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Mathematical Research Letters 11, 615–628 (2004)

HIGHEST WEIGHT IRREDUCIBLE REPRESENTATIONS OF
RANK 2 QUANTUM TORI

S. Eswara Rao and K. Zhao

Abstract. For any nonzero q ∈ C (the complex numbers), the rank 2 quan-

tum torus Cq is the skew Laurent polynomial algebra C[t±1
1 , t±1

2 ] with defining

relations: t2t1 = qt1t2 and tit
−1
i = t−1

i ti = 1. Here we consider Cq as the
naturally associated Lie algebra. We add the one dimensional center Cc1 and

the outer derivation d1 to Cq to get the extended torus Lie algebra C̃q (and

Ĉq , in a different manner), where we assume q is a primitive m-th root of unity

for Ĉq . Before this paper, there appeared highest weight representations for C̃q

and Ĉq with only positive integral levels. In this paper, we define the highest

weight irreducible (ZZ-graded) module V (φ) over C̃q and Ĉq for any linear map

φ : C[t±1
2 ] + Cc1 + Cd1 → C, thus the central charge (level) can be any complex

numbers. We obtain the necessary and sufficient conditions for V (φ) to have finite
dimensional weight spaces, thus obtaining a lot of new irreducible weight repre-
sentations for these Lie algebras. The corresponding irreducible ZZ × ZZ-graded

modules with finite dimensional weight spaces over C̃q are also constructed.

1. Introduction

In the representation theory of infinite dimensional Lie algebras, one of the
main tasks is the construction of the “good” modules. Recently there has been
substantial activity in developing representation theory for higher rank infinite
dimensional Lie algebras, in particular toroidal Lie algebras, and quantum torus
algebras (see [1], [5], [6], [7], [8], [9], [10]).

Unlike rank one algebras (affine and Virasoro), the higher rank infinite dimen-
sional Lie algebras do not possess a triangular decomposition, which makes the
standard construction of the highest weight modules inapplicable. Nonetheless,
there have been found several explicit realizations of representations for these
algebras using the vertex operator approach (see the above mentioned papers).

In the vertex constructions the highest weight is replaced with a module for
the subalgebra of degree zero (the subalgebra is infinite dimensional). Let us
describe in brief these representations from the perspective of the highest weight
modules.

Let G be a complex ZZ-graded Lie algebra and let G = G− ⊕G(0) ⊕G+ be a
decomposition of G relative to the ZZ-grading, where ZZ is the ring of integers.
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616 S. ESWARA RAO AND K. ZHAO

The subalgebra G(0) is an infinite-dimensional Lie algebra, not necessarily com-
mutative. We take some natural module V for G(0). Parallel to the construction
of a highest weight module, we let G+ act on V trivially, and introduce the
induced module

M̃(V ) = IndG
G(0)+G+V � U(G−) ⊗C V,

where C is the field of complex numbers. Then M̃(V ) is ZZ-graded.
The difficulty here is that M̃(V ) will have infinite-dimensional homogeneous

components (and thus will not have a character formula). Nonetheless the ex-
plicit vertex operator constructions show that, in some cases, M̃(V ) indeed has
an irreducible quotient with finite-dimensional homogeneous components. This
situation has been clarified in [6], where it was proved that M̃(V ) has a graded
factor-module M(V ) with finite-dimensional components for some V over some
quantum tori Cq defined below in (1.2) and (1.4). Now let us first recall the
definition for Cq.

Let q ∈ C be nonzero. The rank 2 q-quantum torus Cq which (and higher
rank also) was studied in [11] is the unital associative algebra over C generated
by t±1

1 , t±1
2 and subject to the defining relations

t2t1 = qt1t2, tit
−1
i = t−1

i ti = 1. (1.1)

In this paper we always consider Cq as the associated Lie algebra. The reason
we consider only rank 2 quantum torus Lie algebras is the following. In many
references like [2], [8], [9], [10] (but not [6]), higher rank quantum torus Lie
algebras are studied but with the assumption that all the variables except t1
are commutative. Algebras under this assumption essentially have the same
properties which assure that they have the same type representations.

For any a ∈ ZZ2, we always write a = (a1, a2), and denote ta = ta1
1 ta2

2 . For
any a, b ∈ ZZ2, we define σ(a, b) and f(a, b) by

tatb = σ(a, b)ta+b, tatb = f(a, b)tbta.

Then
σ(a, b) = qa2b1 , f(a, b) = qa2b1−a1b2 , and

f(a, b) = σ(a, b)σ(b, a)−1.

For properties of Cq, please refer to [2] or [12]. Define radf = {a ∈ ZZ2|f(a, ZZ2)
= 1} and

δ
α,radf

=

{
1, if α ∈ radf

0, otherwise.

