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Abstract

The first passage time (FPT) problems are ubiquitous in many applications, from physics to fi-
nance. Mathematically, such problems are often reduced to the evaluation of the probability density
of the time for a process to cross a certain level, a boundary, or to enter a certain region. While in
other areas of applications the FPT problems can often be solved analytically, in finance we usually
have to resort to the application of numerical procedures, in particular when we deal with jump-
diffusion stochastic processes (JDP). The application of the conventional Monte-Carlo procedure is
possible for the solution of the resulting model, but it becomes computationally inefficient which
severely restricts its applicability in many practically interesting cases.

In this dissertation, we are interested in the development of efficient Monte-Carlo-based com-
putational procedures for the estimation of the probability density of the time for a random process
to cross a specified threshold level. Our main application is the credit risk analysis where we fo-
cus on a case of several “coupled” companies for which we attempt to evaluate their dependent
defaults. In particular, we consider a situation where individual companies are linked together via
certain economic conditions, so the default events of companies are correlated. This is usually the
case, for example, when the companies are in the same industry or in supply chain management

problems. In this dissertation, we have successfully developed such efficient computational proce-



dures that can be carried out for multivariate (and correlated) jump-diffusion processes. We have
also provided details of the implementation of the developed Monte-Carlo-based technique for a
subclass of multidimensional Lévy processes with several compound Poisson shocks. Finally, we
have demonstrated the applicability of the developed methodologies to the analysis of the default

rates and default correlations of several different, but correlated firms via a set of empirical data.

Keywords: Credit Risk, Default Correlation, First Passage Time, Multivariate Jump-Diffusion Pro-

cesses, Monte-Carlo Simulation, Multivariate Uniform Sampling Method
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Chapter 1

Introduction

Many problems in finance require the information on the first passage time (FPT) of a stochas-
tic process. Mathematically, such problems are often reduced to the evaluation of the probability
density of the time for a process to cross a certain level, a boundary, or to enter a certain region.
While in other areas of applications the FPT problem can often be solved analytically, in finance we
usually have to resort to the application of numerical procedures, in particular when we deal with
jump-diffusion processes (JDP). Recent research in finance theory has renewed the interest in JDPs,
and the FPT problem for such processes is applicable to several finance problems. For example,
Merton [1] has modeled the market value of assets as a jump-diffusion process. The jump part is
needed to model significant events or shocks such as a surprise earnings release. Another applica-
tion is in derivatives pricing, such as pricing barrier options which involves crossing certain levels
[2], or pricing American options [3, 4] which entails evaluating the first passage time density for a
time varying boundary. There are also a number of important applications in the credit risk analysis

[5], some of which will be analyzed further in this dissertation.



Among numerical procedures, Monte-Carlo methods remain a primary candidate for appli-
cations. However, the conventional Monte-Carlo procedure becomes computationally inefficient
when it is applied to the jump-diffusion processes. Many researchers have contributed to the field
of enhancement of the efficiency of Monte-Carlo simulations, Atiya and Metwally [2, 6] have
recently developed a fast Monte-Carlo-type numerical method to solve the FPT problem in the one-
dimensional case.

Note that apart from the pricing and hedging of options on a single asset, practically all finan-
cial applications require a multivariate model with dependence between different assets. Examples
include basket option pricing, portfolio optimization, simulation of risk scenarios for portfolios. In
most of these applications, jumps in the price process must be taken into account [7, 8]. In our recent
contribution, we have developed an efficient Monte-Carlo method for multivariate jump-diffusion
processes and successfully applied it to analyze the default risk and default correlations of several
correlated firms [9-11]. The developed methodology provides an efficient computational technique
that is applicable in other areas of credit risk and pricing options.

Therefore, in this dissertation, we focus on the development of efficient Monte-Carlo-based
computational procedures for the estimation of the FPT problem in the context of multivariate (and
correlated) jump-diffusion processes, and their applications to credit risk analysis. We also discuss
the implementation of the developed Monte-Carlo-based techniques for a subclass of multidimen-
sional Lévy processes with several compound Poisson shocks. The dissertation is organized as
follows, in Chapter 1, we present the background of credit risk analysis, the structural credit mod-
els, (multivariate) jump-diffusion processes and Monte-Carlo methods. Chapter 2 provides details

of our mathematical model in the context of multivariate jump-diffusion processes. The methodol-



ogy of the solution of the resulting problem is presented in Chapter 3. In Chapter 4, we demonstrate
the applicability of the developed methodologies for simulating the multivariate jump-diffusion
processes by using different parameters. In particular, by using the developed methodologies, we
analyze the default rates and default correlations of differently rated firms via a set of empirical data.

Conclusions are given in Chapter 5.

1.1 Credit Risk

Credit risk is risk due to uncertainty in a counterparty’s (also called an obligor’s or credit’s)
ability to meet its obligations. In assessing credit risk from a single counterparty, we must consider

three issues [12]:

o default probability: What is the likelihood that the counterparty will default on its obligation
either over the life of the obligation or over some specified horizon, such as a year? Calculated

for a one-year horizon, this may be called the expected default frequency.

¢ credit exposure: In the event of a default, how large will the outstanding obligation be when

the default occurs?

e recovery rate: In the event of a default, what fraction of the exposure may be recovered

through bankruptcy proceedings or some other form of settlement?

When we speak of the credit quality of an obligation, this refers generally to the counterparty’s
ability to perform on that obligation. This encompasses both the obligation’s default probability and

anticipated recovery rate.



The term “credit analysis” is used to describe any process for assessing the credit quality of a
counterparty. During the analysis, people usually assign the counterparty (or the specific obligation)
a credit rating, which can be used for making credit decisions. There are three top agencies that
deal with credit ratings for the investment world: Moody’s, Standard and Poor’s (S&P’s) and Fitch
IBCA. Each of these agencies aims to provide a rating system to help investors determine the risk
associated with investing in a specific company, investing instrument or market. Table 1.1 shows
the Standard & Poor’s credit ratings. In Table 1.2, we give the equivalent ratings for different rating
services. In Section 4.2 we will analyze the default events of differently rated firms which are
defined according to the Moody’s debt rating system in Table 1.2.

An important phenomenon that we account for in this dissertation lies with the fact that, in
the market economy, individual companies are inevitably linked together via dynamically changing
economic conditions [13]. Therefore, the default events of companies are often correlated, espe-
cially in the same industry. Take two firms 7 and j as an example, whose probabilities of default are
P; and P;, respectively. Then the default correlation can be defined as

- Py — BE
VP(1=P)P(1-F)

Pij (LD

where P;; is the probability of joint default.

From Eq. (1.1) we have P;; = P,P; + p;j/P;(1 — P;)P;(1 — P;). Let us assume that P; =
P; = 0.05. If these two firms are independent, i.e., the default correlation p;; = 0, then the
probability of joint default is F;; = 0.0025. If the two firms are positively correlated, for example,
pi; = 0.4, then the probability of both firms default becomes P;; = 0.0215 that is almost 10 times
higher than in the former case. Thus, the default correlation p;; plays a key role in the joint default

with important implications in the field of credit analysis. Furthermore, default correlation analysis



Table 1.1: Standard & Poor’s Credit Ratings.

AAA Best credit quality — extremely reliable with regard to financial obligations.
AA Very good credit quality — very reliable.

A More susceptible to economic conditions - still good credit quality.

BBB Lowest rating in investment grade.

BB Caution is necessary — best sub-investment credit quality.

B Vulnerable to changes in economic conditions — currently showing the ability

to meet its financial obligations.

ccC Currently vulnerable to nonpayment — dependent on favorable economic con-
ditions.

CcC Highly vulnerable to a payment default.

C Close to or already bankrupt — payment on the obligation currently continued.

D Payment default on some financial obligation has actually occurred.

Source: Standard & Poor’s.
This is the system of credit ratings Standard & Poor’s applies to bonds. Ratings can be modified with +
or - signs, $0 a AA- is a higher rating than is an A+ rating. With such modifications, BBB- is the lowest

investment grade rating. Other credit rating systems are similar.



Table 1.2: Equivalent ratings for different rating services.

Equivalent Credit Ratings

Credit Risk Moody’s* | Standard & | Fitch Duff &

Poor’s* IBCA' Phelps!

Investment Grade

Highest quality Aaa AAA AAA AAA
High quality (very strong) Aa AA AA AA
Upper medium grade (strong) A A A A
Medium grade Baa BBB BBB BBB

Not Investment Grade

Lower medium grade (some- | Ba BB BB BB

what speculative)

Low grade (speculative) B B B B
Poor quality (may default) Caa ccC cCc CccC
Most speculative Ca cC CcC CC
No interest being paid or | C C C C

bankruptey petition filed

In default C D D D

Source: The Bond Market Association.

*The ratings from Aa to Ca by Moody’s may be modified by the addition of a 1, 2 or 3 to show relative
standing within the category.

The ratings from AA to CC by Standard & Poor’s, Fitch IBCA and Duff & Phelps may be modified by the

addition of a plus or minus sign to show relative standing within the category.



has many applications in asset pricing and risk management [13].

Credit risk modeling is a concept that broadly encompasses any algorithm-based methods of
assessing credit risk. There are three main quantitative approaches to analyzing credit [5, 14]. In the
structural approach, we make explicit assumptions about the dynamics of firm’s assets, its capital
structure, and its debt and share holders. A firm defaults if its assets are insufficient according
to some measure. The reduced form approach is silent about why a firm defaults. Instead, the
dynamics of default are exogenously given through a default rate, or intensity. The incomplete
information approach [14, 15] combines the structural and reduced form models. While avoiding
their difficulties, it picks the best features of both approaches: the economic and intuitive appeal of
the structural approach and the tractability and empirical fit of the reduced form approach.

The structural approach gives better description of the dynamics of firm’s assets after account-
ing for jumps. Therefore, in this dissertation, we focus mainly on the two most important com-
ponents in the credit analysis: default risk and default correlation risk in the context of structural
approach but incorporating with jumps. Next, we describe the structural credit models and then give

the strategy of incorporating jumps into such models.

