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INFINITE-DIMENSIONAL LIE ALGEBRAS
OF GENERALIZED BLOCK TYPE

J. MARSHALL OSBORN AND KAIMING ZHAO

(Communicated by Lance W. Small)

Abstract. This paper investigates a class of infinite-dimensional Lie algebras
over a field of characteristic 0 which are called here Lie algebras of generalized
Block type, and which genereralize a class of Lie algebras originally defined by
Richard Block. Under certain natural restrictions, this class of Lie algebras
is shown to break into five subclasses. One of these subclasses contains all
generalized Cartan type K Lie algebras and some Lie algebras of generalized
Cartan type H, and a second one is the class of Lie algebras of type L, which
were previously defined and studied elsewhere by the authors. The other three
types are hybrids of the first two types, and are new.

1. Introduction

Let A be a torsion free abelian group, let F be a field of characteristic 0, and let
I = {0, 1, . . . , n}. For each i ∈ I, let the maps φi : A×A → F be nonzero, and let
δi for i ∈ I be distinct elements of A. Set δ = (δ0, . . . , δn) and φ = (φ0, . . . , φn).
Let L = L(A, δ, φ) be the F -algebra with basis {ex|x ∈ A} and with the product

[ex, ey] =
n∑

i=0

φi(x, y)ex+y−δi .(1.1)

If L is a Lie algebra, we call it a Lie algebra of generalized Block type. This is an
obvious generalization of the class of algebras defined by Block in [B2], as well as
the Lie algebras of type L and generalized types H , K studied in our papers [OZ1],
[OZ2] and [OZ3].

A function f(x, y) from A2 to F is called monomial in variables x and y if there
exists a nonzero multi-additive function g(x1, . . . , xn; y1, . . . , ym) such that f(x, y)
is obtained from g by setting x1 = · · · = xn = x and y1 = · · · = ym = y. A
function f(x, y) from A2 to F is polynomial in variables x and y if it is a sum of
monomial functions. We say that a function f(x, y) from A2 to F is additive if
f(x, y) = g(x− y) for some additive map g.

Define ker(φi) = {x ∈ A|φi(x, y) = 0 for all y ∈ A} for i ∈ I. We shall
assume throughout in this paper that:

(A) the functions φi are polynomial;
(B) δi + δj = δk + δ` ⇒ {i, j} = {k, `} where {i, j} denotes the set with i and j

as its two elements; and
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1642 J. MARSHALL OSBORN AND KAIMING ZHAO

(C) δi 6∈ ker(φi) for i ∈ I.
For any additive maps α, β : A → F we shall denote the vector space spanned

by α, β by 〈α, β〉. We shall define the function α ∧ β : A2 → F by (α ∧ β)(x, y) =
α(x)β(y)−α(y)β(x) for all x, y ∈ A. Our main result in this paper is the following:

Theorem 1.1. Suppose that L(A, δ, φ) is an algebra defined in (1.1) satisfying
Conditions (A), (B) and (C). Then L is a Lie algebra, if and only if, there ex-
ist additive maps αi, βi, gi : A → F with gi ∈ 〈αi, βi〉 such that φi(x, y) =
αi ∧ βi(x, y) + gi(x− y) for all i ∈ I, and one of the following holds:

(I) all φi(x, y) = gi(x− y) for i ∈ I;
(II) I = I1 ∪ I2, each φi for i ∈ I1 is a multiple of an additive map g : A → F

with g(δi − δj) = 0 for all i, j ∈ I, and there exists an additive map β : A → F
with β(δi − δj) = 0 for all i, j ∈ I such that αj ∧ βj ∈ Fg ∧ β for each j ∈ I2;

(III) I = I1 ∪ I2, each φi for i ∈ I1 is a multiple of an additive map g : A → F
with g(δi − δj) = 0 for all i, j ∈ I, and there exists b ∈ F and for each j ∈ I2 there
exist aj ∈ F and an additive map βj : A → F such that φj(x, y) = g ∧ βj(x, y) +
ajα(x − y) + bβj(x− y);