Let C̃q = Cq ⊕Cc1⊕Cd1 be the extension of the Lie algebra Cq with defining
relations

[tα, tβ ] = tαtβ − tβtα + δα+β,0q
−α1α2α1c1, ∀ α, β ∈ ZZ2, (1.2)

[c1, t
α] = 0, [d1, t

α + Cc1] = α1t
α, ∀ α ∈ ZZ2, (1.3)

where δα+β,0 is the Kroneker delta.
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If q is a primitive m-th root of unity (we assume that m > 1 otherwise Cq is
commutative, a case which does not concern us), we can similarly add the center
c1 and the outer derivation d1 to Cq to get the extended torus Lie algebras Ĉq

with defining relations:

[tα, tβ ] = tαtβ − tβtα + δα1+β1,0δα+β,radf
q−α1α2α1c1, ∀ α, β ∈ ZZ2, (1.4)

[c1, t
α] = 0, [d1, t

α + Cc1] = α1t
α. (1.5)

It is clear that C̃q and Ĉq have a ZZ-gradation with respect to Cd1:

C̃q = Ĉq = ⊕k∈ZZLk, (1.6)

where Lk = ⊕p∈ZZCtk1tp2⊕δk,0(Cc1+Cd1). For a ZZ-graded module V = ⊕i∈ZZVk

over C̃q or Ĉq, if it has finite dimensional homogeneous subspaces, i.e., dimVk <
∞ for all k ∈ ZZ, its character is defined as

chV =
∑
k∈ZZ

(dimVk)z−k. (1.7)

Before this paper, there appeared only highest weight representations with
finite dimensional weight spaces for C̃q and Ĉq with level one or other positive
integral levels (see [2], [8], [9], [5], [6]). In this paper, we define the highest
weight irreducible (ZZ-graded) module V (φ) over C̃q and Ĉq for any linear map
φ : C[t±1

2 ] + Cc1 + Cd1 → C, thus the central charge (level) can be any complex
numbers. We obtain the necessary and sufficient conditions for V (φ) to have
finite dimensional weight spaces (Theorems 2.2, 2.4, 2.5), thus obtaining a lot of
new irreducible weight representations. The corresponding irreducible ZZ × ZZ-
graded modules with finite dimensional homogeneous subspaces over C̃q are given
in Section 3.

2. Highest weight representations for C̃q and Ĉq

In this section we denote L = C̃q (or Ĉq). With respect to the ZZ-gradation
(1.6), let L+ = ⊕i∈ZZ+Li, L− = ⊕i<0Li.

Now we define highest weight modules over L. For any linear map

φ : C[t±1
2 ] + Cc1 + Cd1 → C

with φ(d1) = 0 (this is only for convenience since these values do not affect the
module structure), we define the 1-dimensional (L0 + L+)-module Cv0 via

Liv0 = 0, if i > 0; xv0 = φ(x)v0, ∀ x ∈ L0. (2.1)

Then we have the induced L-module

V̄ (φ) = IndL
L0+L+

Cv0 = U(L) ⊗U(L++L0) Cv0,

where U(L) is the universal enveloping algebra of the Lie algebra L. It is clear
that, d1 acts diagonally on V̄ (φ), and V̄ (φ) � U(L−) as vector spaces. Since
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the 0-eigenspace of d1 is 1-dimensional, the module V̄ (φ) has a unique maximal
proper submodule J . Then we obtain the irreducible module

V (φ) =
V̄ (φ)

J
. (2.2)

It is clear that V (φ) is uniquely determined by the linear function φ, and V (φ) =
⊕i∈ZZ+V−i where

Vi = {v ∈ V (φ) | d1v = iv}. (2.3)

Generally, not all weight spaces Vi of V (φ) are finite-dimensional.
Theorem 2.1. (a) The module V (φ) over C̃q has finite dimensional weight

spaces if and only if there exists a nonzero polynomial P (t2) =
∑n

i=0 ait
i
2 ∈ C[t2]

with a0an = 0 such that

φ
(
tk2P (t2) − qktk2P (qt2) + a−kc1

)
= 0, ∀ k ∈ ZZ, (2.4)

and further φ(c1) = 0 if q is not generic (i.e., q is a root of unity), where ak = 0
if k /∈ {0, 1, ..., n}.

(b) Suppose q is a primitive m-th root of unity with m > 1. The module V (φ)
over Ĉq has finite dimensional weight spaces if and only if there exists a nonzero
polynomial P (t2) =

∑n
i=0 ait

i
2 ∈ C[t2] with a0an = 0 such that

φ
(
tk2P (t2) − qktk2P (qt2) +

∑
i≡−k mod m

aic1

)
= 0, ∀ k ∈ ZZ, (2.5)

where ak = 0 if k /∈ {0, 1, · · · , n}.
Proof. (a) “⇒”. Since dimV−1 < ∞, there exist an s ∈ ZZ and a nonzero
polynomial P (t2) =

∑n
i=0 ait

i
2 ∈ C[t2] with a0an = 0 such that

(t−1
1 ts2P (t2)).v0 = 0.

