
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Mathematics Faculty Publications Mathematics 

2005 

A General Treatment of Deformation Effects in Hamiltonians for A General Treatment of Deformation Effects in Hamiltonians for 

Inhomogeneous Crystalline Materials Inhomogeneous Crystalline Materials 

Benny Lassen 
University of Southern Denmark 

Morten Willatzen 
University of Southern Denmark 

Roderick V.N. Melnik 
Wilfrid Laurier University, rmelnik@wlu.ca 

L.C. Lew Yan Voon 
Wright State University 

Follow this and additional works at: https://scholars.wlu.ca/math_faculty 

Recommended Citation Recommended Citation 
Lassen, Benny; Willatzen, Morten; Melnik, Roderick V.N.; and Yan Voon, L.C. Lew, "A General Treatment of 
Deformation Effects in Hamiltonians for Inhomogeneous Crystalline Materials" (2005). Mathematics 
Faculty Publications. 41. 
https://scholars.wlu.ca/math_faculty/41 

This Article is brought to you for free and open access by the Mathematics at Scholars Commons @ Laurier. It has 
been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of Scholars 
Commons @ Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/math_faculty
https://scholars.wlu.ca/math
https://scholars.wlu.ca/math_faculty?utm_source=scholars.wlu.ca%2Fmath_faculty%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/math_faculty/41?utm_source=scholars.wlu.ca%2Fmath_faculty%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


A general treatment of deformation effects in Hamiltonians
for inhomogeneous crystalline materials

B. Lassen and M. Willatzen
Mads Clausen Institute for Product Innovation, University of Southern Denmark,
Grundtvigs Allé 150, DK-6400 Sønderborg, Denmark

R. Melnik
Mads Clausen Institute for Product Innovation, University of Southern Denmark,
Grundtvigs Allé 150, DK-6400 Sønderborg, Denmark and CRC in Mathematical Modelling,
Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5 Canada

L. C. Lew Yan Voon
Department of Physics, Wright State University, 3640 Colonel Glenn Hwy.,
Dayton, OH 43435

�Received 26 April 2005; accepted 6 September 2005; published online 9 November 2005�

In this paper, a general method of treating Hamiltonians of deformed nanoscale
systems is proposed. This method is used to derive a second-order approximation
both for the strong and weak formulations of the eigenvalue problem. The weak
formulation is needed in order to allow deformations that have discontinuous first
derivatives at interfaces between different materials. It is shown that, as long as the
deformation is twice differentiable away from interfaces, the weak formulation is
equivalent to the strong formulation with appropriate interface boundary condi-
tions. It is also shown that, because the Jacobian of the deformation appears in the
weak formulation, the approximations of the weak formulation is not equivalent to
the approximations of the strong formulation with interface boundary conditions.
The method is applied to two one-dimensional examples �a sinusoidal and a
quantum-well potential� and one two-dimensional example �a freestanding quantum
wire�, where it is shown that the energy eigenvalues of the second-order approxi-
mations lie within 1% of the exact energy eigenvalues for a linear strain of up to
9.8%, whereas the first-order approximation has an error of less than 1% for a
linear strain of up to 5.5%. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2098531�

I. INTRODUCTION

Nanoscale semiconductor devices, such as quantum wells, wires, and dots, usually consist of
materials with different lattice constants; hence, these structures will be strained. It is known that
strain strongly affects the electronic and optical properties. This has for example been used in band
structure engineering of quantum-well systems; see Ref. 1 for a review including theoretical and
experimental results. Also, Johnson and Bose2 have shown the necessity of including strain in the
modeling of a system of coupled quantum dots, and it is known that the formation of pyramidal
InAs quantum dots on GaAs substrates �self-assembled structures� is driven by the large lattice
mismatch between the two semiconductors.3 Thus, in order to be able to model these devices it is
important to account for strain effects. It is well known how to incorporate homogeneous strain in
electronic band structure calculations,4 but in nanoscale heterostructures strain is no longer homo-
geneous. Zhang5 and Suzuki6 have proposed two different methods to include linear inhomoge-
neous strain terms in the Hamiltonian under certain assumptions for the strain and the potential. In
this paper, a general method of treating Hamiltonians of deformed nanoscale systems �e.g., an
inhomogeneous strained Hamiltonian� is proposed based on a Taylor series expansion. The advan-
tage of this method is that fewer assumptions for the strain and the Hamiltonian are needed
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compared to previous models4–6 and, in addition, it is easily extended to a higher-order approxi-
mation. Finally, because the weak formulation of the problem is used, discontinuities in the
gradient of the deformation are handled in an appropriate manner. Higher-order theories for
Hamiltonian systems have previously been handled in the literature, e.g., in connection with
Lagrangian systems for classical mechanics and field theory; see Ref. 7 and references therein.