(IV) I = I1∪I2, each φi(x, y) = gi(x−y) with gi(δi−δj) = 0 for all i ∈ I1, j ∈ I2,
each φj for j ∈ I2 is not additive, there exist linearly independent additive maps
α, β : A → F such that gj ∈ 〈gi|i ∈ I1〉 = 〈α, β〉 and αj ∧ βj ∈ Fα ∧ β for all
j ∈ I2;

(V) each φi for i ∈ I is not additive, and for any pair i, j ∈ I, one of the
following holds:

(a) δi ∈ ker(φj) and δj ∈ ker(φi);
(b) dim(〈αi, βi〉 ∩ 〈αj , βj〉) = 1 (we assume in this case that αi = αj = α),

α(δi − δj) = 0, gi = aiα + bβi and gj = ajα + bβj for some ai, aj , b ∈ F ;
(c) there exist a ∈ F ∗ and an additive map γ : A → F with γ(δi − δj) = 0 such

that aφj(x, y) = φi(x, y) + γ(x− y).

2. Some basic properties of polynomial functions

If a nonzero monomial f(x, y) : A2 → F is obtained from a multi-additive
function g(x1, . . . , xn; y1, . . . , ym) by setting x1 = · · · = xn = x and y1 = · · · =
ym = y, then we say that n is the degree of f with respect to x or the x-degree of
f , m is the degree of f with respect to y or the y-degree of f , and m + n is the
total degree of f . If f(x, y) : A2 → F is a polynomial function, we shall call the
highest degree of the summand monomials of f with respect to x the degree of f
with respect to x, the highest degree of the summand monomials of f with respect
to y the degree of f with respect to y, the highest total degree of the summand
monomials of f the total degree of f . Polynomial functions have a lot of properties
which usual polynomials have.

Lemma 2.1. Suppose that f(x, y), g(x, y) : A2 → F are polynomial functions and
that x0, y0 ∈ A. Then

(a) f(x, y)g(x, y) = 0 =⇒ f(x, y) = 0 or g(x, y) = 0;
(b) f(x + x0, y + y0) is also a polynomial function, and f(x + x0, y + y0) =

f(x, y) + f1(x, y), where f1(x, y) has lower total degree than f(x, y), has lower x-
degree than f(x, y), and has lower y-degree than f(x, y).
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Proof. (a) By modifying the definition of monomial and polynomial in two variables,
we can clearly get the definition of monomials and polynomials in one variable. The
latter definition is needed in the first part of this proof which is

Claim 1. If h1(x), h2(x) : A → F are nonzero polynomials in one variable, then
h1(x)h2(x) 6= 0.

Fix x1, x2 ∈ A such that h1(x1)h2(x2) 6= 0. Suppose the degree of h2(x) is k.
For any l ∈ Z, we can write

h1(x1 + lx2) = h1(x1) + lh′1(l),(2.1)

h2(x1 + lx2) = lkh2(x2) + h′2(l),(2.2)

where h′1(l) and h′2(l) are polynomials in l (also depending on x1, x2), and the
degree of h′2(l) with respect to l is less than k or h′2(l) = 0. From (2.2) we see that
there exists an N ∈ Z such that h2(x1 + lx2) 6= 0, ∀ l > N. If h1(x1 + lx2) = 0
for all l > N , from (2.1) it follows that h1(x1) = 0, which contradicts the choice
of x1. Thus there exists an l0 > N such that h1(x1 + l0x2) 6= 0. Therefore
h1(x1 + l0x2)h2(x1 + l0x2) 6= 0. Consequently h1(x)h2(x) 6= 0. Our claim is proved.

Suppose that f(x, y) 6= 0 and g(x, y) 6= 0. Then there exist x1, x2, y1, y2 ∈ A
such that f(x1, y1) 6= 0 and g(x2, y2) 6= 0. Then f(x, y1) 6= 0 and g(x, y2) 6= 0.
It follows from Claim 1 that f(x, y1)g(x, y2) 6= 0. So there exists an x0 ∈ A such
that f(x0, y1)g(x0, y2) 6= 0. Thus f(x0, y) 6= 0 and g(x0, y) 6= 0. By Claim 1 again
we see that f(x0, y)g(x0, y) 6= 0. It follows that there exists an y0 ∈ A such that
f(x0, y0)g(x0, y0) 6= 0. Therefore f(x, y)g(x, y) 6= 0. This completes the proof of
(a).