Applying t1t
k
2 for any k ∈ ZZ to the above equation, we obtain that

0 = (t1tk2).(t−1
1 ts2P (t2)).v0 = q−k

(
tk+s
2 P (t2) − qk+stk+s

2 P (qt2) + a−k−sc1

)
v0

= q−kφ
(
tk+s
2 P (t2) − qk+stk+s

2 P (qt2) + a−k−sc1

)
v0,

to give

φ
(
tk+s
2 P (t2) − qk+stk+s

2 P (qt2) + a−k−sc1

)
= 0.

If q is a primitive m-th root of 1 where m ≥ 1, and φ(c1) = 0, by applying tm1 tp2
to

∑
i bi(t−m

1 ti2)v0 = 0 we deduce that bi = 0, so {(t−m
1 ti2)v0 | i ∈ ZZ} ⊂ V−m is

a linearly independent set, contrary to the assumption. So φ(c1) = 0 if q is a
primitive m-th root of 1. Thus this direction follows.

“⇐”. For V0, we know that(
tk2P (t2) − qktk2P (qt2) + a−kc1

)
.v0 = 0, ∀ k ∈ ZZ. (2.6)
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Since for any k, l ∈ ZZ,

(t1tk2).(t−1
1 tl2P (t2)).v0 = q−k

(
tk+l
2 P (t2) − qk+ltk+l

2 P (qt2) + a−k−lc1

)
v0

= q−kφ
(
tk+l
2 P (t2) − qk+ltk+l

2 P (qt2) + a−k−lc1

)
v0 = 0,

from the irreducibility of V (φ) we see that

(t−1
1 tl2P (t2)).v0 = 0, ∀ l ∈ ZZ. (2.7)

Note that L− is generated by L−1 and tα ∈ L− for α ∈ radf , and L+ is
generated by L1 and tα ∈ L+ for α ∈ radf . For any tα ∈ L− with α ∈ radf it is
clear that L+tαv0 = 0, thus we deduce that tαV = 0 for any α ∈ radf . Further

L−1V−i = V−i−1, ∀ i ∈ ZZ+,

and, if v ∈ V−i where i > 0, satisfies L1v = 0 then v = 0.
Next, by induction on s we show
Claim 1. For any i : 0 ≤ i ≤ s where s ∈ ZZ+, we have nonzero finite sum

Pi(t2) =
∑

j∈ZZ a
(i)
j tj2 ∈ C[t2] such that(

tk2Pi(t2) − qktk2Pi(qt2) + a
(i)
−kc1

)
V−i = 0, ∀ k ∈ ZZ,

(t−1
1 tk2Pi(t2))V−i = 0, ∀ k ∈ ZZ.

Formulae (2.6) and (2.7) ensure the claim for s = 0 with P0 = P . Suppose
the claim holds for s. Now let us consider the claim for s + 1.

The first formula in the Claim is equivalent to(
Q(t2) − Q(qt2) + aQc1

)
.V−i = 0, (2.8)

for any Q(t2) ∈ C[t±1
2 ] with Pi|Q, where aQ is the constant term of Q.

Let Ps+1(t2) = Ps(qt2)Ps(t2)Ps(q−1t2) =
∑

j∈ZZ a
(s+1)
j tj2. For any k, l ∈

ZZ, noticing that Ps(t2)|Ps+1(t2), Ps(t2)|Ps+1(qt2) and Ps(t2)|Ps+1(q−1t2), by
induction we have(

tl2Ps+1(t2) − qltl2Ps+1(qt2) + a
(s+1)
−l c1

)
.(t−1

1 tk2V−s)

= (t−1
1 tk2)

(
tl2Ps+1(t2) − qltl2Ps+1(qt2) + a

(s+1)
−l c1

)
.V−s

+
[
tl2Ps+1(t2) − qltl2Ps+1(qt2) + a

(s+1)
−l c1, t

−1
1 tk2

]
V−s

=
(
t−1
1 tk+l

2 (q−lPs+1(q−1t2) − 2Ps+1(t2) + qlPs+1(qt2))
)
V−s = 0.