1.2 Structural Credit Models

1.2.1 Black-Merton-Schoeles Model

The basis of the structural approach, which can be traced back to the influential works by
Black, Scholes and Merton [16, 17], is that corporate liabilities are contingent claims on the assets

of a firm. The market value of the firm is the fundamental source of uncertainty driving credit risk.



Consider a firm with market value V, which represents the expected discounted future cash
flows of the firm. The firm is financed by equity and a zero coupon bond with face value K and
maturity date 7. The firm’s contractual obligation is to repay the amount K to the bond investors
at time T". Debt covenants grant bond investors absolute priority: if the firm cannot fulfil its pay-
ment obligation, then bond holders will immediately take over the firm, or in other words, the firm

defaults. Hence the Merton default time 7 is a discrete random variable given by

T, ifVr< K,
oo, if else.
To calculate the probability of default, we make assumptions about the distribution of assets
at debt maturity under the physical probability P. The Black-Merton-Scholes (BMS) model for the

evolution of asset prices over time is geometric Brownian motion (GBM) [14, 16, 18]:

‘%/E = pdt + odW,, Vg > 0, (1.3)

where 1 € R is a drift parameter, o > 0 is a volatility parameter, and W is a standard Brownian

motion. Setting m = y — 102, Ito’s lemma implies that [14]
V, = Voemt+ch¢_

Since Wr is normally distributed with mean zero and variance T', default probabilities p(T")

are given by [14]

(1.4)

log L — mT
p(T) = PV < K] = PloWy < log L — mT] = & (u> ,

oVT

where L = % is the initial leverage ratio and @ is the standard normal distribution function.

The BMS model has some very strong points in its favor:



e it is consistent with stocks as limited liability securities (and so the prices never fall below

Zero);

e it has uncorrelated returns, which are a compelling consequence of highly efficient markets

with strong statistical support over many time scales;

o it is very tractable computationally.

Until today, no model has been more widely applied in the financial world than BMS model.
This model has experienced unprecedented success and eventually earned Scholes and Merton a

Nobel Prize in 1997.

1.2.2 First Passage Time Approach: Black-Cox Model

In the BMS model, a firm defaults only at the maturity date of its bond, this is unfavorable
to bondholders as noted by Black and Cox [19]. The indenture agreements often include safety
covenants that give bond investors the right to reorganize a firm if its value falls below a given
barrier. Hence, Black and Cox introduced the first passage time (FPT) approach to describe such
situation (we called it as “Black-Cox model”). The first passage time is defined as the time required
to cross the boundary level of specific processes. The FPT problem is of great importance in many
areas, such as insurance, finance, and sequential analysis. In finance, it is a tool to compute options
for which prices are depended on stopping times (first hitting times). Linetsky [20] discussed the
lookback options by computing the hitting time.

In the first passage time approach, a firm defaults when its value first hits a default boundary.

Suppose the default barrier D is a constant valued in (0, Vp). Then the first passage default time 7



is a continuous random variable valued in (0, 0o] given by

T =inf{t >0:V; < D}. (1.5)

Reisz and Perlich [21] pointed out that if the barrier D is below the bond’s face value K, then
the above definition does not reflect economic reality anymore: it does not capture the situation
when the firm is in default because V7 < K although M7 > D (M7 = mins<r V;). Usually, there

are two remedies to avoid this inconsistency [14].

Re-define Default

We re-define default as firm value falling below the barrier D < K at any time before maturity

or firm value falling below face value K at maturity. Formally, the default time is now given by

7 = min(7t,72), (1.6)

where 7! is the first passage of assets to the barrier D and 72 is the maturity time T if assets
Vr < K at T and oo otherwise. In other words, the default time is defined as the minimum of
the first-passage default time (1.5) and Merton’s default time (1.2). And the corresponding default

probability is [14]

p(T) = 1- P[min(r!,7%) > T
(L) ()7 o (M2 e)

This default probability is obviously higher than the corresponding probability in the classical ap-

proach, which is obtained as the special case where D = 0.

10



Time-varying Default Barrier

The second way to avoid the inconsistency discussed above is to introduce a time-varying
default barrier D(t) = ke~"(T~%) for all t < T [19]. Where ~ can be interpreted as the growth rate
of firm’s liabilities. Coefficient s captures the liability structure of the firm and is usually defined as

a firm’s short-term liability plus 50% of the firm's long-term liability [13]. The firm defaults at
T =inf{t > 0:V; < D(t)}. (1.8)
And the default probability can be written as [14]

p(T) = P[V,< D)0 <t<T]

= P[min ((m—~)t+oW;) <log L —~T|

0<t<T
log L — mT v\ S (m=7) <logL + (m — 27)T>
= &| =——— )+ (Le)e ® . 1.9
( ovT > ( ¢ ) ovVT (19)

1.2.3 Default Correlations for Black-Cox Model

As described in Section 1.1, in the market economy, individual companies are usually linked
together via economic conditions, so default correlation, defined as the risk of multiple companies’
default together, has been an important area of research in credit analysis with applications to joint
default, credit derivatives, asset pricing and risk management.

Zhou [13] and Hull et al [22] were the first to incorporate default correlation into the Black-
Cox first passage structural model. Zhou has proposed a first passage time model to describe default

correlations of two firms under the “bivariate diffusion process”:

dIn(V1) p1 dz
= dt + 0 , (1.10)

dIn(V3) L2 dzs

11



where 111 and po are constant drift terms, 21 and 25 are two independent standard Brownian motions,

and € is a constant 2 x 2 matrix such that {13]

Q- s (1.1D)
po102 0§

is the covariance matrix for d In{V;) and d In(V5). The coefficient p reflects the correlation between
the movements in the asset values of the two firms. This correlation coefficient plays a critical role
in determining the default correlation between the firms.

Zhou [13] and Iyengar [23] have obtained the closed form solutions for the joint probability of
firm 1 to default before T7 and firm 2 to default before T, However, their models cannot easily be
extended to more than two assets. As for the multivariate correlated processes, the joint probability
becomes very complicated and there is usually no analytical solutions for higher-dimensional pro-
cesses [24, 25]. A first-order approximation is given in [24]. Furthermore, the developed models do

not incorporate jump risk into the default processes.

1.3 Accounting for Jumps

1.3.1 Jump-diffusion Processes

As was pointed out in [18], the critical assumptions in the above structural models are that
trading takes place continuously in time and that the price dynamics of the stock have a continuous
sample path with probability one. However, these assumptions are usually not valid since continu-
ous trading is not possible and because no empirical time series has a continuous sample path [1].

Hence, under the pure diffusion processes (only considering Brownian motion), because a sudden

12



drop in the firm value is impossible, firms never default by surprise. The large credit spreads! of
corporate bonds, especially those with short maturities, are unexplained in this context [5].

All of these shortfalls require much more sophisticated models to represent the market dynam-
ics. As a matter of fact, many research efforts have been devoted to seeking for proper substitutes
for the pure diffusion processes. They gave one an alternative way to look at the market and for
particular markets those models may yield better explanations than the pure diffusion processes.
Those research efforts can be roughly branched into developing three classes of models, namely
jump-diffusion processes (JPDs) models, stochastic volatility models and local volatility models.

Jump-diffusion models are distinguished by their jump amplitude distributions, i.e., assuming
that asset price changes do not follow a pure random process as described in (1.3) but also contain
an unexpected “jump” component. Merton [1] was the first who solved the problem for option
prices by including jumps in the price of the basic asset. According to the proposition of Merton —

including jumps in the price of the basic asset, Eq. (1.3) then reads [5]

% = udt+ cdWi + Jy,

Vi
Nt

ho= )Y, (1.12)
=1

where N; follows the Poisson distribution with arrival rate A, and {Y7, Y3, ...} are independent and
identically-distributed (i.i.d.) random variables.
The development of jump processes is focused on selecting the appropriate jump dynamics,

which under Merton’s proposal [1] is a normal distribution, i.e. the probability density function

'In finance, a credit spread. or net credit spread, is the difference in yield between different securities due to different

credit quality.

13



(pdf) of Y is the Gaussian density

1 _w-w?
fry) = 5= o7, (1.13)

Another example is due to Kou [26] who conjectured that jumps follow a double exponential

distribution, whose pdf reads

fr(y)

pme” V1 <oy + gnee” V1503

p+q = 1, (1.14)

where 1¢,.0) and 1,>0y are the Lebesgue measures A(y < 0) = fy<0 dyand Ay 2 0) = [ 5, dy
on R, respectively.

The jump-diffusion model has many nice features, such as [5]:

¢ The jump-diffusion model is consistent with the fact that bond prices often drop in a surpris-
ing manner at or around the time of default. Duffie et al [27] attribute this phenomenon to
incomplete accounting information. That is, around the time of default, substantial account-
ing information about the issuer will be revealed to the market. Because of a jump in market
information, bond prices jump accordingly. The jump caused by incomplete information is
just a special case of many possible kinds of jumps, such as lawsuits and sudden financial

turmoils.

¢ Jump risk can substantially raise credit spreads, especially the spreads of short-term bonds.
A jump-diffusion model has the flexibility to generate a wide variety of the term structure
of credit spreads, including upward sloping, flat, hump-shaped or downward sloping. In a

diffusion model, some of these shapes (flat and downward-sloping) do not exist.
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¢ In a jump-diffusion model, the remaining value of a firm at default is an endogenous random
variable that is not necessarily equal to the default boundary. Thus, the model is able to
endogenously generate random variations in recovery rates that are linked to a firm’s capital

structure and asset value at default.

1.3.2 Lévy Processes

In general, all of the jump-diffusion models fall into the family called Lévy processes, which
provide the framework that accommodates all jump structures [7]. Lévy process, by definition, is
a stochastic process X; that has independent and stationary increments. As a consequence it is a
Markov process and the marginal distribution of X is of infinite divisibility, which mathematically
means that the characteristic function ¢, (2) of marginal random variable X; can be expressed as
follows [7]

ox,(2) = E[e??Xt] = e¥x1(2), (1.15)

where 1y, (z) is the characteristic exponent of the Lévy process at unit time. The property of infinite
divisibility gives rise to the easiness of studying X; by only looking at X;.