(b) It is sufficient to show this for any monomial f(x, y), and this follows easily
from the definition.

The next result will be used frequently in the next section.

Lemma 2.2. Suppose that α1, α2, · · · , αn : A → F are linearly independent addi-
tive maps.

(a) Let f(X1, · · · , Xn) ∈ F [X1, · · · , Xn] be a polynomial in variables X1, · · · , Xn.
If f(α1(x), α2(x), · · · , αn(x)) = 0 for all x ∈ A, then f(X1, · · · , Xn) = 0;

(b) Let f(X1, · · · , X2n) ∈ F [X1, · · · , X2n] be a polynomial in variables X1, · · · ,
X2n. If f(α1(x), α2(x), · · · , αn(x), α1(y), α2(y), · · · , αn(y)) = 0 for all x, y ∈ A,
then f(X1, · · · , X2n) = 0.

Proof. (a) Suppose that f(X1, · · · , Xn) 6= 0. Since α1, α2, · · · , αn : A → F are
linearly independent, there exist x1, x2, · · · , xn ∈ A such that the matrix

M =


α1(x1) α2(x1) · · · αn(x1)
α1(x2) α2(x2) · · · αn(x2)

· · · · · ·
α1(xn) α2(xn) · · · αn(xn)


is invertible. Let x = l1x1 + · · ·+ lnxn where l1, l2, · · · , ln ∈ Z. Then

(α1(x), α2(x), · · · , αn(x)) = (l1, l2, · · · , ln)M.

Denote

g(l1, l2, · · · , ln) := f(α1(x), α2(x), · · · , αn(x)) = f((l1, l2, · · · , ln)M).
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Since M is invertible and f(X1, · · · , Xn) 6= 0, it follows that g(l1, l2, · · · , ln) 6= 0
as a polynomial in l1, l2, · · · , ln. Thus there exist k1, k2, · · · , kn ∈ Z such that
g(k1, k2, · · · , kn) 6= 0. If we set x0 = k1x1 + · · · + knxn, we have x0 ∈ A and
f(α1(x0), α2(x0), · · · , αn(x0)) = g(k1, k2, · · · , kn) 6= 0. Therefore

f(α1(x), α2(x), · · · , αn(x)) 6= 0.

So (a) holds.
(b) Suppose that f(X1, · · · , X2n) 6= 0. By (a) we see that there exists x0 ∈ A

such that f(α1(x0), α2(x0), · · · , αn(x0), Xn+1, · · · , X2n) 6= 0. Again by (a) we know
that that there exists y0 ∈ A such that

f(α1(x0), α2(x0), · · · , αn(x0), α1(y0), α2(y0), · · · , αn(y0)) 6= 0.

Thus f(α1(x), α2(x), · · · , αn(x), α1(y), α2(y), · · · , αn(y)) 6= 0. So (b) is true.

3. Lie algebras of generalized Block type

Recall that we have assumed that the algebra L = L(A, δ, φ) satisfies conditions
(A), (B) and (C) stated in Section 1. In this section we shall determine the necessary
and sufficient condition for the algebra L to be a Lie algebra.

Lemma 3.1. If L is a Lie algebra, then for each i ∈ I, we have

φi(x, y) = φ′i(x, y) + gi(x − y),(3.1)

where gi : A → F is additive and φ′i : A×A → F is skew-symmetric and bi-additive.

Proof. We note that each φi must be anti-symmetric in order for the product to be
anti-commutative. The remaining condition is the Jacobi identity for the product
(1.1), which is equivalent to

0 =
n∑

j=0

n∑
i=0

φi(x, y)φj(x + y − δi, z)ex+y+z−δi−δj

+
n∑

j=0

n∑
i=0

φi(y, z)φj(y + z − δi, x)ex+y+z−δi−δj

+
n∑

j=0

n∑
i=0

φi(z, x)φj(z + x− δi, y)ex+y+z−δi−δj .