This proves the first formula in Claim 1 for i = s + 1.
Using this newly established formula, for any k, l, r ∈ ZZ, noticing that

(t−1
1 tl2Ps+1(t2)).V−s = 0, we deduce that

(t1tr2).(t
−1
1 tl2Ps+1(t2)).(t−1

1 tk2V−s)

= [t1tr2, t
−1
1 tl2Ps+1(t2)].(t−1

1 tk2V−s) + (t−1
1 tl2Ps+1(t2)).(t1tr2).(t

−1
1 tk2V−s)
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= [t1tr2, t
−1
1 tl2Ps+1(t2)].(t−1

1 tk2V−s)

= q−r
(
tr+l
2 Ps+1(t2) − qr+ltr+l

2 Ps+1(qt2) + a
(s+1)
−r−l c1

)
.(t−1

1 tk2V−s) = 0,

which implies that (t−1
1 tl2Ps+1(t2)).(t−1

1 tk2V−s) = 0 for all k, l ∈ ZZ. Thus
(t−1

1 tl2Ps+1(t2)).V−s−1 = 0 for all l ∈ ZZ. This proves the second formula in
Claim 1 for i = s + 1. By inductive principle, therefore our Claim follows.

From the second formula of Claim 1, we see that

dimV−s−1 ≤ deg Ps+1 · dimV−s, ∀ s ∈ ZZ+.

Thus Part (a) holds.
(b) “⇒”. This is similar to the proof of the corresponding part of (a). We

omit the details.

“⇐”. If φ(c1) = 0, this is (a). Next suppose φ(c1) = 0.
Let H = ⊕

α∈radfCtα ⊕Cc1 ⊕Cd1, L′ = [L, L] and K = ⊕i∈ZZCtim1 ⊕Cc1 ⊕
Cd1. Then H, K and L′ are Lie subalgebras of L, L = H + L′ with [H, L′] = 0,
and K is the standard Heisenberg algebra with the degree operator d1.

Let W = U(H)v0. We see that V = U(L′)U(H)v0,

tαU(H)v0 = 0, ∀ tα ∈ L+ ∩ L′, (2.9)

Claim 2. tmi
1 tmj

2 |W = tmi
1 |W for all i, j ∈ ZZ.

We show this claim by induction on W−mk for k ∈ ZZ+. It is easy to verify
that

tα((tmi
1 tmj

2 − tmi
1 )W0) = 0, ∀ tα ∈ L+.

Then (tmi
1 tmj

2 − tmi
1 )W0 = 0, i.e., tmi

1 tmj
2 |W0 = tmi

1 |W0 .
Suppose tmi

1 tmj
2 |−mk = tmi

1 |W−km
for all k ≤ k0. For any w ∈ W−(k+1)m, by

computing

tα((tmi
1 tmj

2 ) − tmi
1 )w) = (tmi

1 tmj
2 ) − tmi

1 )(tα(w)) = 0, ∀ tα ∈ L+,

we see that tmi
1 tmj

2 |Wk+1 = tmi
1 |Wk+1 . Hence Claim 2 follows.

From Claim 2 we know that W = U(K)v0, W is an irreducible K-module,
and

dimWmk < ∞, ∀ k ∈ ZZ. (2.10)

Let L′
− = L′ ∩ L− and L′

+ = L′ ∩ L+. It is clear that

V−k =
∑

j≥0, i+mj=k

U(L′
−)−iW−mj , (2.11)

where U(L′
−)−i = {u ∈ U(L′

−) | [d1, u] = −iu}, and the right hand side of (2.11)
is a finite sum.

Since L′
− is generated by L′

−1, and L′
+ is generated by L′

1, we deduce that

L′
−1W−i = W−i−1, ∀ i ∈ ZZ+,

and, if v ∈ W−i satisfies L′
1v = 0, where i > 0, then v = 0.
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From (2.10) and (2.11), it suffices to show that, for any homogeneous u ∈ W ,
the L′-module W ′ = U(L′)u has finite dimensional weight spaces. Since V is an
irreducible L-module, W ′ is an irreducible L′-module.

We simply write W ′
−i = U(L′)−iu. For W ′

0, from (2.5) we know that(
tk2P (t2) − qktk2P (qt2) +

∑
i≡−k mod m

aic1

)
.u = 0, ∀ k ∈ ZZ. (2.12)

Since for any k, l ∈ ZZ,

(t1tk2).(t−1
1 tl2P (t2)).u = q−k

(
tk+l
2 P (t2) − qk+ltk+l

2 P (qt2) +
∑

i≡−k−l mod m

aic1

)
u

= q−kφ
(
tk+l
2 P (t2) − qk+ltk+l

2 P (qt2) +
∑

i≡−k−l mod m

aic1

)
u = 0,

from the irreducibility of W ′ we see that

(t−1
1 tl2P (t2)).u = 0, ∀ l ∈ ZZ. (2.13)

Next, using the same technique as in the proof of Claim 1 by induction on s
we show

Claim 3. For any i : 0 ≤ i ≤ s where s ∈ ZZ+, we have nonzero Pi(t2) =∑
j∈ZZ a

(i)
j tj2 ∈ C[t2] such that(
tk2Pi(t2) − qktk2Pi(qt2) +

∑
i≡−k mod m

a
(i)
−kc1

)
W−i = 0, ∀ k ∈ ZZ,

(t−1
1 tk2Pi(t2))W−i = 0, ∀ k ∈ ZZ.