In Sec. II, the problem is presented and the Hamiltonian appropriate for calculating the
quantum-mechanical energy eigenvalues and corresponding eigenstates is specified. In Sec. II A,
the mathematical tools needed to make a Taylor series expansion of the Hamiltonian with respect
to a deformation of the system is presented. Section II B is concerned with the derivation of the
second-order Taylor series expansion of the Hamiltonian and in Sec. II C the weak formulation of
the problem is given, after which the second-order Taylor series expansion is derived for the weak
formulation. Finally, in Sec. III, three examples of the application of the method are presented.

II. THEORY

The problem under investigation in this paper is how to model the behavior of an electron in
a deformed system in general, and, more specifically, how to model the behavior of an electron in
a deformed inhomogeneous crystal structure, based on the Schrödinger equation. Assuming that an
undeformed domain B�R3, e.g., a crystal volume, is given, a deformation �: B→R3 of the
undeformed domain B is defined to be a C2 map satisfying certain requirements to be specified in
the next section. Primed � �� coordinates, functions, and operators always refer to the domain B in
the following, while unprimed coordinates, functions, and operators refer to the domain ��B�.

The deformation of a nanoscale system, as well as any material system in general, is found by
minimizing the elastic energy of the system. There are basically two main approaches, an atomic
approach8 and a continuum approach.9–11 If the deformation has been found using an atomic
approach, it is necessary to use the information about how the individual atoms are shifted to
construct a C2 map, but this is outside the scope of this article, i.e., it will just be assumed that the
deformation has been found using a continuum approach and that this results in a C2 map �the C2

demand will be weakened slightly in Sec. II C�.
Assuming that an electron in a potential deformed by � is subject to the potential Ṽ�, the

Hamiltonian of the deformed system, referred to as the deformed Hamiltonian, is given by the
Schrödinger equation

H̃� = −
�2

2m
� + Ṽ�.

It should be noted that the potential is a function of the deformed domain ��B�, i.e., Ṽ��x�, where
x are coordinates on ��B�. The energies E and corresponding wave functions � are found by
solving the eigenvalue equation

H̃�� = E� , �1�

subject to certain boundary conditions. For an electron in a crystal, the most important potential
contributions are

Ṽ� = V� + ĤSO = V� − i
�2

2m2c2 ��V� � �� · � ,

where V� is the potential of the deformed crystal without spin, ĤSO is the spin-orbit part, and � are
the Pauli spin matrices. This is the situation considered in this work, but it should be noted that the
procedure can be used on any potential which is a differential function of � in a sense to be
defined later. In order to incorporate spin, operators on the function space F are extended to F
�F by operating on each element of the pair separately, e.g., let f �F�F, i.e., f = � f+

f−
�, where

f+ , f−�F; then
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V�f = V�� f+

f−
� = �V� f+

V� f−
� .

The function f+ corresponds to the spin-up state and f− corresponds to the spin-down state.
The potential of the undeformed domain is usually better known than the potential of the

deformed domain. Assuming that the deformation is known, it is therefore advantageous to ex-
press the deformed Hamiltonian with respect to the deformation and the undeformed potential.
This can be achieved by making a Taylor series expansion of the deformed Hamiltonian with
respect to the deformation. In order to do so, the deformed Hamiltonian is written with respect to
coordinates on B. This can be done as long as the deformation is invertible with twice differen-
tiable inverse. The deformed Hamiltonian is, in that case, given by

H̃� = −
�2

2m
� + V� − i

�2

2m2c2 ��V� � �� · � . �2�

Changing to coordinates on B, the deformed Hamiltonian takes the form

H� = KF + V� � � + H�
SO, �3�

where F=��� and the kinetic and spin-orbit parts �KF and H�
SO, respectively� are given by

KF = −
�2

2m
�F −1���r���� ji

�

�xj�
��F −1���r����ki

�

�xk�
� , �4�

and

H�
SO = − i

�2

4m2c2 ��F −1���r����T��V����r��� � �F −1���r����T��� · � . �5�

Here and throughout the paper, Einstein’s summation convention is applied, i.e., summation over

repeated indices, e.g., aibi=�i=1
3 a1bi. It should be noted that H̃� in Eq. �2� and H� in Eq. �3� are

related by a unitary transformation �change of coordinates�. It is possible to use other unitary
transformations to write the Hamiltonian with respect to coordinates on B, e.g., a transformation
similar to the one used in Hislop et al.12 in connection with spectral deformation theory, which
take into account the determinant of the deformation gradient appearing in the probability distri-
bution by solving for �det F��r� instead of ��r�. The Taylor series expansion will of course reflect
the choice of transformation, but the order of the approximation will stay the same.

The idea now is to make a Taylor series expansion of H� �Eq. �3�� with respect to the
deformation �. Hence, it is necessary to set up the mathematical theory required to handle the
above situation. This will be done in the next section.