Using Property (B), the Jacobi identity reduces to the following relation: for each
pair i, j ∈ I,

0 = φi(x, y)φj(x + y − δi, z) + φj(x, y)φi(x + y − δj , z) + φi(y, z)φj(y + z − δi, x)

+φj(y, z)φi(y + z − δj , x) + φi(z, x)φj(z + x− δi, y)

+φj(z, x)φi(z + x− δj, y), ∀ x, y, z ∈ A.(3.2)

We note first the special case of (3.2) where j = i:

φi(x, y)φi(x + y − δi, z) + φi(y, z)φi(y + z − δi, x)

+φi(z, x)φi(z + x− δi, y) = 0, ∀ x, y, z ∈ A.(3.3)
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Now we fix an i ∈ I, and let φi(x, y) =
∑

j,k fj,k(x, y), where fj,k(x, y) is a function
of degree j in x and degree k in y. Let n be the total degree of φi(x, y), and let r
be the x-degree of φi(x, y).

When we substitute for φi in (3.3), the terms for which the sum of the degrees in
x and in y is maximal will have the sum of the degrees equal to n+ r, since in each
of the three terms in (3.3), one of the factors can have terms of combined degree
n, and the other factor terms of combined degree only r. Further, the sum of the
terms of combined degree n + r must be zero. These terms by Lemma 2.1(b) give

0 =
( ∑

j

fj,n−j(x, y)
)( ∑

j

fr,j(x + y, z)
)

−(∑
j

fr,j(y, z)
)( ∑

j

fj,n−j(x, y)
)− ( ∑

j

fr,j(x, z)
)( ∑

j

fj,n−j(x, y)
)

=
( ∑

j

fj,n−j(x, y)
) ∑

j

{
fr,j(x + y, z)− fr,j(y, z)− fr,j(x, z)

}
.

Since
∑

j fj,n−j(x, y) 6= 0, it follows from Lemma 2.1(a) that∑
j

[fr,j(x + y, z)− fr,j(y, z)− fr,j(x, z)] = 0

for all x, y, z ∈ A. Thus fr,j(x+y, z) = fr,j(x, z)+fr,j(y, z) for all j and all x, y, z ∈
A, which says that the term of highest degree in x in the expression for φi(x, y) is
additive in the first variable. In other words, the maximal degree in the first variable
of each fj,k(x, y) is 1. By the antisymmetry of φ, the same thing is true of the
second variable. Thus, φi(x, y) = f1,1(x, y) + f1,0(x, y) + f0,1(x, y). Since f1,0(x, y)
is independent of the second variable y, and f0,1(x, y) is independent of the first
variable x, we simply have f1,0(x, y) = f1,0(x, 0) and f0,1(x, y) = f0,1(0, y). Again
by antisymmetry, f0,1(0, x) = −f1,0(0, x), and so φi(x, y) = φ′i(x, y)+gi(x−y) where
φ′i = f1,1 is skew-symmetric and bi-additive and gi(x) = f1,0(x, 0) is additive.

From the proof of Lemma 3.1 we see that this lemma is true even without
condition (C).

From now on we shall always assume that φi has the form in (3.1).
It follows from (3.1) that φi(x1 + x2 − x3, y) = φi(x1, y) + φi(x2, y) + φi(y, x3).

Using this in Equation (3.2), we get that

φi(x, y)φj(z, δi) + φi(y, z)φj(x, δi) + φi(z, x)φj(y, δi) + φj(x, y)φi(z, δj)

+φj(y, z)φi(x, δj) + φj(z, x)φi(y, δj) = 0, ∀ x, y, z ∈ A.(3.4)

Note that L(A, δ, φ) is a Lie algebra if and only if (3.4) holds for each pair i, j ∈ I.
In the next lemma, condition (C) is not assumed.