Formulae (2.12) and (2.13) ensure the claim for s = 0 with P0 = P . Suppose
the claim holds for s. Now let us consider the claim for s + 1.

The first formula in Claim 3 is equivalent to(
Q(t2) − Q(qt2) +

∑
i≡0 mod m

bic1

)
.W−i = 0, (2.14)

for any Q(t2) =
∑

bit
i
2 with Pi|Q.

Let Ps+1(t2) = Ps(qt2)Ps(t2)Ps(q−1t2) =
∑

j∈ZZ a
(s+1)
j tj2. For any k, l ∈

ZZ, noticing that Ps(t2)|Ps+1(t2), Ps(t2)|Ps+1(qt2) and Ps(t2)|Ps+1(q−1t2), by
induction we have(

tl2Ps+1(t2) − qltl2Ps+1(qt2) +
∑

i≡−l mod m

a
(s+1)
i c1

)
.(t−1

1 tk2W−s)

= (t−1
1 tk2)

(
tl2Ps+1(t2) − qltl2Ps+1(qt2) +

∑
i≡−l mod m

a
(s+1)
i c1

)
.W−s

+
[
tl2Ps+1(t2) − qltl2Ps+1(qt2) +

∑
i≡−l mod m

a
(s+1)
i c1, t

−1
1 tk2

]
W−s
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=
(
t−1
1 tk+l

2 (q−lPs+1(q−1t2) − 2Ps+1(t2) + qlPs+1(qt2))
)
V−s = 0.

This proves the first formula in Claim 3 for i = s+1. Using this newly established
formula, for any k, l, r ∈ ZZ, noticing that (t−1

1 tl2Ps+1(t2)).W−s = 0, we deduce
that

(t1tr2).(t
−1
1 tl2Ps+1(t2)).(t−1

1 tk2W−s)

= [t1tr2, t
−1
1 tl2Ps+1(t2)].(t−1

1 tk2W−s) + (t−1
1 tl2Ps+1(t2)).(t1tr2).(t

−1
1 tk2W−s)

= [t1tr2, t
−1
1 tl2Ps+1(t2)].(t−1

1 tk2W−s)

= q−r
(
tr+l
2 Ps+1(t2)−qr+ltr+l

2 Ps+1(qt2)+
∑

i≡−r−l mod m

a
(s+1)
i c1

)
.(t−1

1 tk2W−s) = 0,

which implies that (t−1
1 tl2Ps+1(t2)).(t−1

1 tk2W−s) = 0 for all k, l ∈ ZZ. Thus
(t−1

1 tl2Ps+1(t2)).W−s−1 = 0 for all l ∈ ZZ. This proves the second formula in
Claim 3 for i = s + 1. Therefore our Claim follows.

From the second formula of Claim 3 we see that

dimW−s−1 ≤ deg Ps+1 · dimW−s, ∀ s ∈ ZZ+.

Thus Part (b) holds. Our theorem follows.

Theorem 2.2. Suppose q is generic. Then the module V (φ) over C̃q=Ĉq has
finite dimensional homogeneous subspaces if and only if there exist a positive
integer r and b10, b11, ..., b1s1 , ..., br0, br1, ..., brsr ∈ C, α1, ..., αr ∈ C∗ such that

φ(ti2) =
(b10 + b11i + ... + b1s1i

s1)αi
1 + ... + (br0 + br1i + ... + brsr i

sr )αi
r

1 − qi
,

∀ i ∈ ZZ \ {0},
φ(c1) = b10+b20+...+br0.

Proof. “⇒”. Suppose fi = φ((1 − qi)ti2) for i ∈ ZZ \ {0} and f0 = φ(c1). Then
(2.4) becomes

n∑
i=0

aifk+i = 0, ∀ k ∈ ZZ. (2.15)

Suppose α1, α2, ..., αr are all distinct roots of the equation P (t2) = 0 with multi-
plicity s1 +1, s2 +1, ..., sr +1 respectively. Then by a well-known combinatorial
formula, we know that there exist b10, b11, ..., b1s1 , ..., br0, br1, ..., brsr ∈ C such
that

fi = (b10+b11i+...+b1s1i
s1)αi

1+...+(br0+br1i+...+brsr
isr )αi

r, ∀ i ∈ ZZ. (2.16)

Then, for all i ∈ ZZ \ {0},
(1 − qi)φ(ti2) = (b10 + b11i + ... + b1s1i

s1)αi
1 + ...