A. Mathematical tools

The first thing needed in order to use a Taylor series expansion is to define a derivative
applicable in the given situation. The weakest notion of a derivative is the Gâteaux derivative, and
this will be used in the present work. Let U and V be normed linear spaces, S�U an open set, and
P an operator from S to V. In addition, let u0�S, ��U nonzero, and I= �−� ,��, where ��R is
chosen such that u0+ t��U for all t�I. The Gâteaux differential of P at u0 in the direction � is
then defined to be

DP�u0� · � 	
d

dt
�P�u0 + t��� = lim

t→0

1

t
�P�u0 + t�� − P�u0�� , �6�

when the limit exists. An operator P which has a Gâteaux differential at each point in S in any
direction is said to have a Gâteaux differential on S.13 The higher-order differentials are introduced
inductively in the usual manner. It should be noted that when the Gâteaux derivative fulfills certain
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additional requirements it is equal to the stronger, and more widely used, concept of a derivative
called Frechet differentiability.14 This concept has, among other things, the advantage of being
linear in �, which is not always the case for the Gâteaux derivative.

The version of Taylor’s theorem that is relevant for this work is given as follows.
Theorem II.1. Let U and V be normed linear spaces. Suppose that the space V is complete

and that the region S of the space U is convex, and suppose that the function P from S to V has
an nth Gâteaux differential on S. Suppose also that for every u1 ,u2 in S the function of r,
DnP�u1+ �u2−u1�r� · �u2−u1�n, is bounded on the interval (0, 1) and its set of discontinuities is of
measure zero. Then, for every u1 ,u2 in S we have

P�u2� = P�u1� + �
i=1

n−1
DiP�u1� · �u2 − u1�i

i!
+ Rn�u1,u2� ,

where

Rn�u1,u2� = 

0

1

DnP�u1 + �u2 − u1�r� · �u2 − u1�n �1 − r�n−1

�n − 1�!
dr .

The statement that a subset of an interval is of measure zero is equivalent to the statement that
the total length of the subset is zero. For a proof of this theorem and a definition of the Riemann
integral appearing in the theorem, refer to Ref. 13. In order to see how this theorem can be used
in the situation given above, a more precise definition of a deformation, and of the corresponding
deformed Hamiltonian, is necessary. This will be given in the following.

First, the overall normed linear space that a deformation belongs to is defined. Let f be a once
differentiable function from B to R3, and define

�f�C1 = �sup
B

 f1

2 + �
i=1

3 � �f1

�xi
�2

+ f2
2 + �

i=1

3 � �f2

�xi
�2

+ f3
2 + �

i=1

3 � �f3

�xi
�2��1/2

, �7�

where f = �f1 , f2 , f3�. Denote with Ĉ2 the normed linear space consisting of all the twice differen-
tiable functions from B to R3 that have a finite norm given by �7�. A deformation �: B→R3 of the

undeformed domain B is defined to be an injective Ĉ2 map satisfying inf�det������	0. The last
requirement is needed to ensure that the map has a twice differentiable inverse; this is guaranteed
by the inverse function theorem. The existence of the inverse ensures that the deformation does
not destroy parts of the domain, e.g., by collapsing or tearing parts of the domain. It is assumed
that B is bounded; this ensures boundedness of considered operators. The space of all deforma-

tions of B is denoted D. It can be shown that the function g: Ĉ2→R given by g���
=inf�det������ is continuous, and D is, as a consequence, open in Ĉ2 �it is the inverse image of
the open set �
 ,0��.

Next, the deformed Hamiltonian is shown to be a function from D to a normed linear space.
The domain of the deformed Hamiltonian is, in this article, chosen to be the product of Sobolev
spaces: H2���B���H2���B��. This is the largest space for which the deformed Hamiltonian is
defined.15 The deformation has, according to the inverse function theorem, a twice differentiable
inverse. This ensures that H� can be written with respect to coordinates on B, as it was done in Eq.
�3�. As a consequence, the deformed Hamiltonian can be viewed as an operator

Ĥ:D → L�H2�B� � H2�B�, L2�B� � L2�B�� ,

given by ��H�, where L�F ,G� is the space of bounded linear mappings from F to G and L2�B�
is the Lebesgue space. The Lebesgue space is needed here because of the definition of the Sobolev
space.15 It is also the appropriate space with respect to wave functions, because these give the
probability that an electron is in a certain area, and, as a consequence, they only need to be defined
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almost everywhere, i.e., up to sets of zero measure. The spaces H2�B��H2�B� and L2�B�
�L2�B� are equipped with the L2 norm

���L2 = �

B

�+
*�+dV�1/2

+ �

B

��−
*�−�dV�1/2

,

where �= � �+

�−
� and �+ ,�− are functions from B to C. The space L2�B��L2�B� equipped with this

norm is a complete normed linear space. The space L�H2�B��H2�B� ,L2�B��L2�B�� is equipped
with the operator norm

�A�O = sup��A��L2�� � H2�B� � H2�B�, ���L2 � 1� ,

where A�L�H2�B��H2�B� ,L2�B��L2�B��. This makes the space L�H2�B��H2�B� ,L2�B�
�L2�B�� into a complete normed linear space �see Theorem III.2.3 in Ref. 16�.