Lemma 3.2. Suppose L(A, δ, φ) is a Lie algebra.
(a) For a fixed i ∈ I, if δi /∈ ker(φi), then there exist additive functions αi, βi, gi :

A → F with gi ∈ 〈αi, βi〉 such that φi(x, y) = αi(x)βi(y)− αi(y)βi(x) + gi(x− y).
(b) For a fixed i ∈ I, if δi ∈ ker(φi), then φi(x, y) = φ′i(x − δi, y − δi) for the

bi-additive function φ′i.
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Proof. (a) If φi is additive, we simply choose αi = βi := gi. Then we get (a) in this
case. Suppose then that φi is not additive. Setting j = i in (3.4), we obtain

φi(x, y)φi(z, δi) + φi(y, z)φi(x, δi) + φi(z, x)φi(y, δi) = 0.

Since δi 6∈ kerφi, for any z ∈ A with φi(z, δi) 6= 0, we have

φi(x, y) = c
(
φi(x, δi)φi(y, z)− φi(y, δi)φi(x, z)

)
,(3.5)

where c = −φi(z, δi)−1. If φi is bi-additive, i.e., gi = 0 in (3.1), we set αi(x) =
cφi(δi, x) and β(x) = φi(z, x) in (3.5) to obtain φi(x, y) = αi(x)βi(y)− αi(y)βi(x),
as desired.

If neither φ′i nor gi in (3.1) is identically 0, let φ′i(x, δi) = γi(x) − gi(x) and
φ′i(x, z) = β′

i(x) − gi(x). Then (3.5) becomes

φi(x, y) = c
(
(γi(x) − gi(δi))(β′

i(y)− gi(z))− (γi(y)− gi(δi))(β′
i(x)− gi((z))

)
= c

(
γi(x)β′

i(y)− γi(y)β′
i(x)− γi(x− y)gi(z) + β′

i(x − y)gi(δi)
)
.

By letting αi(x) = gi(x) := −cgi(z)γi(x)+cgi(δi)β′
i(x), and βi(x) := −gi(z)−1β′

i(x),
we see that (a) follows.

(b) From Lemma 3.1 we see that φ′i 6= 0 in (3.1). Since δi ∈ ker(φi), from (3.1)
we obtain that φ′i(x, δi) + gi(x)− gi(δi) = 0 for all x ∈ A. It follows that gi(δi) = 0
and gi(x) = φ′i(x, δi). Thus (b) is true.

We recall that the function α∧β : A2 → F for any additive maps α, β : A → F
is defined by (α ∧ β)(x, y) = α(x)β(y)− α(y)β(x). It is clear that, for any nonzero
α′ ∈ 〈α, β〉, there exists β′ ∈ 〈α, β〉 such that α ∧ β = α′ ∧ β′.

Proposition 3.3. Suppose that i, j ∈ I are fixed, that both φi(x, y) = αi∧βi(x, y)+
gi(x−y) and φj(x, y) = αj∧βj(x, y)+gj(x−y) are not additive, where αi, βi gi, αj ,
βj , gj : A → F are additive maps with gi ∈ 〈αi, βi〉 and gj ∈ 〈αj , βj〉. Then (3.4)
holds, if and only if, one of the following holds:

(a) δi ∈ ker(φj) and δj ∈ ker(φi);
(b) dim(〈αi, βi〉 ∩ 〈αj , βj〉) = 1, (we assume in this case that αi = αj = α), and

(a) is true or the following is true: α(δi−δj) = 0, gi = aiα+bβi and gj = ajα+bβj

for some ai, aj , b ∈ F ;
(c) there exist a ∈ F ∗ and an additive map γ : A → F with γ(δi − δj) = 0 such

that aφj(x, y) = φi(x, y) + γ(x− y).

Proof. (⇒) Case 1. Suppose dim(〈αi, βi〉 ∩ 〈αj , βj〉) = 0, i.e., αi, βi, αj , βj are
linearly independent.

By regarding z as a fixed element in A and x, y as arbitrary elements, (3.4) has
the form

f(αi(x), βi(x), αj(x), βj(x), αi(y), βi(y), αj(y), βj(y)) = 0, ∀ x, y ∈ A

for some polynomial

f(X1, X2, X3, X4, Y1, Y2, Y3, Y4) ∈ F [X1, X2, X3, X4, Y1, Y2, Y3, Y4].