+(br0 + br1i + ... + brsr
isr )αi

r, and
φ(c1) = b10+b20+...+br0.
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Thus we have the expression for φ(ti2) for i ∈ ZZ \ {0}, and φ(c1) in the theorem.
This direction follows.

“⇐”. Let P (t2) =
∏r

i=1(t2 −αi)si+1. By using the above used combinatorial
formula we can easily verify that (2.15) holds, i.e., (2.4) holds. This direction
holds. This completes the proof of this theorem.

Next we suppose that q is a primitive m-th root of unity with m > 1. We
first establish the following Lemma.

Lemma 2.3. Suppose r > 1, a1, a2, ..., ar, β1, β2, ..., βr ∈ C with |β1| = |β2| =
... = |βr| = 1 and β1, β2, ..., βr are pair-wise distinct. If

lim
i∈ZZ, i→∞

(a1β
i
1 + a2β

i
2 + ... + arβ

i
r)

exists, then a1 = a2 = ... = ar = 0, or only one ai is not zero and the corre-
sponding βi = 1.

Proof. Suppose only one ak is not zero, say a1 = 0. Then limi∈ZZ, i→∞ βi
1 = λ =

0 exists. From
β1λ = β1 lim

i∈ZZ, i→∞
βi

1 = lim
i∈ZZ, i→∞

βi
1 = λ,

we deduce that β1 = 1.
We now assume that all ak are not zero and r > 1. Write complex numbers

in polar form: βk = eθk , bk = ρkeωk for 1 ≤ k ≤ r. Then

lim
i∈ZZ, i→∞

(a1β
i
1 + a2β

i
2 + ... + arβ

i
r) = lim

i∈ZZ, i→∞
(

r∑
k=1

ρkeiθk+ωk) = λ ∈ C

exists. For any real number θ we define θ to be such a real number that 0 ≤
θ < 2π and θ ≡ θ (mod2π). Since 0 ≤ iθk < 2π for all i ∈ ZZ and for all
1 ≤ k ≤ r, there exists a series of integers {pi}∞i=1 such that limi→∞ pi = ∞ and
limi→∞ piθ1 = λ1 exists. Similarly there exists a sub-series {hi}∞i=1 of {pi}∞i=1

such that limi→∞ hiθk = λk exists for all 1 ≤ k ≤ r.
Then for any j ∈ ZZ, we have

λ = lim
i∈ZZ, i→∞

(
r∑

k=1

ρkehiθk+jθk+ωk) =
r∑

k=1

ρkejθkeλk+jθk+ωk =
r∑

k=1

ρkβj
keλk+ωk .

It follows that, for all j ∈ ZZ,
r∑

k=1

ρkβj
keλk+ωk = λ,

r∑
k=1

βkρkβj
keλk+ωk = λ,

......
r∑

k=1

βr
kρkβj

keλk+ωk = λ.
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The coefficient matrix of the above set of linear equations is a Vandermonde
matrix which is invertible. Thus ρkβj

keλk+ωk = 0 is independent of j. Therefore
βk = 1 for all 1 ≤ k ≤ r, which is a contradiction. This completes the proof of
this lemma.

Theorem 2.4. Suppose q is a primitive m-th root of unity, ω1, ω2, ..., ωm

are all the m-th roots of unity with m > 1. Then the module V (φ) over C̃q has
finite dimensional weight spaces with respect to d1 if and only if there exist a
positive integer r and α1, ..., αr ∈ C∗ whose m-th powers are pair-wise distinct,
b
(k)
10 , b

(k)
11 , ..., b

(k)
1s1

, ..., b
(k)
r0 , b

(k)
r1 , ..., b

(k)
rsr ∈ C for k : 1 ≤ k ≤ n satisfying

m∑
k=1

b
(k)
lj = 0, ∀ 1 ≤ l ≤ r, j ≥ 0

such that for i ∈ ZZ \ mZZ,

φ(ti2) =
m∑

k=1

(b(k)
10 +b

(k)
11 i+...+b

(k)
1s1

is1)ωi
kαi

1+...+(b(k)
r0 +b

(k)
r1 i+...+b

(k)
rsr i

sr )ωi
kαi

r

1 − qi
,

φ(c1) = 0.

Proof. “⇒”. Note that φ(c1) = 0. Suppose fi = φ((1 − qi)ti2) for i ∈ ZZ. From
Theorem 2.1 we see that

n∑
i=0

aifk+i = 0, ∀ k ∈ ZZ. (2.17)

Then by a well-known combinatorial formula, we know that there exist α1, ..., αr ∈
C∗ whose m-th powers are pair-wise distinct, b

(k)
10 , b

(k)
11 , ..., b

(k)
1s1

, ..., b
(k)
r0 , b

(k)
r1 , ..., b

(k)
rsr

∈ C for k : 1 ≤ k ≤ n such that

fi =
m∑

k=1

(b(k)
10 +b

(k)
11 i+...+b

(k)
1s1

is1)ωi
kαi

1+...+(b(k)
r0 +b

(k)
r1 i+...+b(k)

rsr
isr )ωi

kαi
r, ∀ i∈ZZ.