The function to be approximated by a Taylor series expansion is the function Ĥ, i.e., with

respect to Theorem II.1: P= Ĥ, U= Ĉ2, and V=L�H2�B��H2�B� ,L2�B��L2�B��. Depending on
which element of D the deformed Hamiltonian is expanded about, the convexity requirement can

be fulfilled by restricting the domain of Ĥ to the largest open ball with respect to the norm7 that
contains the element of expansion and is contained in D. This restriction normally poses no
problems because Taylor series expansions are in general only accurate within small deviations
from the element of expansion. The restricted domain is the set S in Theorem II.1. That the
Gâteaux derivatives exists and that DnP�u1+ �u2−u1�r� · �u2−u1�n fulfills the given requirements
has to be verified for each specific potential V�.

B. Second-order deformed Hamiltonian

In this section, the second-order Taylor series expansion of the deformed Hamiltonian around
the identity map id on B is presented. In order to find the second-order Taylor series expansion, it
is necessary to find the first- and second-order Gâteaux derivatives. This is done in Appendix A.
It is assumed that V� is well enough behaved such that Theorem II.1 can be used. The Taylor
series expansion of the deformed Hamiltonian to the second order in � around id is then given by

H� � Hid + D�1��� − id� + DSO
�1��� − id� + D�2��� − id,� − id� + DSO

�2��� − id,� − id� , �8�

where

Hid = −
�2

2m
��2 + Vid − i

�2

4m2c2 ���Vid � ��� · � ,

D�1��� − id� =
�2

2m��F + FT − 2I� jk
�

�xj�

�

�xk�
+

�

�xi�
��F − I�ki�

�

�xk�
� + DVid · �� − id� ,

DSO
�1��� − id� = − i

�2

4m2c2 �����DVid · �� − id�� � ��� · � − ��F − I�T��Vid � ��� · �

− ���Vid � �F − I�T��� · �� ,

112102-5 A Treatment of Deformation Effects in Hamiltonians J. Math. Phys. 46, 112102 �2005�



D�2��� − id,� − id� = −
�2

2m���F − I��F − I�T + �F − I�2 + �FT − I�2� jk
�

�xj�

�

�xk�

+ ��F − I�� ji
�

�xj�
��F − I�ki�

�

�xk�
+

�

�xi�
��F − I�2�ki

�

�xk�
�

+
1

2
D2Vid · ��� − id�,�� − id�� ,

DSO
�2��� − id,� − id� = − i

�2

4m2c2�− ��F − I�T���DVid · �� − id�� � ��� · �

− ����DVid · �� − id�� � �F − I�T��� · �

+ ��F − I�T��Vid � �F − I�T��� · �

+
1

2
����D2Vid · ��� − id�,�� − id��� � ��� · �

+ ��FT − I�2��Vid � ��� · � + ���Vid � �FT − I�2��� · �� ,

and F=���.
To connect these expressions with the strain tensor, note that the Green–Lagrange–St. Venant

strain tensor is given by

� =
1

2
�FTF − I� ,

and the linear strain tensor is given by

� lin =
1

2
�F + FT − 2I� . �9�

In the case where F is symmetric, Eq. �9� becomes

� lin = F − I .

If only the first-order terms of the Taylor series expansion are used, and if the linear strain is used
with a symmetric deformation gradient, then the herein derived first-order approximation to the
deformed Hamiltonian is identical to the one proposed by Zhang.5 In the case where the defor-
mation is homogeneous, the first-order approximation is the same as the one derived by Bir et al.4

C. Weak formulation

The preceding sections are all concerned with deformations that are twice differentiable, but
there are many situations where the deformations do not satisfy this. For example, in the quantum-
well case the deformation is piecewise linear with different slopes inside and outside the well.17

Therefore, to be able to handle this kind of deformations, an extension of the theory to a larger
class of deformations is needed.

Let A be the set of injective functions from B to R3 that are once differentiable on B \
 with
both a finite C1 norm �Eq. �7�� and a positive Jacobian determinant, where 
 is a finite set of
piecewise smooth surfaces �two-dimensional manifolds�. This set of functions includes the defor-
mations considered in quantum-well, as well as quantum-wire and quantum-dot structures �ac-
cording to continuum mechanical models9–11�. The problem with the functions belonging to A is
that they are not necessarily once differentiable on B because the first derivative can have discon-
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tinuities at interfaces. Therefore, caution is needed when “pulling back” the deformed Hamiltonian
to coordinates on B �Eq. �3��. The correct formalism to use in this case is the weak formalism, i.e.,
instead of solving the eigenvalue equation

H��̃ = E�̃ ,

subject to some boundary conditions �in this work either Dirichlet or periodic boundary condi-
tions�, a solution to the weak equation



��B�

�+
*�H��̃�+dV + 


��B�
�−

*�H��̃�−dV = 

��B�

�+
*E�̃+dV + 


��B�
�−

*E�̃−dV , �10�

for all �+ ,�−�Cc

���B� ,C� �smooth functions with compact support; see, e.g., Ref. 16� is found,

where �H��̃�+ is the first factor of H��̃ and �H��̃�− is the last factor. The solution still has to
satisfy the boundary conditions. Introducing

