byo.
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Thus we have the expression for ¢(t3) for i € Z \ {0}, and ¢(cy) in the theorem.
This direction follows.

“<”. Let P(t2) = [[;—,(t2 — a;)**'. By using the above used combinatorial
formula we can easily verify that (2.15) holds, i.e., (2.4) holds. This direction
holds. This completes the proof of this theorem. O

Next we suppose that ¢ is a primitive m-th root of unity with m > 1. We
first establish the following Lemma.

Lemma 2.3. Supposer > 1, ay,as, ...,ar, 31, B2, ..., Br € C with |1]| = |B2] =
.= 8| =1 and B4, Pa, ..., By are pair-wise distinct. If
dim (1] + a2y + ..+ a.B))
VEX, 1—00
erists, then a;y = as = ... = a, = 0, or only one a; ts not zero and the corre-
sponding (3; = 1.

Proof. Suppose only one ay, is not zero, say a; # 0. Then limjez, i—oo 81 = A #
0 exists. From
fid=p1 lim fi=lm fj=A,
1€

Z, i— 00 VEZ, i—00
we deduce that 5, = 1.
We now assume that all a; are not zero and r > 1. Write complex numbers
in polar form: £ = e, b, = pret for 1 < k <r. Then

r

lim (@18} + a2Bs + ... + a,.B.) =  lim (Z pretdeter)y = X e C

1€EZ, i—00 VEZ, i—00 1

exists. For any real number 6 we define 6 to be such a real number that 0 <
0 < 27 and @ = 0 (mod27). Since 0 < 6, < 27 for all i € Z and for all
1 < k <'r, there exists a series of integers {p; }2, such that lim; .., p; = oo and
lim; .o psfi = A1 exists. Similarly there exists a sub-series {h;}22, of {p;}2;
such that im; . h;0; = A\ exists for all 1 < k < r.

Then for any j € Z, we have

r r r
A= lim (E pkehi6k+j0k+wk) — E pk€j9k6>\k+19k+wk — E Pkﬂie)\k+wk-
k=1 k=1 k=1

VEX, 1— 00

It follows that, for all j € Z,

Y BNt = ),

k=1

.
> BruprBieter =,
k=1

.
Y BronBleter = A,
k=1
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The coefficient matrix of the above set of linear equations is a Vandermonde
matrix which is invertible. Thus pkﬂiekk“’k # 0 is independent of j. Therefore
B, = 1 for all 1 < k < r, which is a contradiction. This completes the proof of
this lemma. O

Theorem 2.4. Suppose q is a primitive m-th root of unity, W1y W2, ooy Win
are all the m-th roots of unity with m > 1. Then the module V(¢) over Cy has
finite dimensional weight spaces with respect to dy if and only if there exist a

positive integer r and aq, ..., . € C* whose m-th powers are pair-wise distinct,
105011 53 01515 5 0pg s 0015 s brsy € C for k1 < k <n satisfying

STb =0, vi<i<r j>0
k=1

such that fori € Z \ mZ,

o(t1) = i (bgﬁ)—|—b§li)i+...—|—bglz)1isl)w,ia’i—{—...—l—(b%)—i—bfﬁ)i—i—...—i—bg«];iisr)w,iai
2) = 1—¢t ’
k=1
(25(61) =0.

Proof. “=". Note that ¢(c1) = 0. Suppose f; = ¢((1 — ¢")t) for i € Z. From
Theorem 2.1 we see that

Y aifrii=0,V ke Z. (2.17)
i=0
Then by a well-known combinatorial formula, we know that there exist aq, ..., a, €

C” whose m-th powers are pair-wise distinct, bg’g), bg’i), - bg{z)l, e b%), b%), o b,(j;)r
€ Cfor k: 1 <k <n such that
m
Fo =D 05 0 i b i whad o (00 0 i b i whal, Vi€ Z.
k=1
(2.18)

Replacing i with mi in (2.18) we see that

m

SO +b5 mit 6 (mi) ok (08 + 0 mi ) (mi)*)ad = 0.
k=1

We may assume that |aq| > |asg| > ... > ||, |a1] = |az]| = ... = |ap, | > |, +1]
and 51 > ... > s,, in (2.18). Using the fact lim; ., i*\! = 0 for any A : |\| < 1,
from (2.18) we see that

S O +6E mit 08 (miy a4 (08 8B mit 08 (mi) )l

S

lim 4 y
1— 00 251|O[1|7'

m k 1 m k i
i SO m )l + o+ ST (B may,
1— 00 |Oél‘i '
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Using Lemma 2.3, we deduce that Y ;" , b = = S, bg’fgl = 0. In this

1s1
manner, by repeatedly doing this, we deduce that >, bl(f) =0foralll <I<
r, j > 0.
“<”. Let P(t2) = [y [1i=; (t2 — wra;)* 1. By using the combinatorial
formula we can easily verify that (2.17) is true, i.e., (2.4) holds. This completes
the proof of this theorem. O