The Lévy-Khinchin representation gives the mathematical expression for ¢ x, (z) as follows

Y(z) = ibz — -;-0%2 +/ (e — 1 — izzl )y <1)v(da), (1.16)

-0
where b € R, 0 € RY, 1)« is the Lebesgue measure A(|z| < 1) = flml<1 dronRand visa

measure on R\ {0} with [7]

/ |z|?v(dz) < oo, v(dz) < oc.
lz|<1 jz|>1
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In the above representation, b is called the drift that dictates the deterministic movement along with
time, o is called the volatility that represents the continuous random walk, and v is called the Lévy
measure that describes at what arrival rate jumps may happen. Therefore, to characterize a Lévy
process, one only needs to know the Lévy triplet (b, o, v) together.

Note that many well-known processes are special cases of Lévy process. For instance, the
standard Brownian Motion can be expressed as (0, o, 0) where we set b = 0 and v(z) = 0 for all
real z. And the Brownian motion with drift (Gaussian processes) can be characterized as (b, o, 0).
If we set both b and o to be zero and let v = A§(1), where 6(1) means the Dirac measure at 1, we
have the Poisson process (0,0, A6(1)) with arrival rate A

A compound Poisson process X; is such a Lévy process that can be considered as a Poisson

process with intensity A > 0 and random jump-sizes [7]
N
X, =) Y (1L17)
i=1

where jump-sizes Y; are i.i.d. with distribution f and [V, is a Poisson process with intensity A,
independent from Y;. Therefore, the above jump-diffusion models can be considered as a Brownian

motion plus a compound Poisson jumps [7, 28].

1.3.3 Multidimensional Models with Jumps

Apart from the pricing and hedging of options on a single asset, practically all financial appli-
cations require a multivariate model with dependence between different assets. Examples include
basket option pricing, portfolio optimization, simulation of risk scenarios for portfolios. In most
of these applications, jumps in the price process must be taken into account. A simple method

to introduce jumps into a multidimensional model is to suppose that the stock prices do follow a
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multidimensional Brownian motion but time changing the Brownian motion [7, 8]. Another natural
choice to introduce jumps into a multidimensional model is to utilize the compound Poisson shocks.
Suppose that we want to improve a d-dimensional BMS model by allowing for “market crashes”,
The dates of market crashes can be modeled as arrival times of a Poisson process /N;. This leads us

to the following model for the log-price processes of d assets [7]:
Xi(t) = uit + Bi(t) + Zi(¢t), i =1,2,---,d,

Zi(t) = L), Vi,

where X;(t) = In[V;(¢)] (Vi(t) is the value of asset ¢ at time t), B(t) is a d-dimensional Brownian

(1.18)

motion with covariance matrix ¢ = (oy;) which can be written as
d
Bit) =) _oiWjt),
j=1

and W;(t) is the standard Brownian motion. For i-th asset, {¥;;}%2; are i.i.d. d—dimensional
random vectors which determine the sizes of jumps in individual assets during a market crash. At
the j-th shock, the jump-sizes of different assets Y;; may be correlated.

This model contains only one driving Poisson shock which stands for that the global market
crash affecting all assets. Sometimes it is necessary to have several independent shocks to account
for events that affect individual companies or individual sectors rather than the entire market. In
this case we need to introduce several driving Poisson processes into the model, which now takes

the following form [7]:

m Nf
k=1 j=1
where N}, -, NJ™ are Poisson processes driving m independent shocks and Y;j is the size of

jump in i-th component after j-th shock of type k. The vectors {Yijk}f:l for different j and/or k

17



are independent.

1.4 Monte-Carlo Methods

In the above sections, we have described the structural credit models and how to incorporate
jumps into these models. However, as soon as jumps are incorporated in the model, except for very
basic applications where analytical solutions are available for the first passage time problems, for
most practical cases we have to resort to numerical procedures. Examples of known analytical so-
lutions include problems where the jump-sizes are doubly exponential or exponentially distributed
[26] as well as some classes of problems where the jumps can have only nonnegative values (as-
suming that the crossing boundary is below the process starting value) [29]. For all other situations,
numerical methods are unavoidable. Two prominent choices are Monte-Carlo methods and the nu-
merical solution of partial integro-differential equations (PIDE) {30]. However, as the dimension
of the problem grows, PIDE methods become less feasible as computational complexity for fixed
precision grows exponentially with dimension. On the contrary, the complexity of Monte-Carlo
methods for fixed precision grows only linearly with the dimension of the problem. Hence, in
higher dimensions there is no alternative to simulation methods and it is very important to develop

efficient algorithms for simulating Lévy processes [7].

Conventional Monte-Carlo method

Figure 1.1: Schematic diagram of the conventional Monte-Carlo method.

In conventional Monte-Carlo methods, as shown in Fig. 1.1, we need to discretize the time
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horizon [0, T'] into small enough intervals in order to avoid discretization bias [31], and we need to
evaluate the processes at each discretized time. This procedure exhibits substantial computational
difficulties when applied to jump-diffusion processes. Indeed, for a typical jump-diffusion process,
as shown in Fig. 1.1, let T;_; and T} be two successive jump instants. In the conventional Monte-
Carlo method, even if there is no jump occurring in the interval [T;_1, T;], we still need to evaluate
the processes at each discretized time ¢ in [T, T;]. This very time-consuming procedure results
in a serious shortcoming of the conventional Monte-Carlo methodology.

Therefore, many researchers have contributed to the field of enhancement of the efficiency of
Monte-Carlo simulations. Among others, Kuchler et al [32] discussed the solution of stochastic
differential equations (SDEs) in the framework of weak discrete time approximations and Liberati
et al [33] considered the strong approximation where the SDE is driven by a high intensity Poisson
process. The quasi-Monte-Carlo methods which are claimed to provide a faster convergence rate
under appropriate conditions were also discussed extensively [34, 35]. Atiya and Metwally [2,
6] have recently developed a fast Monte Carlo-type numerical method to solve the FPT problem
in the one-dimensjonal case. In our recent application, we have developed an efficient Monte-
Carlo method for multivariate jump-diffusion processes and successfully applied it to analyze the
default risk and default correlations of several correlated firms [9-11]. The developed methodology
provides an efficient computational technique that is applicable in other areas of credit risk and
pricing options.

Therefore, in this dissertation, we focus on the development of efficient Monte-Carlo-based
computational procedures for the estimation of the FPT problem in the context of multivariate (and

correlated) jump-diffusion processes, and their applications to credit risk analysis. We also discuss
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the implementation of the developed Monte-Carlo-based techniques for a subclass of multidimen-

sional Lévy processes with several compound Poisson shocks.

1.5 Summary

In this chapter, we described the main idea of credit risk analysis, the structural credit models
and how to incorporate jumps into the structural approach. However, as soon as jumps are incor-
porated in the model, except for very basic applications where analytical solutions are available for
the first passage time problems, for most practical cases we have to resort to numerical procedures.
Among numerical procedures, Monte-Carlo methods remain a primary candidate for applications,
but the conventional Monte-Carlo procedure becomes computationally inefficient when it is applied
to the jump-diffusion processes. Therefore, it is very important to develop efficient Monte-Carlo-
type numerical methods to solve the FPT problem in the context of multivariate jump-diffusion
processes. In next chapter, we focus on the default events and default correlations within the frame-
work of multivariate jump-diffusion processes and we reduce the multidimensional formulas of

default events to computable forms, which will be used to develop a fast Monte Carlo method.



Chapter 2

Mathematical Models

As mentioned in Chapter 1, when we deal with jump-diffusion stochastic processes, we usually
have to resort to the application of numerical procedures. To develop efficient Monte-Carlo proce-
dure is very important. However, the developed one-dimensional fast Monte-Carlo method (2, 6]
cannot be directly generalized to the multivariate and correlated jump-diffusion case [9]. The diffi-
culties arise from the fact that the multiple processes as well as their first passage times are indeed
correlated, so the simulation must reflect the correlations of first passage times. In this dissertation,
we propose a solution to circumvent these difficulties by combining the fast Monte-Carlo method
of one-dimensional jump-diffusion process and the generation of correlated multidimensional vari-
ables [10, 11].

In this chapter, first we present a probabilistic description of default events and default corre-
lations. Next, we describe the multivariate jump-diffusion processes and provide details on the first
passage time distribution under the one-dimensional Brownian bridge (the sum-of-uniforms method

which is used to generate correlated multidimensional variables will be described in Section 3.3.1).
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Finally, we present kernel estimation in the context of our problem that can be used to represent the

first passage time density function.

2.1 Default and Default Correlation

In a structural model, a firm ¢ defaults when it can not meet its financial obligations, or in other
words, when the firm assets value V;(¢) falls below a threshold level Dy, (¢). Generally speaking,
finding the threshold level Dy, (t) is one of the challenges in using the structural methodology in
the credit risk modeling, since in reality firms often rearrange their liability structure when they
have credit problems. In this dissertation, we use an exponential form defining the threshold level
Dy, (t) = r; exp(~;t) as proposed by Black and Cox [19], where +; can be interpreted as the growth
rate of firm’s liabilities. Coefficient ; captures the liability structure of the firm and is usually
defined as a firm’s short-term liability plus 50% of the firm’s long-term liability [13]. If we set
X;(t) = In[V;(¢)], then the threshold of X;(t) is D;(t) = ~;t + In(k;). Our main interest is in the
process X;(t).