K �
±��±,�� =

�2

2m



B\

��F −1 � ���F −1 � ��T�ij

���±�*

�xi�

��±

�xj�
det FdV�, �11�

V �
±��±,�� = 


B
�±

*V� � ��± det FdV�, �12�

H�
SO,±��±,�� = − i

�2

4m2c2

B\


�±
*�FT� � ��V� � � · ����±dV�, �13�

W���,�;E� = K �
+��±,�� + V �

+��±,�� + HSO,+
���±,�� − 


B
�+

*E�+ det FdV� + K �
−��±,�� + V �

−��±,��

+ HSO,−
���±,�� − 


B
�−

*E�− det FdV�, �14�

where �= � �+

�−
�, �= � �+

�−
�, �+ ,�−�H2�B�, and �+ ��−1 ,�− ��−1�Cc


���B� ,C�, the weak formulation

�Eq. �10�� can be put in the form: Find �̃ and E such that

W��� � �,�̃ � �;E� = 0,

for all �+ ,�−�Cc

���B� ,C�. The expression for the kinetic part �Eq. �11�� is found by integrating

by parts, using that �+ and �− have compact support, changing coordinates, and using the chain
rule. The integral is restricted to B \
 for the chain rule to apply. This is possible because 
 has
measure zero �zero volume�. Finding the expression for the potential part �Eq. �12�� is straight-
forward, and the expression for the spin-orbit part �Eq. �13�� is found again by changing coordi-
nates and using the chain rule; in addition, the rule that Av1�Av2 ·Av3=det�A�v1�v2 ·v3, for a
3�3 matrix A and v1 ,v2 ,v3�R3 is used.

According to Theorem B.1 in the Appendix, the above weak formulation is equivalent to
finding � and E such that

W���,�;E� = 0, �15�

for all �+ ,�−�Cc

�B ,C�, in which case �̃=� ��−1. Equation �15� is a weak formulation of the

problem with respect to the domain B.
The operator W defined in Eq. �14� can be viewed as an operator W :A→L�H2�B�

�H2�B� ,Cc

�B ,C��Cc


�B ,C� ;A�R ,R��, where L�F1 ,F2 ;G� is the space of bilinear mappings
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from F1�F2 to G and A�R ,R� is the space of affine mappings from R to R. The space A�R ,R� is
a finite-dimensional normed vector space, and because of this it is complete. It follows that the
range of W is complete so, according to Theorem II.1, the Taylor series expansion of W exists,
assuming that the Gâteaux derivative exists and fulfills given requirements. The domain of W can
be restricted to an open convex set using similar arguments as in Sec. II A.

In Appendix B the derivatives needed to write out the second-order Taylor series expansion of
W are found, giving

W� � Wid + W�1��� − id� + WSO
�1��� − id� + W�2��� − id,� − id� + WSO

�2��� − id,� − id� ,

where

W�1��� − id���,�;E� = �
s=+,−

�−
�2

2m



B\

�F + FT − 2I�ij

���s�*

�xi�

��s

�xj�
−

���s�*

�xi�

��s

�xi�
Tr�F − I�dV�

+ 

B

�s
*�DVid · �� − id� + �Vid − E�Tr�F − I���sdV�� ,

W�2��� − id,� − id���,�;E� = �
s=+,−

� �2

2m



B\

��F − I�2 + �FT − I�2 + �F − I��F − I�T�ij

���s�*

�xi�

��s

�xj�
dV�

−
�2

2m



B\

�F + FT − 2I�ij Tr�F − I�

���s�*

�xi�

��s

�xj�
dV�

+
�2

2m



B\


���s�*

�xi�

��s

�xi�
Tr��F − I�co�dV�

+
1

2



B
�s

*D2Vid · �� − id,� − id��sdV,

+ 

B

�s
*�DVid · �� − id�Tr�F − I� + �Vid − E�Tr��F − I�co���sdV�� ,

WSO
�1��� − id���,�� = �

s=+,−
− i

�2

4m2c2

B\


��s
*��F − I�T� � ��Vid · ����s

+ �s
*�� � ���DVid · �� − id�� · ����s�dV�,

and

WSO
�2��� − id,� − id���,�� = �

s=+,−
�− i

�2

4m2c2

B\


�s
*��F − I�T� � ���DVid · �� − id�� · ����sdV�

− i
�2

4m2c2

B\


�s
*�� � ���1

2
D2Vid · �� − id,� − id�� · ����

s
dV�� .