Theorem 2.5. Suppose q is a primitive m-th root of unity with m > 1,
W1, W2, ey Wy, are all the m-th roots of unity. Then the module V(¢) over CA;'q has
finite dimensional weight spaces if and only if there exist a positive integer r and
i, ..., o € C* whose m-th powers are pair-wise distinct,

b(k) b(k') .,b(k) b(k') b(k) b(k) cC

10 991175 -+ 016y 9 5 0075 0175 o0y Uy
for k: 1 <k <m such that one of the following holds
(a). Yy 0V =0V 1>1,j>0, and fori € Z\mZ,

o) = i B +b8 i 0P i)t ad 4 (08 468 i ) i ad
2) — 1— qi ’
k=1
P(c1) = 05

(b). ay =1, Zzlzlbl(f) =0V I1>1,5>1 such that fori € Z \ mZ,

StE) = zm: B8 b8 i 0B iy a4 (08 68 i ) i i ad
2) — 1— qi

k=1
oler) = bl

k=1

Proof. For V(¢), if ¢(c1) = 0, this theorem follows directly from Theorem 2.4.
So we now assume that ¢(cy) # 0.

“="_ Suppose f; = ¢((1 — ¢")ty) for i € Z \ mZ and f,, = ¢(c;) forl € Z.
Then (2.5) becomes

Y aifiri=0, VEkeZ. (2.19)
=0

By a well-known combinatorial formula, we know that there exist aq, ..., a,. € C*
whose m-th powers are pair-wise distinct, bglg), bgl;), - bglz)l, - b%), bg’;), - bg;l €
C for k: 1 <k <nsuch that fori € Z,
fo =D b5 0 i 40 i whad b+ (0L b i b i whal. (2.20)
k=1

We deduce that,
o) = i O +08 i 408 iy a4 (0 8 i b i )i al
2) — 1— qi

k=1
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for all t € Z \ mZ, and
=S8 + o) + .+ b))
k=1

m

=3I [0 468 mit 45

W (mi)* ) a0 0 i b (mi) ) am,
k=1

(2.21)
for all i € Z. Since ¢(c1) # 0, we see that

m

oler) = S0 + b5 + .. b)) = A #0.
k=1
Then (2.21) becomes
STI0E + 0 mit 408 (mi)* ) A (08 + 0 mi 4 ) (mi)*)am]
k=1
= \#0, (2.22)

for all i € Z. If all |ay| < 1, it is clear that A = lim;_, oo ( Z;l[(bgk) + b(k)mi +

.+ b(k)( D))o + L+ (b(k) + b(k)mz + ...+ bg;)r( i)*7)a™']) = 0, which is
1mpos:31ble Using the similar dlscussmn as used in the proof of Theorem 2.4, we
deduce that

STb =0, Vi>1,j>1, and
k=1

m
Z[bgﬁ)aml oo+ b®ami=x20, VieZ
k=1

By using Lemma 2.3, we know that one of «; is 1, say a; = 1, and

S by =0, ViI>1.
k=1
Thus we have proved this direction.
“=”. Let P(t2) = [[1, [1;=,(t2 — wxa;)* 1. By using the combinatorial
formula we can easily verify that (2.19) holds, i.e., (2.5) holds. This completes
the proof of this theorem. O

Example 1. If ¢ = 0, then V(¢) is the 1-dimensional trivial module.
Example 2. Let ¢ be generic, ¢(c;) = 0, ¢(t3)) = 0, ¢(t2311) = 1_‘217;1“ for
all i € Z. Then V(¢) has finite dimensional weight spaces.
. 4 g £1
Example 3. Let ¢(c1) = 1, ¢(ty) = { 1797 na 7
1, if ¢ =1

the module V' (¢) over éq has finite dimensional weight spaces. This module has

for all i € Z. Then
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character formula [6]
1

[lien(1—27)
Remark. In Theorem 2.5(b) if » = 1 and s; = 1, then such V(¢) are all the

integrable highest weight modules over the loop Lie algebra (1—?%
[8])-

ch(V(¢)) =

~ g?lm (see

3. Z x Z-graded representations for a]

Since 5q has a natural Z x Z-gradation, it is important to consider Z x Z-
graded modules with finite dimensional homogeneous subspaces. We shall use
a technique in [8, 9] to construct some irreducible Z x Z-graded modules over
L = 6,1 with finite dimensional weight spaces. Note that, with respect to the
powers of £ and ts, 6q has a natural Z x Z-gradation, but 6(1 does not have
such a Z x Z-gradation.

Suppose V(¢) is a L-module constructed in Theorems 2.3 and 2.5. Set

V(p) =V(¢) @ Cly*™).
If we define the action of L as follows:
(tith) (w@y*) = (tith)w) @ y*™*, ¥ u e V(9); i,jk € Z,
(u®y®) = (zu) ®y*, ¥V ueV(g),

where x € Cc; & Cdy for éq, x € Cep & Cdy for éq, then ‘7(¢) becomes an
irreducible Z x Z-graded L-module with finite dimensional weight spaces.

We would like to conclude this paper by asking the following question: in case
the irreducible module V' (¢) has finite dimensional weight spaces, can we have
a precise expression for chV (¢)?
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