As emphasized in Section 1.1, the default correlation p;; plays a key role in the joint default
with important implications in the field of credit analysis. It measures the strength of the default
relationship between different firms. Zhou [13] and Hull et al [22] were the first to incorporate
default correlation into the Black-Cox first passage structural model. As it was already mentioned
in Section 1.2.3, Zhou [13] has proposed a first passage time model to describe default correlations
of two firms under the “bivariate diffusion process”:

X1(t) 1 dzy

1
Xs(?) ) dzo



where 11 and uo are constant drift terms, 27 and z; are two independent standard Brownian motions,
and (2 is a constant 2 x 2 matrix which satisfies Eq. (1.11).
The coefficient p reflects the correlation between the movements in the asset values of the two

firms. Then the probability that firm ¢ defaults at time ¢ can be easily calculated as [13],

P(t)=2N (-%@) —2.N <—%> , 22)

where

X;(0) — In(x;)

0

Zi.“_.—"

is the standardized distance of firm i to its default point and N(-) denotes the cumulative probability
distribution function for a standard normal variable.
Furthermore, if we assume that ; = -y;, then the probability that at least one firm defaults by

time ¢ can be written as [13],

_ 2rg  _1 1 . (nnb r$ r
P ) = 1= Vot e n=13...-ﬁsm( o ) [I%(%H) (41’5 +I%(’L_"—1) at ) |’
(2.3)
where I,,(z) is the modified Bessel function I with order v !,
o0 . 2m-+v
. . . (=1)™ iz
e P N ) A 2 2.4
L(z) =7 Jiz) = Z mil(m+v+1) \ 2 24

m=0

and

tan~! (—- Y 1/,_p2> ) if p <0,
a =
7+ tan™? (—@) , otherwise,

"For large 2 > |v® — 1/4], the function I becomes I,,(z) ~ \/El;—(” while for small arguments 0 < z < Vv + 1,

it becomes I, (z) — Fﬁ“) (%)”, where ['(-) denotes the gamma function.
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tan™! (%—1—— V_;‘j) , if (1) >0,
7+ tan™? <—Z%13%> , otherwise,
Zg/Sin(eo).

To

Then, the default correlation of these two firms is

Pit) + Bi(t) — Pit)F5(t) ~ Pigy(t)
VE®L - B®IP; )1 - Pi(t))

pij(t) 2.5)

However, none of the above known models includes jumps in the processes. At the same time,
it is well-known that jumps are a major factor in the credit risk analysis. With jumps included in
such analysis, a firm can default instantaneously because of a sudden drop in its value which is
impossible under a diffusion process. Zhou [5] has demonstrated the importance of jump risk in
credit risk analysis of an obligor. He implemented a simulation method to show the effect of jump
risk in the credit spread of defaultable bonds. He showed that the misspecification of stochastic
processes governing the dynamics of firm value, i.e., falsely specifying a jump-diffusion process as
a continuous Brownian motion process, can substantially understate the credit spreads of corporate
bonds. Therefore, for multiple processes, considering the simultaneous jumps can be a better way
to estimate the correlated default rates. The multivariate jump-diffusion processes can provide a

convenient way to describe multivariate and correlated processes with jumps.

2.2 Multivariate Jump-diffusion Processes

A natural approach to introduce jumps into a multidimensional model is to utilize the com-
pound Poisson shocks. If we want to improve a d-dimensional BMS model by allowing for “market

crashes” (see Section 1.3.3), then the dates of market crashes can be modeled as arrival times of a
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standard Poisson process [V;. This leads us to the following model for the log-price processes of d
assets as described in Eq. (1.18).

Eq. (1.18) contains only one driving Poisson shock which stands for that the global market
crash affecting all assets. Sometimes it is necessary to have several independent shocks to account
for events that affect individual companies or individual sectors rather than the entire market. In
this case we need to introduce several driving Poisson processes into the model as described in Eq.

(1.19).

2.3 First Passage Time Distribution of Brownian Bridge

Although for jump-diffusion processes, the closed form solutions are usually unavailable, yet
between each two jumps the process is a Brownian bridge for one-dimensional jump-diffusion pro-
cess. The authors of [6] have deduced one-dimensional first passage time distribution in time hori-
zon [0, 7. In order to evaluate multiple processes, we obtain multidimensional formulas from Eq.
(1.18) and reduce them to computable forms.

First, let us consider a firm 4, as described by Eq. (1.18), such that its state vector X; satisfies
the following stochastic differential equation:

dX; = wdt+Y  oydW; + dZ;

J
= wdt+ 0;dW; + dZ,;, (2.6)

where W; is a standard Brownian motion and o; is:

o; = Zafj.
J



We assume that in the interval [0, T, the total number of jumps for firm i is M;. Let the jump
instants be 71, Ty, - - -, Ty, Let Ty = 0 and Tyy,41 = T'. The quantities 7; equal to interjump times,
which are T — T;_. Following the notation of [6], let Xi(Tj—) be the process value immediately
before the jth jump, and Xi(Tj‘*) be the process value immediately after the jth jump. The jump-
size is Xi(Tj‘*) — Xi(T}") and we can use such jump-sizes to generate Xi(Tj‘") sequentially.

If we define A;(t) as the event consisting of process crossed the threshold level D;(t) for the

first time in the interval [¢, ¢ 4+ dt]. The conditional interjump first passage density is defined as

943 (t)dt = p(Aq(t) € dt|Xy(T}2,), Xi(T))). Q.7

If we only consider one interval [T};_1, T}|, we can obtain [6]

Xi(T;,) — Di(t)

gii(t) = (t=Tjo1)"2(Tj —£)~2

2yimo?
[(Xi(T;7) — Dit) — pi(Ty — 1)]?
xexp | — 2T, — 1)o7
X,(T+ )~ Dy i(t = Tj_1))?

where

1 < [Xi(T}"y) —Xz‘(T[)+MTj]2>
exp | — .

hi= 04/ 27T 27j02

After getting result in one interval, we combine the results to obtain the density for the whole
interval [0, T|. Let B(s) be a Brownian bridge in the interval [T}, Tj] with B(T}" ;) = X;(T}";)
and B(T;") = X;(T; ). Then the probability that the minimum of B(s;) is always above the

boundary level is [6]

Pj; = P < inf  B(s;) > Di(t)lB(Tf_l) = X,(T; ), B(T) = Xi(T-_)>

Tj-1%8;<Ty J
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(Tt \_D. AT Y=D.
1 —exp (— ATy DZT(T;[XI(T” ) DL(t)]) , i Xi(T77) > Dilt),

(2.9)

0, otherwise.
This implies that B(s;) is below the threshold level, which means the default happens or al-
ready happened, and its probability is 1 — P;;. Let L(s;) = L; denote the index of the interjump
period in which the time s; (first passage time) falls in [T, 1, T}, ]. Also, let I; represent the index

of the first jump, which happened in the simulated jump instant [6],

I; = min(j: Xy(T;) > Di(t);k=1,...,7, and
XdTF) > Dit);k=1,...,5 — 1, and X;(T}") < Dy(t)).  (2.10)
If no such I; exists, then we set I; = 0.

By combining Eq. (2.8), (2.9) and (2.10), we get the probability of X; crossing the boundary

level in the whole interval [0, T as [6]

P(Ai(si) € ds|Xi(T; 1), Xa(T; ), 5 = 1, , My + 1)

giz; (si)ds TTH7" Pa ifL; < IorI; =0,
= S gin.(s))dsTIE! P + TIie, Piwd(si — Ty,) if L = I, @.11)
0 if Li > Ii,

where ¢ is the Dirac’s delta function.

2.4 The Kernel Estimator

For firm 4, after generating a series of first passage times s;, we use a kernel density estima-

tor with Gaussian kernel to estimate the first passage time density (FPTD) f. The kernel density
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estimator is based on centering a kernel function of a bandwidth as follows:

K'=>

N
Z K(h,t - i), (2.12)

where

1 (t—s;)?
K(h,t—sz)——mexp<— h2/2 >

The optimal bandwidth in the kernel function K can be calculated as [36]:

00 -0.2
hopt = (ZN\/E / ( g’)2dt> : (2.13)

where NV is the number of generated points and f; is the true density. Here we use the approximation

for the distribution as a gamma distribution as proposed in [6]:

o

F(mtﬂ Lexp(—at). (2.14)

fi=

So the integral in Eq. (2.13) becomes:

o0 Wiy (2,6—1’)
1\2 iy
dt = ——————— 2.15
where
W, = A Wy =2AB, W3 = B? 4+ 2AC, W, =2BC, W5= Cz,
and

A=a? B=-2a(8-1), C=(8-1)(8-2).

From Eq. (2.15), it follows that in order to get a nonzero bandwidth, we have to have constraint
3 to be at least equal to 3.
The kernel estimator can be generalized to the multivariate case. Suppose we consider mul-

tivariate processes X = [X1,X3,..., Xm] . Let T = [t1,to,. .y tm], 8 = [S14,52is -, Smi)s
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and 55 (j = 1,2,...,m) be the first passage time for X;. Then, the multivariate kernel density

estimator with kernel K and window width h is defined by [36]

N
PN .
f<t>=ﬁizzlf<[h,<t—a>)], (2.16)
where
K(T) = (2rnh?) ™ 2 exp LTy (2.17)
2h2 ' '

If we approximate the true density f by a unit m-variate normal density, then the optimal
bandwidth Ay is [36]

h

(2.18)

1 4 Ut
Pt = N1/(m+d) [Zm-l- 1}

2.5 Summary

In this chapter, we presented a probabilistic description of default events and default correla-
tions. In Section 2.3, we reduced the multidimensional processes into computable one-dimensional
forms. The default correlations and the probability of one firm defaults between each two jumps
were obtained in Section 2.1 and 2.3, respectively, All the above results will be used to develop a
fast Monte-Carlo method in next chapter. The kernel estimation can be used to represent the first

passage time density function after successful simulations.



Chapter 3

The Methodology of FPT Problem

Solution

In this chapter, first we analyze why the conventional Monte-Carlo method is inefficient when it
is applied to jump-diffusion processes. Then we give a brief description of the (univariate) uniform
sampling method in the context of recently made progress in this field [2, 6]. Next, we describe
our computational procedures for multivariate (and correlated) jump-diffusion processes [10, 11].

Finally, we describe a procedure for the model calibration.