(2.18)
Replacing i with mi in (2.18) we see that
m∑

k=1

(b(k)
10 +b

(k)
11 mi+...+b

(k)
1s1

(mi)s1)αi
1+...+(b(k)

r0 +b
(k)
r1 mi+...+b(k)

rsr
(mi)sr )αi

r = 0.

We may assume that |α1| ≥ |α2| ≥ ... ≥ |αr|, |α1| = |α2| = ... = |αr1 | > |αr1+1|
and s1 ≥ ... ≥ sr1 in (2.18). Using the fact limi→∞ ikλi = 0 for any λ : |λ| < 1,
from (2.18) we see that

lim
i→∞

∑m
k=1(b

(k)
10 +b

(k)
11 mi+...+b

(k)
1s1

(mi)s1)αi
1+...+(b(k)

r0 +b
(k)
r1 mi+...+b

(k)
rsr (mi)sr )αi

r

is1 |α1|i

= lim
i→∞

∑m
k=1(b

(k)
1s1

ms1)αi
1 + ... +

∑m
k=1(b

(k)
r1s1m

s1)αi
r1

|α1|i = 0.
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Using Lemma 2.3, we deduce that
∑m

k=1 b
(k)
1s1

= ... =
∑m

k=1 b
(k)
r1s1 = 0. In this

manner, by repeatedly doing this, we deduce that
∑m

k=1 b
(k)
lj = 0 for all 1 ≤ l ≤

r, j ≥ 0.
“⇐”. Let P (t2) =

∏m
k=1

∏r
i=1(t2 − ωkαi)si+1. By using the combinatorial

formula we can easily verify that (2.17) is true, i.e., (2.4) holds. This completes
the proof of this theorem.

Theorem 2.5. Suppose q is a primitive m-th root of unity with m > 1,
ω1, ω2, ..., ωm are all the m-th roots of unity. Then the module V (φ) over Ĉq has
finite dimensional weight spaces if and only if there exist a positive integer r and
α1, ..., αr ∈ C∗ whose m-th powers are pair-wise distinct,

b
(k)
10 , b

(k)
11 , ..., b

(k)
1s1

, ..., b
(k)
r0 , b

(k)
r1 , ..., b(k)

rsr
∈ C

for k : 1 ≤ k ≤ m such that one of the following holds
(a).

∑m
k=1 b

(k)
lj = 0 ∀ l ≥ 1, j ≥ 0, and for i ∈ ZZ \ mZZ,

φ(ti2) =
m∑

k=1

(b(k)
10 +b

(k)
11 i+...+b

(k)
1s1

is1)ωi
kαi

1+...+(b(k)
r0 +b

(k)
r1 i+...+b

(k)
rsr i

sr )ωi
kαi

r

1 − qi
,

φ(c1) = 0;

(b). α1 = 1,
∑m

k=1 b
(k)
lj = 0 ∀ l ≥ 1, j ≥ 1 such that for i ∈ ZZ \ mZZ,

φ(ti2) =
m∑

k=1

(b(k)
10 +b

(k)
11 i+...+b

(k)
1s1

is1)ωi
kαi

1+...+(b(k)
r0 +b

(k)
r1 i+...+b

(k)
rsr i

sr )ωi
kαi

r

1 − qi
,

φ(c1) =
m∑

k=1

b
(k)
10 .

Proof. For V (φ), if φ(c1) = 0, this theorem follows directly from Theorem 2.4.
So we now assume that φ(c1) = 0.

“⇒”. Suppose fi = φ((1 − qi)ti2) for i ∈ ZZ \ mZZ and flm = φ(c1) for l ∈ ZZ.
Then (2.5) becomes

n∑
i=0

aifk+i = 0, ∀ k ∈ ZZ. (2.19)

By a well-known combinatorial formula, we know that there exist α1, ..., αr ∈ C∗

whose m-th powers are pair-wise distinct, b
(k)
10 , b

(k)
11 , ..., b

(k)
1s1

, ..., b
(k)
r0 , b

(k)
r1 , ..., b

(k)
rsr ∈

C for k : 1 ≤ k ≤ n such that for i ∈ ZZ,

fi =
m∑

k=1

(b(k)
10 +b

(k)
11 i+...+b

(k)
1s1

is1)ωi
kαi

1+...+(b(k)
r0 +b

(k)
r1 i+...+b(k)

rsr
isr )ωi

kαi
r. (2.20)