In contrast to the previous deformed Hamiltonian models by Bir and Pikus,4 Zhang,5 and
Suzuki,6 the present model describes a general rigoristic mathematical model for incorporating
nonsmooth �and of course, smooth� deformation fields in Hamiltonians.
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1. Strong formulation with interface boundary conditions

The weak form can, as long as the deformations lie in A and are twice differentiable on B \
,
be reformulated in a strong form with interface boundary conditions. This is done using integra-
tion by parts in the kinetic term �Eq. �11��. Let n= �n1 ,n2 ,n3� be a unit normal vector field on the
interface 
; then

K�
±��±,�� =

�2

2m






ni����F −1 � ���F −1 � ��T�ij��±�*��±

�xj�
det F�

m1

− ���F −1 � ���F −1 � ��T�ij��±�*��±

�xj�
det F�

m2
�dA�

−
�2

2m



B\

��±�*�F −1 � �� ji

�

�xj�
��F −1 � ��ki

��±

�xk�
�det FdV�, �16�

where the subscripts m1 and m2 symbolize that the expression in brackets is found as the limit
taken from the region that the normal vector points out of and into, respectively. To get this result,
it has also been used that

�

�xi
�F ik

−1 det F� =
�

�xi
��Fco�ki� = 0,

for k=1,2 ,3, where Fco is the matrix of cofactors of F. This result can easily be verified. From Eq.
�16� it can be inferred that the weak formulation is equivalent to solving the eigenvalue equation

H�� = E� ,

on B \
, where H� is given in Eq. �3�, subject to the interface boundary condition

ni���F −1 � ���F −1 � ��T�ij
��±

�xj
det F�

m1
= ni���F −1 � ���F −1 � ��T�ij

��±

�xj�
det F�

m2

. �17�

Notice that the interface boundary condition should be satisfied simultaneously for both �+ and �−

in order for the surface integral appearing in �16� to vanish.
The advantage of formulating the problem in strong form with interface boundary conditions

�Eq. �17�� is that solution methods no longer are restricted to weak methods. Hence, it is possible
to find solutions by any convenient numerical or exact method. This kind of procedure can be used
in most situations involving derivatives of discontinuous quantities, e.g., k · p theory.

III. ONE- AND TWO-DIMENSIONAL EXAMPLES

A. Sinusoidal potential

The one-dimensional sinusoidal potential is chosen as a first example. This potential is given
by

Vid�x�� = V0 + A cos�2�

a
x�� ,

for x�� �−Na ,Na� �see Fig. 1�. The real number a is the distance between the maximal value of
the potential, and N�N is a fixed number. In this example the values V0=0 eV and A=5 eV are
chosen. In addition, periodic boundary conditions are used. Assuming that the whole potential is
deformed when subjected to some deformation �, the deformed potential is given by
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V��x� = Vid��−1�x�� = V0 + A cos�2�

a
�−1�x�� .

To get an idea of the influence of the deformation on the energies, the deformation is chosen such
that

�−1�x� = x + �a sin� 2�

10a
x� , �18�

where it is assumed that N /10�N and ��R is chosen such that ��−1 /�x	0 for all
x� �−Na ,Na�. In Fig. 1 the deformed potential is shown for N=10 and �=0.1. The inverse is
specified because this insures that it is possible to solve the exact eigenvalue equation and, as a
consequence, the first- and second-order approximations can be compared against the exact solu-
tion.

This example can be extended to a three-dimensional example by assuming that there is
translational symmetry in the y� and z� directions, and that the system is only deformed in the x�
direction. The undeformed region can, in this case, be chosen as B= �−Na ,Na���−Na ,Na���
−Na ,Na� with periodic boundary conditions. The potential can then be viewed as originating from
a periodic array of plates perpendicular to the x� direction. The number a is, in this case, the period
of the structure. Ignoring spin, the deformed Hamiltonian is given by

H� = −
�2

2m
� + V�.

According to Eq. �8�, the second-order Taylor series expansion is

H� � Hid + D�1��� − id� + D�2��� − id,� − id� .

Because of the translational symmetry, the solutions to the eigenvalue problem �Eq. �1�� can
always be chosen such that

�̃�x�,y�,z�� = ��x��eiky�y�eikz�z�.

Solving at the zone center, i.e., for ky�=0 and kz�=0, it is found that Eq. �8� takes the form

FIG. 1. �Color online� A figure showing the undeformed and deformed sinusoidal potential for N=10 and �=0.1.
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H� � −
�2

2m
��1 − 2� ��

�x�
− 1� + 3� ��

�x�
− 1�2� �2

�x�2 + �−
�2�

�x�2 + 3� ��

�x�
− 1� �2�

�x�2� �

�x�
� + Vid�x�� .

The reason why the Taylor series expansion of the potential is exact is that V��x�=Vid��−1�x��
=Vid�x��. Another way of arriving at Eq. �19� is to derive a theory similar to the one in this article
just for the one-dimensional case.