Then by Lemma 2.2, f(X1, X2, X3, X4, Y1, Y2, Y3, Y4) = 0. In particular, the coeffi-
cient of X1X2 in f(X1, X2, X3, X4, Y1, Y2, Y3, Y4) is 0, we obtain that φj(z, δi) = 0
for any fixed z ∈ A. So δi ∈ ker(φj). By regarding z as a fixed element in A and x, y
as arbitrary elements, similar to the above argument by considering the coefficient
of αj(x)βj(y) in (3.4), again from Lemma 2.2 we obtain that φi(z, δj) = 0 for any
fixed z ∈ A. So δj ∈ ker(φi). So (a) holds.
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Case 2. Suppose dim(〈αi, βi〉 ∩ 〈αj , βj〉) = 1.

We may assume that αi = αj = α, gi = aiαi + biβi, gj = ajαi + bjβj for some
ai, bi, aj , bj ∈ F .

By comparing the total degree 3 parts on both sides of (3.4), we obtain

φ′i(x, y)(φ′j(z, δi) + gj(z)) + φ′i(y, z)(φ′j(x, δi) + gj(x))

+φ′i(z, x)(φ′j(y, δi) + gj(y)) + φ′j(x, y)(φ′i(z, δj) + gi(z))(3.7)

+φ′j(y, z)(φ′i(x, δj) + gi(x)) + φ′j(z, x)(φ′i(y, δj) + gi(y)) = 0, ∀ x, y, z ∈ A.

By regarding x, y as fixed elements in A and z as an arbitrary element, and by
considering the coefficients of βi(z) in (3.7), from Lemma 2.2 we obtain that

α(y)(φ′j(x, δi) + gj(x)) − α(x)(φ′j(y, δi) + gj(y)) + φ′j(x, y)(−α(δj) + bi) = 0,

i.e., (α(y)βj(x) − α(x)βj(y))(α(δj − δi) + bj − bi) = 0. So

α(δj − δi) = bi − bj.(3.8)

It is not difficult to verify that (3.7) holds under the condition (3.8).
By comparing the total degree 2 parts on both sides of (3.4), we obtain

−φ′i(x, y)gj(δi) + gi(x− y)φ′j(z, δi)− φ′i(y, z)gj(δi)

+gi(y − z)φ′j(x, δi)− φ′i(z, x)gj(δi) + gi(z − x)φ′j(y, δi)

−φ′j(x, y)gi(δj) + gj(x− y)φ′i(z, δj)− φ′j(y, z)gi(δj)

+gj(y − z)φ′i(x, δj)− φ′j(z, x)gi(δj)

+gj(z − x)φ′i(y, δj) = 0, ∀ x, y, z ∈ A.(3.9)

By setting z = 0 in (3.9) we obtain

−φ′i(x, y)gj(δi) + gi(y)φ′j(x, δi)− gi(x)φ′j(y, δi)

−φ′j(x, y)gi(δj) + gj(y)φ′i(x, δj)− gj(x)φ′i(y, δj) = 0,

i.e.,

(α(x)βi(y)− α(y)βi(x))(−(ajα(δi) + bjβj(δi)) + biβj(δi) + ajα(δj))

+(α(x)βj(y)− α(y)βj(x))(−(aiα(δj) + biβi(δj)) + bjβi(δj) + aiα(δi))

+(βi(x)βj(y)− βi(y)βj(x))(biα(δi)− bjα(δj)) = 0.

Since α, βi, βj are linearly independent, from Lemma 2.2 we conclude that

−(ajα(δi) + bjβj(δi)) + biβj(δi) + ajα(δj) = 0,

−(aiα(δj) + biβi(δj)) + bjβi(δj) + aiα(δi) = 0,

biα(δi)− bjα(δj) = 0.