We deduce that,

φ(ti2) =
m∑

k=1

(b(k)
10 +b

(k)
11 i+...+b

(k)
1s1

is1)ωi
kαi

1+...+(b(k)
r0 +b

(k)
r1 i+...+b

(k)
rsr i

sr )ωi
kαi

r

1 − qi
,
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for all i ∈ ZZ \ mZZ, and

φ(c1) =
m∑

k=1

(b(k)
10 + b

(k)
20 + ... + b

(k)
r0 )

=
m∑

k=1

[(b(k)
10 +b

(k)
11 mi+...+b

(k)
1s1

(mi)s1)αmi
1 +...+(b(k)

r0 +b
(k)
r1 mi+...+b(k)

rsr
(mi)sr )αmi

r ],

(2.21)
for all i ∈ ZZ. Since φ(c1) = 0, we see that

φ(c1) =
m∑

k=1

(b(k)
10 + b

(k)
20 + ... + b

(k)
r0 ) = λ = 0.

Then (2.21) becomes
m∑

k=1

[(b(k)
10 +b

(k)
11 mi+ ...+b

(k)
1s1

(mi)s1)αmi
1 + ...+(b(k)

r0 +b
(k)
r1 mi+ ...+b(k)

rsr
(mi)sr )αmi

r ]

= λ = 0, (2.22)

for all i ∈ ZZ. If all |αi| < 1, it is clear that λ = limi→∞(
∑m

k=1[(b
(k)
10 + b

(k)
11 mi +

... + b
(k)
1s1

(mi)s1)αmi
1 + ... + (b(k)

r0 + b
(k)
r1 mi + ... + b

(k)
rsr (mi)sr )αmi

r ]) = 0, which is
impossible. Using the similar discussion as used in the proof of Theorem 2.4, we
deduce that

m∑
k=1

b
(k)
lj = 0, ∀ l ≥ 1, j ≥ 1, and

m∑
k=1

[b(k)
10 αmi

1 + ... + b
(k)
r0 αmi

r ] = λ = 0, ∀ i ∈ ZZ.

By using Lemma 2.3, we know that one of αj is 1, say α1 = 1, and
m∑

k=1

b
(k)
l0 = 0, ∀ l > 1.

Thus we have proved this direction.
“⇐”. Let P (t2) =

∏m
k=1

∏r
i=1(t2 − ωkαi)si+1. By using the combinatorial

formula we can easily verify that (2.19) holds, i.e., (2.5) holds. This completes
the proof of this theorem.

Example 1. If φ = 0, then V (φ) is the 1-dimensional trivial module.

Example 2. Let q be generic, φ(c1) = 0, φ(t2i
2 ) = 0, φ(t2i+1

2 ) = a−i

1−q2i+1 for
all i ∈ ZZ. Then V (φ) has finite dimensional weight spaces.

Example 3. Let φ(c1) = 1, φ(ti2) =

{
q−i

1−qi , if qi = 1
1, if qi = 1

for all i ∈ ZZ. Then

the module V (φ) over Ĉq has finite dimensional weight spaces. This module has
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character formula [6]

ch(V (φ)) =
1∏

i∈IN (1 − z−i)
.

Remark. In Theorem 2.5(b) if r = 1 and s1 = 1, then such V (φ) are all the

integrable highest weight modules over the loop Lie algebra Ĉq

(1−tm
2 )Cq

� ĝlm (see
[8]).

3. ZZ × ZZ-graded representations for C̃q

Since C̃q has a natural ZZ ×ZZ-gradation, it is important to consider ZZ ×ZZ-
graded modules with finite dimensional homogeneous subspaces. We shall use
a technique in [8, 9] to construct some irreducible ZZ × ZZ-graded modules over
L = C̃q with finite dimensional weight spaces. Note that, with respect to the
powers of t1 and t2, C̃q has a natural ZZ × ZZ-gradation, but Ĉq does not have
such a ZZ × ZZ-gradation.

Suppose V (φ) is a L-module constructed in Theorems 2.3 and 2.5. Set

V̂ (φ) = V (φ) ⊗ C[y±1].

If we define the action of L̂ as follows:

(ti1t
j
2)(u ⊗ yk) = ((ti1t

j
2)u) ⊗ yk+j , ∀ u ∈ V (φ); i, j, k ∈ ZZ,

x(u ⊗ yk) = (xu) ⊗ yk, ∀ u ∈ V (φ),

where x ∈ Cc1 ⊕ Cd1 for Ĉq, x ∈ Cc1 ⊕ Cd1 for C̃q, then V̂ (φ) becomes an
irreducible ZZ × ZZ-graded L-module with finite dimensional weight spaces.

We would like to conclude this paper by asking the following question: in case
the irreducible module V (φ) has finite dimensional weight spaces, can we have
a precise expression for chV (φ)?
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