The eigenvalue equation has been solved numerically using FEMLAB, i.e., using a finite-
element method, both for the first- and second-order approximation of the deformed Hamiltonian
with respect to ���� /�x��−1�. The exact problem, i.e., without making the Taylor series expan-
sion, was also solved using FEMLAB. In Fig. 2 a plot of the error in using the first- and second-
order approximation as a function of � and the maximum of the linear strain is presented �the solid
lines�, where the linear strain is given by ���� /�x��−1�. The errors of the first- and the second-
order Hamiltonians are given by

Errorx = �E1
x − E1

Exact

E1
x � ,

x=1st,2nd, respectively, where E1
Exact, E1

1st, and E1
2nd are the energy of the ground state calculated

with the exact, first-order, and second-order Hamiltonians, respectively. From this graph it can be
seen that the second-order approximation �crossed red line� is considerably more accurate then the
first-order approximation �black line�. The first-order approximation has an error of less than 1%
for a max linear strain of up to 6.7%, whereas the second-order approximation is accurate to with
in 1% up to a max linear strain of 18.6%.

Even though it is not necessary to use the weak formulation for the problem in this example
�because the deformation is smooth over the whole domain�, it is still interesting to see how
accurate the results are using the weak approach. First of all, it should be noted that the exact
results obtained with the weak formulation are identical to the exact results obtained with the
strong formulation. This should also be the case because the formulations are equivalent when
everything is smooth. Which formulation is used does however matter when the Taylor series
expansion is made. In the weak formulation the Jacobian is present as a consequence of the
coordinate transformation of the integral, and it is not present in the strong formulation. So, it is
actually the influence of the Jacobian that is under investigation in the following.

According to Sec. II C, the second-order Taylor series expansion of the weak eigenvalues

problem has the following form disregarding spin: Find �̃ and E such that

FIG. 2. �Color online� Graph showing the error in the energies for the sinusoidal potential when using the first- and
second-order approximations.
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W�����,�̃,E� = 0, �19�

for all ��Cc

�B ,C�, where

W�����,�̃,E� �
�2

2m



−Na

Na 
�1 − � ��

�x�
− 1� + � ��

�x�
− 1�2� ��̂*

�x�

��

�x�
�dx�

+ 

−Na

Na 
�Vid − E�
��

�x�
�̂*��dx�,

and

�̂ = 

−Na

Na 

−Na

Na

� dy� dz�.

The first- and second-order approximation of the eigenvalue equation �19� with respect to
���� /�x��−1� is again solved using FEMLAB. The dashed lines in Fig. 2 show the error introduced
by using the first- and second-order approximation �black and boxed red lines, respectively�. From
this figure, it is seen that the second-order approximation is again substantially better than the
first-order approximation. In this case, the first-order approximation has an error of less then 1%
for a max linear strain of up to 12%, and the second-order approximation is within an error of 1%
in the whole interval shown, i.e., at least up to a max linear strain of 33.6%. It is also seen that the
first- and second-order approximations of the weak problem are considerably more precise than
the first- and second-order approximations of the strong problem. The reason for this goes back to
the presence of the Jacobian in the weak formulation in the following way.

First, observe that ��−1 /�x ��=1/ ��� /�x�� and det�����=�� /�x�. From this it is seen that
��−1 /�x �� det�����=1. Because of this, Eq. �14� reduces to

W�����,�̃,E� =
�2

2m



−Na

Na 
 ��−1

�x
� �

��̂*

�x

��

�x�
+ �Vid − E�

��

�x�
�̂*��dx�.

The reason why the Taylor approximations of this equation is more precise than the Taylor
approximations of the strong problem is simply that the first- and second-order Taylor series
expansion of ��−1 /�x ��=1/ ��� /�x�� is more accurate than the first- and second-order Taylor
series expansion of ����−1 /�x� ���2= �1/ ��� /�x���2. Hence, the reason why the approximations of
the weak formulation are more accurate than the approximations of the strong formulation is that
this example is, in essence, a one-dimensional problem. This will be confirmed in the quantum-
wire example analyzed later.

B. Quantum well

In this section the influence of deformations on the quantum-well problem is investigated.
This is done in order to give an example of a situation where the weak formulation is needed. The
quantum-well problem is the one-dimensional problem where the undeformed potential is given
by the step function

Vid�x�� = �V0, �x� � � − d,− a��
V1, x� � �− a,a�
V0, �x� � �a,d��

� .

To simplify matters, spin is again neglected. In this example the following values are used: V0

=5 eV, V1=0 eV, a=5 nm, and d=25 nm, and Dirichlet boundary conditions are imposed. Again,
it is assumed that the whole potential is deformed when it is subjected to a deformation �, i.e.,
V��x�=Vid��−1�x��. In nanoscale semiconductor quantum wells, the well material will be de-
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formed homogeneously, whereas the barrier material will stay undeformed �see, e.g. �18��, i.e., the
deformation will have the form

��x�� = �x� − a�b − 1� , �x� � � − d,− a��
bx�, x� � �− a,a�
x� + a�b − 1� , �x� � �a,d��

� ,

for some b	0. The deformation is not differentiable at the interfaces and, as a consequence, the
weak formulation is needed. Proceeding as in the sinusoidal example above, it is found that the
second-order Taylor series expansion of the weak eigenvalue problem takes the form given in Eq.
�19� and the equations that follow.