3.1 Conventional Monte-Carlo Method

Let us recall the conventional Monte-Carlo procedure in application to the analysis of the
evolution of firm X; within the time horizon [0, T]. We divide the time horizon into n small intervals

[0,t1], [t1,t2), -, [tn—1, T'] as shown in Fig. 3.1(a). In each Monte-Carlo run, we need to calculate
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the value of X; at each discretized time ¢ without explicitly distinguishing the effects of the jump

and diffusion terms [34]. As usual, in order to reduce discretization bias, the number 7 must be

large [31].
Conventional Monte-Carlo method
: [ 1 1 1 1 1 1 1 1 :
0 & 1, 5 g e Liog B veeeeeee s Lia 0, T
(@)

Uniform sampling method

X, (Tj+—l) S; (uniform distribution) X (T;)

1 1 | L. |
1
0 T ovnn.n. T . ) T ovivennnns T, T
: /-1 Brownian bridge -
'~ ~1
(b)

Figure 3.1: Schematic diagram of (a) the conventional Monte-Carlo and (b) the uniform sampling

(UNIF) method.

If the jump-size satisfies normal distribution N(uz, oz), then the algorithms of conventional

Monte-Carlo for multivariate jump-diffusion processes can be described as follows [34]
1. Generate W; ~ N(0,1),7=1,2,...,d.
2. Generate N ~ Poisson(A(tj4+1 — t;)).
3. Generate the jump-size Z; ~ N(uz,,0z,),i=1,2,...,d.
4 Fori=1,2,...,d,set
d
Xi(tje1) = Xi(ty) + pa(tier — t5) + Z oiiWiv/ti+1 = tj + NZ;. (3.1)
j=1

If X;(tj+1) < Di(t;+1), then we get the first passage time ¢;,.;. The above algorithm is

applied forevery j = 0,1,2,...,n —1({#y =0and ¢, = 1T).
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3.2 Univariate Uniform Sampling Method

The conventional Monte-Carlo procedure exhibits substantial computational difficulties when
applied to jump-diffusion processes. Indeed, for a typical jump-diffusion process, as shown in
Fig. 3.1(b), let T, and T be any successive jump instants, as described above. Then, in the
conventional Monte-Carlo method, although there is no jump occurring in the interval [T;_1, T}],
yet we need to evaluate X; at each discretized time ¢ in [T;_1,7;]. This very time-consuming
procedure results in a serious shortcoming of the conventional Monte-Carlo methodology.

To remedy the situation, two modifications of the conventional procedure were recently pro-
posed [2, 6] that allow us a potential speed-up of the conventional methodology in 10-30 times.
One of the modifications, the uniform sampling method (UNIF), involves sampling using uniform
distribution. The other, inverse Gaussian density sampling is based on the inverse Gaussian density
method for sampling. Both methodologies were developed for the univariate case.

The major improvement of the uniform sampling method is based on the fact that it only
evaluates X; at generated jump times, while between each two jumps the process is a Brownian
bridge (see Fig. 3.1(b)). Hence, we just consider the probability of X crossing the threshold
in (T;-1,T}) instead of evaluating X; at each discretized time ¢. More precisely, in the uniform
sampling method, we assume that the values of Xi(TjJ“_I) and X;(T;") are known as two end points
of the Brownian bridge, the probability of firm ¢ defaults in (T;-1,7}) is 1 — P;; which can be
computed according to Eq. (2.9). Then we generate a variable s; from a distribution uniform in an

Ty —Tj—

interval [Tj_1,Tj-1 + ==p=*]. If the generated point s; falls in the interjump interval [T, T},

3

then we have successfully generated a first passage time s; and can neglect the other intervals and

perform another Monte-Carlo run. On the other hand, if the generated point s; falls outside the
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interval [T;_1, T;] (which happens with probability P;;), then that point is “rejected”. This means
no boundary crossing has occurred in the interval, and we proceed to the next interval and repeat
the whole process again.

Note that the generated s; is not obtained according to the conditional boundary crossing den-
sity gi;(s;) as described by Eq. (2.8). In order to obtain an appropriate density estimate, the authors
of [6] proposed that the right hand side summation in Eq. (2.12) can be viewed as a finite sample

estimate of the following:

Egij(si)[K(h’t - Si)]

T;
/ gij(si)K(h,t—— si)dsi

T]‘ 1
T; —Tj—1
= (ﬁ) Ey(sylgii(si) K (hyt = s3], (3.2)
where E, (,,) means the expectation of s;, where s; obeys the density g;;(s;). U(s;) is the uniform
density in [Tj-1,Tj-1 + %7;—1] from which we sample the point s;. Therefore, we should weight

the kernel with (TlL:%JLl) gi;(s4) to obtain an estimate for the true density.

3.3 Multivariate Methodology

In what follows, we focus on the further development of the uniform sampling method and
extend it to multivariate and correlated jump-diffusion processes. In order to implement the UNIF

method for our multivariate model as described in Eq. (1.18), we need to consider several points:

1. We assume that the arrival rate A for the Poisson jump process and the distribution of (T} —
T};—1) are the same for each firm. As for the jump-size, we generate them by a given distribu-
tion which can be different for different firms to reflect specifics of the jump process for each

firm,
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2. We exemplify our description by considering an exponential distribution (mean value ur) for
(Tj — Tj-1) and a normal distribution (mean value p; and standard deviation o) for the

jump-size. We can use any other distribution when appropriate,

3. An array IsDefault (whose size is the number of firms denoted by Ng,py) is used to in-
dicate whether firm ¢ has defaulted in this Monte-Carlo run. If the firm defaults, then we set

IsDefault(:) = 1, and will not evaluate it during this Monte-Carlo run.

4. Most importantly, as we have mentioned before, the default events of firm ¢ are inevitably
correlated with other firms, for example firm ¢ + 1. The default correlation of firms ¢ and i + 1
is described by Eq. (2.5). Hence, firm i’s first passage time s; is indeed correlated with 5,41
— the first passage time of firm ¢ + 1. We must generate several correlated s; in each interval

Tj-1,Tj—1 + %@Z—‘] which is the key point for multivariate correlated processes.

Note that the assumption based on using the same arrival rate A and distribution of (T); — T;_1)
for different firms may seem to be quite idealized. One may argue that the arrival rate A for the
Poisson jump process should be different for different firms, which implies that different firms
endure different jump rates. However, if we consider the real market economy, once a firm (called
firm “A”) encounters sudden economic hazard, its correlated firms may also endure the same hazard.
Furthermore, it is common that other firms will help firm “A” to pull out, which may result in a
simultaneous jump for them. Therefore, as a first step, it is reasonable to employ the simultaneous
jumps’ processes for all the different firms.

Next, we will give a brief description of the sum-of-uniforms (SOU) method which is used to

generate correlated uniform random variables, followed by the description of the multivariate and
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correlated UNIF method and the model calibration.

3.3.1 Sum-of-uniforms Method

In the above sections, we have reduced the solution of the original problem to a series of one-
dimensional jump-diffusion processes as described by Eq. (2.6). The first passage time distribution
in an interval [T};_1, T}] (between two successive jumps) was obtained in Section 2.3. As mentioned,
the default events of firm ¢ are inevitably correlated with other firms, for example firm 7 + 1. We
approximate the correlation of s; and s;4.1 as the default correlation of firms ¢ and 7 + 1 by the
following formula:

Bi(t) + Piv1(t) — Bi(t) P (t) — Piiv1(t)
VE@)[1 = P(t)]Pir1(t)[1 — Piya(t)]

where ¢ can be chosen as the midpoint of the interval [T;_1,7}].

P84, 8i+1) = pii+1(t) = , (3.3)

Note that each process is a Brownian motion in the interval [T5_1, T}], so we can compute the
correlation coefficient p; ;41 by using Zhou’s model without jumps [13] and then use this value for
modeling correlated s; and s;.1. More explicitly, in Eq. (3.3), P;(t) and P;4;(t) can be computed

by using Eq. (2.2), and Pj;+1(t) can be obtained by using Eq. (2.3).

Therefore, we need to generate several correlated s; in [T);_1,Tj-1 + Ti:jl;;zl] whose correla-
tions can be described by Eq. (3.3). Let us introduce a new variable b;; = 7%—:71-;117‘1 Then we have

8; = by;Y; + Tj—1, where Y; are uniformly distributed in [0, 1]. Moreover, the correlation of ¥; and
Yiq1 is given by p(s;, 8i+1) = piiv1(t).
Now we can generate the correlated uniform random variables Y7, Y, - - - by using the sum-of-

uniforms (SOU) method {37, 38] in the following steps:

1. Generate Y; from numbers uniformly distributed in [0, 1].
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2. Fori = 2,3, -, generate W; ~ U(0, ¢;—1,:), where U (0, ¢;_1;) denotes a uniform random

number over range (0, ¢;—1,;). Chen [37] has obtained the relationship of parameter c;; ; and

the correlation p(s;—1, 8;) (abbreviated as p;_1 ;) as follows:

Correlation | ¢;—14 2> 1 cio1 <1

Pi-1: >0 L 03 (p, 1, <0.7) 1-0.5¢t;,+0.2¢_ (pim14 > 0.7)

Ci~1,4 cl—l,i

pic1i S0 | =gt + ;goi‘:’—i(m—l,i 2 =0.7) | =1+0.5¢]_1; = 0.2¢}_; ;(pi-1,4 < =0.7)

If Y;_1 and Y; are positively correlated, then let
Zi =Y+ W
If Y;_; and Y; are negatively correlated, then let

Zi=1-Yi1+ W

Let Y; = F(Z;), where for ¢;_1; > 1,

Z2/(26¢~1,¢), 0<Z<],
F(Z)=1 (22 -1)/(2ci210), 1<Z < ey,
1= (1+cie1i— 2)%/(2ci-14), cim14 £ Z < 1+4cim1y,

and for 0 < ¢;—1,; <1,

Z*/(2¢i-1,), 0<Z < izt
F(Z) =4 (2Z - ¢ci—14)/2, ci-1, < Z <1,

1—(I+ei1i—2)%/(2¢-14), 1<Z<14cim1y4
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3.3.2 Multivariate Uniform Sampling Method

In this subsection, we will describe our algorithm for multivariate jump-diffusion processes,
which is an extension of the one-dimensional case developed earlier by other authors (e.g. {2, 6]).