Combining these equations with (3.8) we obtain

α(δi − δj) = bj − bi, (bj − bi)(ai + βi(δj)) = 0,

(bj − bi)(aj + βj(δi)) = 0, biα(δi) = bjα(δj).
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If α(δi − δj) = bj − bi = c 6= 0, from the first and the fourth equations of (3.10),
we see that bi = α(δj), bj = α(δi). From the second and the third equations of
(3.10) we get ai = −βi(δj), aj = −βj(δi). Consequently φi(x, y) = φ′i(x−δj , y−δj)
and φj(x, y) = φ′i(x− δi, y − δi). Then (a) is true. Otherwise we have α(δi − δj) =
bj − bi = 0. Thus (b) holds.

Case. Suppose dim(〈αi, βi〉 ∩ 〈αj , βj〉) = 2.

We may assume that there exist an additive map γ : A → F and a ∈ F ∗ such
that aφj(x, y) = φi(x, y) + γ(x− y). Then (3.4) becomes

−(φi(x, y) + φi(y, z) + φi(z, x))γ(δi)

+γ(x− y)φi(z, δj) + γ(y − z)φi(x, δj) + γ(z − x)φi(y, δj) = 0.(3.11)

If γ = 0, it is clear that (3.11) holds. So (c) is true in this case. Suppose then
that γ 6= 0. We can choose an additive map γ′ : A → F such that φ′i = γ ∧ γ′.
Then (3.11) becomes (φ′i(x, y) + φ′i(y, z) + φ′i(z, x))γ(δi − δj) = 0. It follows that
γ(δi − δj) = 0. Thus (c) holds.

(⇐) If condition (a), (b) or (c) holds, it is not difficult to verify that (3.4) holds,
i.e., L(A, δ, φ) is a Lie algebras. We omit the details here.

Proposition 3.4. Suppose that i, j ∈ I are fixed, that φi(x, y) = gi(x − y) and
φj(x, y) = αj ∧ βj(x, y) + gj(x− y), where gi, αj , βj , gj : A → F are additive maps
with gj ∈ 〈αj , βj〉 and αj ∧ βj 6= 0. Then (3.4) holds, if and only if, gi ∈ 〈αj , βj〉
and gi(δi) = gi(δj).

Proof. (⇒) From (3.4) we obtain that

gi(x− y)φ′j(z, δi) + gi(y − z)φ′j(x, δi) + gi(z − x)φ′j(y, δi)

+φ′j(x, y)gi(z − δj) + φ′j(y, z)gi(x− δj) + φ′j(z, x)gi(y − δj) = 0.(3.12)

Comparing the total degree 3 parts on both sides of (3.12) yields

φ′j(x, y)gi(z) + φ′j(y, z)gi(x) + φ′j(z, x)gi(y) = 0.

By fixing x, y ∈ A with φ′j(x, y) 6= 0, we obtain that

gi(z) = −φ′j(x, y)−1(φ′j(y, z)gi(x) + φ′j(z, x)gi(y)), ∀ z ∈ A.

Thus we deduce that gi ∈ 〈αj , βj〉. Without loss of generality we may assume that
gi = αj .

By comparing the total degree 2 parts on both sides of (3.12), we obtain

gi(x− y)φ′j(z, δi) + gi(y − z)φ′j(x, δi) + gi(z − x)φ′j(y, δi)

−(φ′j(x, y) + φ′j(y, z) + φ′j(z, x))gi(δj) = 0.

Using αj = gi, we get (gi(x−y)β′
j(z)+gi(y−z)β′

j(x)+gi(z−x)β′
j(y))gi(δi−δj) = 0.

Setting z = 0 in the above equation yields (gi(y)βj(x)− gi(x)βj(y))gi(δi − δj) = 0.
Since gi, βj are linearly independent, from Lemma 2.2 we deduce that gi(δi−δj) = 0.

(⇐) This follows by direct verification. We leave the details to the reader.

Now we are ready to prove our main result, Theorem 1.1.

Proof of Theorem 1.1. (⇒) From Lemma 3.2(a) we see that there exist additive
maps αi, βi, gi : A → F with gi ∈ 〈αi, βi〉 such that φi(x, y) = αi∧βi(x, y)+gi(x−y)
for all i ∈ I. Denote φ′i = αi ∧ βi for all i ∈ I. Then φi(x, y) = φ′i(x, y) + gi(x− y).
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Case 1. Suppose that all of φi are additive. This is (I).