Consider Ng,y, firms in the given time horizon [0, T]. First, we generate the jump instant T
by generating interjump times (T; —7;_1) and set all the IsDefault(i) =0(i =1,2, -, Ngm)
to indicate that no firm defaults at first.

From Fig. 3.1(b) and Eq. (2.6), we can conclude that for each process X; we can make the

following observations:

1. If no jump occurs, as described by Eq. (2.6), the interjump size (X;(T; )~ X; (T3

i 1)) follows

anormal distribution of mean p;(T; — T;—1) and standard deviation o;/T; — T;_1. We get

Xi(T7) ~ Xi(TLy) + pilTy = Tj-1) + 0N (0, T — Tja)

Nﬁrm
~ Xi(Tiy) + (T - Tim) + Y owN(0, Ty = o),
k=1

where the initial state is X;(0) = X;(T3").

2. If jump occurs, we simulate the jump-size by a normal distribution or another distribution

when appropriate, and compute the postjump value:
Xd(T;") = Xi(T; ) + Zi(Ty).

This completes the procedure for generating beforejump and postjump values Xi(Tj‘) and
sz(Tf). As before, j = 1,--+, M where M is the total number of jumps for all the firms, We
compute P;; according to Eq. (2.9). To recur the first passage time density (FPTD) f;(t), we have

to consider three possible cases that may occur for each non-default firm ¢:
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t. First passage happens inside the interval. We know that if Xi(Tjtl) > Dy(Tj-1) and
Xi(T;") < Di(T;), then the first passage happened in the time interval [T};_1, T}]. To evaluate
when the first passage happened, we introduce a new viable b;; as b;; = %1——1 We generate
several correlated uniform numbers Y; by using the SOU method as described in Section 3.3.1,
then compute s; = b;;Y; + T;_1. If s; belongs to interval [T;_1,T}], then the first passage
time occurred in this interval. We set IsDefault(i) = 1 to indicate firm ¢ has defaulted
and compute the conditional boundary crossing density g;;(s;) according to Eq. (2.8). To get

the density for the entire interval [0, T), we use f; »(t) = (%?) ij(s:) * K (hopty t — 84),

where n is the iteration number of the Monte-Carlo cycle.

2. First passage does not happen in this interval. If s; does not belong to interval [T}_1, T}],

then the first passage time has not yet occurred in this interval.

3. First passage happens at the right boundary of the interval. If Xi(Tj*) < Dy(Ty)
and X;(T;") > Dy(Tj) (see Eq. (2.10)), then T, is the first passage time and I; = j,
we evaluate the density function using kernel function ﬁ,n(t) = K(hopt,t — T7,), and set

IsDefault(i) = 1.

Next, we increase j and examine the next interval and analyze the above three cases for each

non-default firm again. After running N times Monte-Carlo cycle, we get the FPTD of firm ¢ as

filt) = % oy finl®):

In the UNIF method, the multidimensional density estimate involves the evaluation of joint

conditional interjump first passage time density. This problem can be divided into several one-
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dimensional density estimates if the processes are non-correlated [9],

~ T, —T;_
Fu(F) = T2y ( =222 ) gii(si) * K (hopt, T — F).
1- Py

As for the multivariate correlated processes, the joint conditional interjump first passage time

density becomes very complicated and there are usually no analytical solutions for higher-dimensional

processes {24, 25]. We will not consider this problem in the current dissertation.

3.4 Generalizations

In the above sections, we assume that the arrival rate A for the Poisson jump process and the
distribution of (7; —T}j_1) are the same for each firm which means there is only one driving Poisson
shock and the global market crash affecting all firms. Sometimes it is necessary to have several in-
dependent shocks to account for events that affect individual companies or individual sectors rather
than the entire market as described in Eq. (1.19). Hence, our next goal is to generalize the devel-
oped multivariate uniform sampling method (see Section 3.3.2) to the case of several independent
Poisson shocks.

Suppose we have d firms which are driven by m independent Poisson shocks N}, -+, Nf™.

The jump components are
m Nf

Zit) =" Yigks

k=1 j=1

where Y, is the size of jump for i-th firm after j-th shock of type k. The vectors {}/jjk}?=1 for
different j and/or k are independent.
Let My be the number of jumps for each Poisson shock Nff, M = 3_7", My is the total

number of jumps. We generate the jump instant T;; by generating the interjump times (Tjx —
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Tj_1,) for each Poisson shock. Then we sort the jump instant T} ; by the relevant ascending order
and still denote them as T (j = 1,2,---, M). Furthermore, an array ShockType (whose size is
M) is used to record the type of shock at T;. Then we can carry out multivariate uniform sampling

method for this case as same as in Section 3.3.2, but the postjump value should be calculated as:
Xi(T}) = Xy(T7) + Yi(Ty),

where Y;(T}) is the size of jump for i-th firm at T}, the type of shock is determined by the array

ShockType. Besides, we may generate correlated Y;(T7;) for different firms.

3.5 Model Calibration

In order to apply our developed procedure, first we need to calibrate the developed model, in
other words, to numerically choose or optimize the parameters, such as drift, volatility and jumps to
fit the most liquid market data, This can be done by applying the least-square method, minimizing

the root mean square error (rmse) given by:

Z (Market price — Model price)?

rmse = —
L Number of derivatives
derivatives

Luciano et al [39] have used a set of European call options C(k, T') as their model price to calibrate
their model parameters.

However, it will be demonstrated in Section 4.2, for a number of practically interesting cases,
there is no option value that can be used to calibrate our model, so we have to use the historical
default data to optimize the parameters in the model. As mentioned in Sections 2.4 and 3.3.2, after

Monte-Carlo simulation we obtain the estimated density ﬁ(t) by using the kernel estimator method.
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The cumulative default rates for firm ¢ in our model is defined as,

t -
Pi(t) = /0 Firydr. (3.4)

Then we minimize the difference between our model and historical default data A; (t) to obtain

the optimized parameters in the model (such as oy, arrival intensity A in Eq. (2.6)):

~ 2
argmin Z Z(M) . (3.5)

i t
3.6 Summary

Based on the computable formulas obtained in Chapter 2 and the sum-of-uniforms method (see
Section 3.3.1), we developed a fast Monte-Carlo method for multivariate jump-diffusion processes
in Section 3.3.2. Furthermore, we also discussed the implementation of the developed Monte-Carlo-
based technique for a subclass of multidimensional Lévy processes with several compound Poisson
shocks in Section 3.4. The model calibration procedure was explained in Section 3.5. In the next
chapter, we provide examples of the applications of the developed Monte-Carlo-based technique,

focusing on the credit risk analysis.
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Chapter 4

Applications

In the above chapters, we have constructed the multivariate jump-diffusion processes model
and developed an efficient Monte-Carlo-based computational procedure for multivariate cases. In
this chapter, first we demonstrate the applicability of the developed methodology for simulating the
multivariate jump-diffusion processes by using different parameters. The comparison between the
developed methodology and the conventional Monte-Carlo method (see Section 3.1) confirms the
validity and efficiency of the developed fast method, Next, by using the developed methodologies,
we analyze the default rates and default correlations of differently rated firms via historical data.
The successful applications indicate that the developed technique provides an efficient tool for a

number of other applications, including credit risk and option pricing.
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4.1 Non-correlated Processes

In this section, we will provide results of numerical simulations based on the developed mul-
tivariate UNIF method applied to the two-dimensional case. We use three representative examples
with different arrival rates A = 1,3, 8 for the Poisson jump process to judge the efficiency of our
algorithms. In order to investigate the dynamic behavior of different quantity processes, we choose
the parameters as follows in which the second process is easier to cross the boundary level compared

with the first one,

Xo =[0,0]", D(t) = [In(0.9) — 0.002¢,1n(0.95) — 0.012¢] T
0.2 0.0
p=[-0.002,-0.012]", o =
0.0 0.2

pz =1[0,0]T, oz =[0.2,0.12)7,

where X is the starting value for the process, D(t) is the threshold, y is the constant instantaneous
drift, o represents the Brownian motion, and yz and oz are the mean and standard deviations of the
jump-sizes, respectively.

The simulation was carried out with total Monte-Carlo runs N = 100, 000 in horizon [0, 1}.
Moreover, we have also carried out a conventional Monte-Carlo simulation (see algorithms in Sec-
tion 3.1) with the same parameters and the discretization size of time horizon A = 0.0002. All the
simulations were carried out by using Scilab software [40] on SHARCNET (Shared Hierarchical
Academic Research Computing Network). The estimated first passage time density functions are
given in Fig. 4.1 to 4.3 for different arrival rates A.

In every figure, the top two plots are one-dimensional first passage time density functions of
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Figure 4.1: One-dimensional (top) and two-dimensional (bottom) density functions with A = 1.
The simulations were performed with Monte-Carlo runs NV = 100, 000, for the conventional Monte

Carlo method, the discretization size of time horizon was A = 0.0002.
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two processes X1 and X, obtained by using the conventional Monte-Carlo method and the UNIF
method. The bottom two plots are two-dimensional first passage time density functions of processes
X1 and X3. We observe that the multivariate UNIF method gives practically identical one- and
two-dimensional density functions to those obtained with the conventional Monte-Carlo procedure
which confirms the validity the developed multivariate UNIF method.

Furthermore, to compare results more accurately, we can obtain the mean first passage time of

each process X in the interval [0, T] as

T o~
<T>i=/0 tfi(t)dt. 4.1

The simulated mean first passage time of each process X; is provided in Table 4.1.

Table 4.1: The calculated mean first passage time of processes X; and Xo. The simulations were
performed with Monte-Carlo runs N = 100, 000, for the conventional Monte-Carlo method, the

discretization size of time horizon was A = 0.0002,

X1 Xo

Example 1 | CMC 0.201385 0.146695

UNIF 0204265 0.157412

Example 2 | CMC  0.194684 0.142038

UNIF 0.194943 0.147486

Example 3 | CMC 0.174958 0.132100

UNIF  0.176625 0.132649

From the results shown in Table 4.1, we notice that when the arrival rate X\ increases, which

indicates more sudden shocks happened in real market for each process, the mean first passage time
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will shift towards zero, as well as the peak of the estimated density function. This means that the
intensity of jumps will affect the probability of crossing threshold for each process and this will be

useful to describe the unexpected event, such as a sharp increase in oil price or a financial storm.

ional density f
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Figure 4.2: One-dimensional (top) and two-dimensional (bottom) density functions with A = 3.
The simulations were performed with Monte-Carlo runs N = 100, 000, for the conventional Monte

Carlo method, the discretization size of time horizon was A = 0.0002.

We also draw another important conclusion from Table 4.1 when we compare the results be-
tween X and X5. The increase of A will affect the first passage time density function of X; much
more than that of X,. For example, when ) increases from 1 to 8, the mean of first passage time of
X1 has changed 3%, from 0.20 to 0.17, but the mean of first passage time of X has only changed

1%, from 0.14 to 0.13. Since X is a high quantity process, the probability of X crossing the
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Figure 4.3: One-dimensional (top) and two-dimensional (bottom) density functions with A = 8.
The simulations were performed with Monte-Carlo runs N = 100, 000, for the conventional Monte

Carlo method, the discretization size of time horizon was A = 0.0002.
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threshold is low. Since X is a low quality process, we can see that the arrival rate A has much more
influence on the high quality process and increases its probability of crossing threshold.

As for two correlated processes, one important issue is the probability or density function

o~ o~

f(t,t) of crossing the critical level together at the same time ¢t. We have also plotted f(¢,t) in Fig.

o~

4.4. Observe that the UNIF method gives profile of f(t,t) identical to the conventional method-

—~

ology. Moreover, from Fig. 4.4, we can deduce that the peak of f(¢,¢) will become larger with

-~

increasing A. This indicates that the increasing arrival rate A also affects f(t,t) quite substantially,

and results in higher joint probabilities.
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Figure 4.4: Estimated density function f(¢,¢) for different A. The simulations were performed with
Monte-Carlo runs N = 100, 000, for the conventional Monte-Carlo method, the discretization size

of time horizon was A = 0.0002.

In Table 4.2, we provide the calculated optimal bandwidths and the corresponding CPU times.
As seen from Table 4.2, the multivariate UNIF approach is much more efficient compared to the

conventional Monte-Carlo method.
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Table 4.2: The optimal bandwidth £,; and CPU time per Monte-Carlo run of the simulations. The
first hopt 18 for X and the second for X,. The simulations were performed with Monte-Carlo runs
N = 100,000, for the conventional Monte-Carlo (CMC) method, the discretization size of time

horizon was A = 0.0002.

Optimal bandwidth ~ CPU time

X1 X

Example 1 | CMC 0.012664 0.006943 0.286642

UNIF 0.016030 0.013880 0.000527

Example 2 | CMC 0.011157 0.006582 0.284554

UNIF  0.012249 0.009443 0.000731

Example3 | CMC 0.008894 0.005921 0.299156

UNIF 0.009117 0.006542 0.001222
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4.2 Controlling Credit Risk

In Section 4.1, we have confirmed the validity and efficiency of the developed multivariate
UNIF method. In this section, we demonstrate the developed methodology at work for analyzing

the default events of multiple correlated firms via a set of historical default data.

4.2.1 Density Function and Default Rate

First, for completeness, let us consider a set of historical default data of differently rated firms
given in Table 4.3, A, Baa, Ba and B stand for differently rated firms following the Moody’s
Investors Service’s definition (see Section 1.1). Our first task is to describe the first passage time
density functions and default rates of these firms.

Since there is no option value that can be used, we will employ Eq.(3.5) to optimize the pa-

rameters in our model. For convenience, we reduce the number of optimizing parameters by:
1. Setting X(0) = 2 and ln(x) = 0.

2. Setting the growth rate y of debt value equivalent to the growth rate u of the firm’s value [13],

so the default of firm is non-sensitive to u. In our computations, we set 4 = —0.001.

3. The interjump times (T; — T;;_1) satisfy an exponential distribution with mean value equals

to 1.

4. The arrival rate for jumps satisfies the Poisson distribution with intensity parameter A, where

the jump-size is a normal distribution Z; ~ N(uz,0z).

As a result of these assumptions, we only need to optimize o, A, uz, oz for each firm. This is

done by minimizing the differences between our simulated default rates and historical data. More-
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Table 4.3: Historical cumulative default rates of differently rated firms (%), 1970-93.

Year A Baa Ba B

1 0.01 0.16 1.79 8.31
2 0.09 0.51 4.38 14.85
3 0.28 091 6.92 20.38
4 0.46 1.46 9.41 24.78
5 0.62 1.97 11.85 28.38
6 0.83 2.46 13.78 31.88
7 1.06 3.09 15.33 34.32
8 1.31 3.75 16.75 36.71
9 1.61 4.39 18.14 38.38
10 1.96 4,96 19.48 39.96
11 2.30 5.56 20.84 41.08
12 2.65 6.19 2222 41.74
13 2.99 6.77 2354 42.45
{4 3.29 7.44 24.52 43.04
15 3.62 8.16 25.46 43.70
16 395 8.91 2643 44.43
17 4.26 9.69 27.29 4527
18 4.58 10.45 28.06 45.58
19 4.96 11.07 28.88 45.58
20 523 11.70 29.76 45.58
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over, as mentioned above, we will use the same arrival rate A and distribution of (T} — Tj‘_l) for
differently rated firms, so we first optimize four parameters for, e.g., the A-rated firm, and then set
the parameter A of other three firms the same as A’s.

The minimization was performed by using the quasi-Newton procedure implemented as a

Scilab program. The optimized parameters for each firm are provided in Table 4.4.

Table 4.4: Optimized parameters for differently rated firms by using the UNIF method. The opti-
mization was performed by using the quasi-Newton procedure implemented as a Scilab program.

In each step of the optimization, we choose the Monte-Carlo runs N = 50, 000.

o A wz oy

A 0.0900 0.1000 -0.2000 0.5000

Baa 0.0894 0.1000 -0.2960 0.6039

Ba 0.1587 0.1000 -0.5515 1.6412

B 0.4560 0.1000 -0.8000 1.5000

By using these optimized parameters, we carried out the final simulation with Monte-Carlo
runs N = 500,000. The estimated first passage time density functions of these four firms are
shown in Fig. 4.5. The simulated cumulative default rates (lines) together with historical data
(squares) are given in Fig. 4.6, The theoretical data, denoted by circles in Fig. 4.6, were computed
by using Eq. (2.2) where Z; were evaluated in [13] as 8.06, 6.46, 3.73 and 2.10 for A-, Baa-, Ba-
and B-rated firms, respectively. In Table 4.5, we give the optimal bandwidth and parameters «, 8
for the true density estimate.

Based on these results, we conclude that:

52



- 010} -
0.008 A-rated firm 0.010 Baa-rated firm
0.008
5 5
= 0,004F 4
g 2 0.006
2 2
£ £
9 g.002} 1% 0.004
g o
]
0.002}
0,000}
. . ) L . . . 0.0001— . . . . L . . .
9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
Year Year
0.024f Ba-rated firm 0.08r B-rated firm
0.05}+
S ooz H
3 S 0.0af
c &
H 2
0.03
% 0.0181 %
5 §
Q a 0.02-
0,015} 0011
2 11 13 15 17 19 1 3 5 7 8 11 138 15 17 19

Figure 4.5: Estimated density functions for differently rated firms. All the simulations were per-

formed with Monte-Carlo runs N = 500, 000.

Table 4.5: The optimal bandwidth A, parameters c, 3 for the true density estimate of differently

rated firms. All the simulations were performed with Monte-Carlo runs V = 500, 000.

o4 G Optimal bandwidth
A 0.206699 3 0.655522
Baa 0.219790 3 0.537277
Ba 0.252318 3 0.382729
B 0.327753 3 0.264402
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Figure 4.6: Historical (squares), theoretical (circles) and simulated (lines) cumulative default
rates for differently rated firms. All the simulations were performed with Monte-Carlo runs

N = 500, 000.



. From Fig. 4.6, we can see that the simulations give similar or better results to the analytical
results predicted by Eq. (2.2). Note that the difference between our simulations and Eq. (2.2)
is that Eq. (2.2) does not consider jumps. Hence including jumps may improve the models to

describe the practical market.

. A- and Baa-rated firms have a smaller Brownian motion part. Their parameters ¢ are much

smaller than those of Ba- and B-rated firms.

. The optimized parameters o of A- and Baa-rated firms are similar, but the jump parts (2, 0z)
are different, which explains their different cumulative default rates and density functions,
Indeed, Baa-rated firm may encounter more severe economic hazard (large jump-size) than

A-rated firm.

. As for Ba- and B-rated firms, except for the large o, both of them have large 17 and especially
large oz, which indicate that the loss due to sudden economic hazard may fluctuate a lot for
these firms. Hence, the large o, itz and oz account for their high default rates and low credit

qualities.

. From Fig. 4.5, we can conclude that the density functions of A- and Baa-rated firms still have
the trend to increase, which means the default rates of A- and Baa-rated firms may increase
little faster in future. As for Ba- and B-rated firms, their density functions have decreased,
so their default rates may increase very slowly or be kept at a constant level. Mathematically
speaking, the cumulative default rates of A- and Baa-rated firms are convex function, while

the cumulative default rates of Ba- and B-rated firms are concave.
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4.2.2 Correlated default

In the market economy, individual companies are inevitably linked together via dynamically
changing economic conditions [13]. Therefore, the default events of companies are often correlated,
especially in the same industry. Our final example concerns with the correlated defaults of two

firms!, whose state vectors can be described as

Xi(t) p1 dWh dZy
= dt+o + , (4.2)
X2 (t) 2 dWy dZs
where
011 012
o= (4.3)
021 022
and
- orf pO109
oo’ = 4.4)

pPC103 g g
is the covariance matrix. In Eq. (4.4), p reflects the correlation of diffusion parts of the state vectors

of the two firms.