Case 2. Suppose that I = I1 ∪ I2, each φi for i ∈ I1 is a multiple of an additive
map g : A → F , and each φj for j ∈ I2 is not additive.

For any i ∈ I1 and any j ∈ I2, from Proposition 3.4 we may assume that αj = g
and g(δi) = g(δj). Then g(δi) = g(δj) for all i.j ∈ I.

For any i ∈ I2 we know that φi = g ∧ βi + gi(x − y) and g(δi) = g(δj) for
any j ∈ I. If there exist i0, j0 ∈ I2 such that g, βi0 , βj0 are linearly independent,
from Proposition 3.3(b) we deduce that there exist ai0 , aj0 , b ∈ F such that gi0 =
ai0g+bβi0 and gj0 = aj0g+bβj0. For any k ∈ I2\{i0, j0} we know that g, βi0 , βk are
linearly independent, or that g, βk, βj0 are linearly independent. We may assume
that g, βi0 , βk are linearly independent. Since g(δi0) = g(δk), again from Proposition
3.3(b) we see that there exist ak ∈ F such that gk = akg + bβk. Thus (III) holds.
Now we suppose that g, βi, βj are linearly dependent for all i, j ∈ I2. If there exist
i0, j0 ∈ I2 such that β(δi0 − δj0) 6= 0. From Proposition 3.3(b) we deduce that
there exist ai0 , aj0 , b ∈ F such that gi0 = ai0g + bβi0 and gj0 = aj0g + bβj0 . For
any k ∈ I2\{i0, j0} we know that β(δk − δj0) 6= 0 or β(δi0 − δk) 6= 0. We may
assume that β(δk − δj0) 6= 0. Again from Proposition 3.3 (c) we know that there
exist ak ∈ F such that gk = akg + bβk. Thus (III) holds. If β(δi − δj) 6= 0 for all
i, j ∈ I2, from Proposition 3.3(c), then (II) holds.

Case 3. Suppose that I = I1 ∪ I2, each φi(x, y) = gi(x − y) for i ∈ I1 is additive,
each φj for j ∈ I2 is not additive, and there exist linearly independent additive
maps α, β : A → F such that 〈gi|i ∈ I1〉 = 〈α, β〉.

For any i ∈ I1 and any j ∈ I2, from Proposition 3.4 we see that gi ∈ 〈αj , βj〉 and
gi(δi) = gi(δj). Since 〈gi|i ∈ I1〉 = 〈α, β〉. Then 〈αj , βj〉 = 〈α, β〉 for any j ∈ I2.
Also we have α(δi) = α(δj) and β(δi) = β(δj) for all i, j ∈ I2.

For any i ∈ I2 we know that there exists ci ∈ F ∗ such that

φi = ciα ∧ β + gi(x− y)

and α(δi) = α(δj) and β(δi) = β(δj) for any j ∈ I2. From Propositon 3.3(c) we see
that (3.4) holds for all arbitrary gi, gj ∈ 〈α, β〉 and i, j ∈ I2. This shows that (IV)
holds.

Case 4. Suppose that each φi for i ∈ I is not additive.

From Proposition 3.4 we see that (V) holds.
(⇐) If there exist additive maps αi, βi, gi : A → F with gi ∈ 〈αi, βi〉 such that

φi(x, y) = αi ∧ βi(x, y) + gi(x− y)

for all i ∈ I, and one of (I)–(V) holds, we see that φi(x, y) is skew-symmetric. It
suffices to verify that (3.4) holds for all i, j ∈ I. But this is straightforward. We
omit the details.

For the “only if” part, we still can get Lie algebras even without condition (B)
or condition (C).

Algebras in (I) are called Type L Lie algebras. For more details about Type L
Lie algebras, we refer the reader to our paper [OZ3]. All generalized Cartan type
K Lie algebras and some generalized Cartan type H Lie algebras are contained in
(V).
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