The default correlation of these two firms is,

p (t) - Pl(t) + P2(t) - Pl(t)PZ(t) — Pluz(t)
. N OO O E0)

) (4.5)

where P;(t) (¢ = 1,2) is the probability that firm ¢ defaults at time ¢, Pju2(t) is the probability that

at least one firm defaults by time ¢.

"The two firms may belong to the same rated category, e.g., both of them are A-rated firms. Therefore, from Tables
4.6 through 4.9, the default corrclation of (A,A) stands for two different firms but both of them belong to the A-rated

category, the same as (Baa,Baa), (Ba,Ba) and (B,B).
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The default correlation p12(t) plays a key role in the joint default with important implications
in the field of credit analysis. Furthermore, default correlation analysis has many applications in
asset pricing and risk management [13]. In what follows, we focus on how to estimate the default
correlation of two firms.

If we do not consider jumps in Eq. (4.2), we can obtain P;(t) (i = 1,2) and P _3(¢) by using
Eq. (2.2) and (2.3), respectively. Then the default correlation can be calculated by using Eq. (4.5).
Zhou [13] has chosen p = 0.4 during the calculations and obtained the default correlations of two

firms over different time horizons as presented in Tables 4.6 through 4.9.

Table 4.6: One year default correlations (%) of two different firms. All the simulations were per-

formed with the Monte-Carlo runs N = 500, 000

UNIF Zhou [13]

A Baa Ba B A Baa Ba B

A -0.01 0.00
Baa -0.02 3.69 0.00 0.00
Ba 237 495 1975 000 001 132

B 280 6.63 2257 2640 000 0.00 247 1246

Next, let us consider the default correlations with jumps which can be investigated by using

the developed multivariate UNIF method. We use the following conditions in the simulations:

1. Setting X (0) = 2 and In(x) = 0 for all firms.

2. Setting v = p and p = —0.001 for all firms.
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Table 4.7: Two year default correlations (%) of two different firms. All the simulations were per-

formed with the Monte-Carlo runs N = 500, 000

UNIF Zhou [13]
A Baa Ba B A Baa Ba B
A 2.35 0.02
Baa 232 4.25 0.05 025
Ba 417 7.17 20.28 0.05 0.63 696
B 473 823 2399 2900 0.02 041 924 19.6]

Table 4.8: Five year default correlations (%) of two different firms. All the simulations were per-

formed with the Monte-Carlo runs N = 500, 000

UNIF Zhou [13]
A Baa Ba B A Baa Ba B
A 6.45 1.65
Baa 6.71 924 260 5.01
Ba 7.29 10.88 22091 274 720 17.56
B 6.77 1093 2297 2793 1.88 5.67 1843 24.01
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Table 4.9: Ten year default correlations (%) of two different firms. All the simulations were per-

formed with the Monte-Carlo runs N = 500, 000

UNIF Zhou [13]

A Baa Ba B A Baa Ba

A 8.79 7.75
Baa 10.51 13.80 9.63 13.12
Ba 987 1423 2250 948 1498 2251

B 850 1254 2049 2498 7.21 1228 21.80 24.37

3. From Eq. (4.4) we obtain,

2 _ 2 2
of = 011 + 01y,

2 _ 2 2
oy = 031 + 039,

__ 011091 + 012022
0102 '

(4.6)

In order to compare with the results obtained from standard Brownian motion, we set p = 0.4

as in [13]. Furthermore, we use the optimized oy and o9 in Table 4.4 for firms 1 and 2,

respectively. Assuming o192 = 0, we get,

p
011 = 01,

o2 =0, o1 0
021 = pO2, poz /1 —ploy
022 = /1 — ploy,

\

4, The arrival rate for jumps satisfies the Poisson distribution with intensity parameter A = 0.1

for all firms. The jump-size is a normal distribution Z; ~ N(uz,,0z,), where piz, and oz

can be different for different firms to reflect specifics of the jump process for each firm. We
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adopt the optimized parameters given in Table 4.4,

5. As before, we generate the same interjump times (I; — 7}-1) that satisfy an exponential

distribution with mean value equals to 1 for each two firms,

We carry out the UNIF method to evaluate the default correlations via the following formula:

i Pr2(t) — PLa(t)Pon(t)

S VPO~ Pral)Pen ()1 - PeanD) @7

1
p12(t) = N

where Pio ,(t) is the probability of joint default for firms 1 and 2 in each Monte-Carlo cycle, P; n(t)
and P, ,, (t) are the cumulative default rates of firms 1 and 2, respectively, in each Monte-Carlo cycle.

The simulated default correlations for one-, two-, five- and ten-years are given in Tables 4.6-
4.9. All the simulations were performed with the Monte-Carlo runs N = 500,000. Comparing
those simulated default correlations with the theoretical data for standard Brownian motions, we

can conclude that

1. Similarly to conclusions of [13], the default correlations of same rated firms are usually large
compared to differently rated firms. Furthermore, the default correlations tend to increase

over long horizons and may converge to a stable value.

2. In our simulations, the one year default correlations of (A,A) and (A,Baa) are negative. Note

that the default correlation is defined as p;2 = 75 (f 12;‘;3;1’(21 =) (P12 is the probability
L= )2(1L=—12

of joint default). p12 < 0 (P12 < P P;) indicates that these firms seldom default jointly
during one year. Hence the negative numbers may arise from the fact that these firms seldom

default jointly in the beginning. Besides, numerical errors may also contribute to the negative

numbers which can be improved by increasing the Monte-Carlo runs V.
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3. For two and five years, the default correlations of different firms increase. This can be ex-
plained by the fact that their individual first passage time density functions increase during

these time horizon, hence the probability of joint default increases.

4. As for ten year default correlations, our simulated results are almost identical to the theo-
retical data for standard Brownian motions. The differences are that the default correlations
of (Ba,Ba), (Ba,B) and (B,B) decrease from the fifth year to tenth year in our simulations.
The reason is that the first passage time density function of Ba- and B-rated firms begin to

decrease from the fifth year, hence the probability of joint default may increase slowly.

5. A remarkable phenomenon is that our implied default correlations deviate (generally higher)
from Zhou’s results [13] (without jumps, in other words, pure diffusion processes) until we hit
10 default correlations. In order to resolve these differences, we also carried out simulations
based on the conventional Monte-Carlo method to investigate the default correlations of firms
(A,A) and (B,B) which have the highest and lowest credit qualities, respectively. The Monte-
Carlo runs for the conventional Monte-Carlo method is N = 100, 000, and the discretization
size of time horizon is A = 0.005. The results are described in Table 4.10. Undoubtedly,
our multivariate UNIF method gives almost identical results compared with the conventional
Monte-Carlo method, which confirms the validity of our methodology and justifies the results
in Tables 4.6-4.9. The reasons which account for the differences between our methodology

and theoretical data are as follows,

(a) During the simulations based on multivariate UNIF method, we have used only one

Poisson shock for both two firms, so the jump times are exactly the same for both two
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firms which will raise the default correlations of those firms. A finer strategy may use

several independent Poisson shocks as described in Section 3.4,

(b) The optimized parameters in our model are obtained by minimizing the difference of the
cumulative default rates between our model and historical data as described in Eq.(3.5).
Therefore, the optimized parameters are sensitively dependent on the historical aggre-
gate data on default rates. Unreliable historical data may lead to biased estimates on
implied default correlations. Hence we may improve the default correlations’ estimates

by using a finer data, for example, by ratings-maturity buckets,

6. Meanwhile, from Table 4.10, we can also conclude that our developed methodology is much
more consistent with the conventional Monte-Carlo method for long time horizon, The de-
viation arises from that we have used the approximated correlations to generate first passage
time s; (see Section 3.3.1). Therefore, our developed methodology will be much better to

describe the long term maturity bonds.

Table 4.10: Simulated default correlations (%) of firms (A,A) and (B,B). The simulations were

carried out based on the UNIF method and the conventional Monte-Carlo method (CMC).

Firms | Method | One year | Two year | Five year | Ten year

(AA) | CMC -0.01 2.48 7.41 8.94

UNIF -0.01 2.35 6.45 8.79

(B.B) | CMC 27.32 30.72 29.44 25.11

UNIF 26.40 29.00 27.93 2498
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4.3 Summary

In this chapter, we demonstrated the applicability of the developed efficient Monte-Carlo-based
procedure for simulating the multivariate jump-diffusion processes by using different parameters.
Next, by using the developed methodologies, we analyzed the default rates and default correlations
of differently rated firms via historical data. The successful applications indicate that the developed
methodology provides an efficient computational technique that is applicable in other areas of credit

risk and pricing options.
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Chapter 5

Conclusions

The FPT problems are ubiquitous in many applications, from physics to finance. While in other
areas of applications the FPT problems can often be solved analytically, in finance we usually have
to resort to the application of numerical procedures, in particular when we deal with jump-diffusion
stochastic processes. The application of the conventional Monte-Carlo procedure is possible for the
solution of the resulting model, but it becomes computationally inefficient which severely restricts
its applicability in many practically interesting cases.

In this dissertation, we developed efficient Monte-Carlo-based computational procedures for
the solution of FPT problem in the context of multivariate (and correlated) jump-diffusion processes.
This was achieved by combining a fast Monte-Carlo method for one-dimensional jump-diffusion
process and the generation of correlated multidimensional variables. The developed procedures
were applied to the analysis of multivariate and correlated jump-diffusion processes. We have also
discussed the implementation of the developed Monte-Carlo-based technique for a subclass of mul-

tidimensional Lévy processes with several compound Poisson shocks.
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Finally, we demonstrated the applicability of the developed methodologies to the analysis of the
default rates and default correlations of several different, but correlated firms via a set of empirical
data, in which we incorporated jumps to reflect the external shocks or other unpredicted events. The
developed methodology provides an efficient computational technique that is applicable in other

areas of credit risk and pricing options.
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