The first- and second-order approximations have again been solved using FEMLAB. The in-
verse of the deformation is easily found and, as a consequence, it is also possible to solve the exact
weak eigenvalue problem, i.e., without making a Taylor series expansion. The error in the energy
of the ground state in using the first- and second-order approximation is shown in Fig. 3 �dashed
black and boxed red lines�. Here, it is seen that the error introduced by using the first-order
approximation is within 1% for a linear strain of up to 11.6%, whereas the error introduced by
using the second-order approximation lies within 1% for a linear strain of up to 23.8%. Again, it
is seen that the second-order approximation is substantially better than the first-order approxima-
tion.

In the sinusoidal example above, it was seen that the approximations of the weak formulation
gave considerably more accurate results than the approximations of the strong formulation. In
order to investigate whether this is the case for the quantum-well problem also, the strong form of
the problem with interface boundary conditions �Sec. II C 1� has been solved, again using
FEMLAB. It should be noted that the exact solution to the strong form with interface boundary
conditions, i.e., without making a Taylor series expansion, is equal to the exact solution to the
weak form. This has to be the case because the two formalisms are equivalent as long as no
approximations have been made. The second-order approximation of the strong form is given by
Eq. �19� above, and the interface boundary conditions are as follows:

� ��−1

�x
� ��x0�

��

�x�
�x0��

L
= � ��−1

�x
� ��x0�

��

�x�
�x0��

R
,

for x0=−a ,a, where L�R� indicates that the expression in brackets is taken in the limit from the left
�right�. The second-order Taylor series expansion of the interface boundary conditions takes the
form

FIG. 3. �Color online� Graph showing the error in the energies for the quantum well when using the first- and second-order
approximations.

112102-13 A Treatment of Deformation Effects in Hamiltonians J. Math. Phys. 46, 112102 �2005�



��1 − � ��

�x�
�x0� − 1� + � ��

�x�
�x0� − 1�2� ��

�x�
�x0��

L

= ��1 − � ��

�x�
�x0� − 1� + � ��

�x�
�x0� − 1�2� ��

�x�
�x0��

R
,

for x0=−a ,a.
The solid black and crossed red lines in Fig. 3 show the error introduced by using the first-

and second-order approximation of the strong form with interface boundary conditions, denoted
SForm-first and SForm-second, respectively. Here, we see that the error in using SForm-first is
less than 1% for a linear strain of up to 5.9%, whereas the error introduced using SForm-second
is within 1% for a linear strain of up to 13.5%. So again, it is seen that the second-order approxi-
mation is more accurate than the first-order approximation. In addition, it can be seen that the
approximations of the weak form are substantially more accurate than the approximations of the
strong form with interface boundary conditions. This is expected because this is also a one-
dimensional problem, so the same reasoning as in the sinusoidal example can be applied.

C. Quantum wire

In this section a square-shaped, two-dimensional quantum-wire problem with infinite barrier is
investigated. This is done in order to see whether or not the approximations of the weak problem
are more accurate than the approximations of the strong form for a two-dimensional problem.

The undeformed two-dimensional domain under investigation is given by �−5,5���−5,5� �in
nanometers� and the potential is zero. Dirichlet boundary conditions must be applied because of
the infinite barrier. To simplify matters, the following homogeneous deformation is chosen:

��ẋ�,y�� = �b b − 1

0 b
��x�

y�
� ,

where b�0 �this ensures that the Jacobian determinant is positive�. The second-order Taylor series
expansion of the Strong formulation of the eigenvalue equation takes the form: Find � and E such
that

H�� = E� ,

where

H� � −
�2

2m
� �2�

�x��x�
+

�2�

�y��y�
− 2�b − 1�� �2�

�x��x�
+

�2�

�y��y�
+

�2�

�x��y�
�

+ �b − 1�2�4
�2�

�x��x�
+ 3

�2�

�y��y�
+ 6

�2�

�x��y�
�� .

This can either be derived in a similar manner to the three-dimensional case, or the quantum-wire
problem can be extended to a three-dimensional problem by assuming translational symmetry in
the third direction. If it is then solved at the zone center in the third direction, the second-order
approximation of the deformed Hamiltonian will have the above form. In the latter case the
problem is actually closer to a real problem, although a idealized version, because such quantum-
wire structures can be grown in reality �see Ref. 18�.

The solid lines in Fig. 4 show the error resulting from using the first- and second-order
approximations �the black and crossed red lines, respectively�. Here, it is seen that the first-order
approximation is within an error of 1% for b−1 between −0.058 and 0.055, whereas the energies
of the second-order approximation are within an error of 1% for b−1 between −0.197 and 0.098.
Again, it can be seen that the second-order approximation gives substantially better results.

The second-order Taylor series expansion of the weak formulation of the problem takes the
form: Find � and E such that
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W�����,�,E� = 0,

for all ��Cc

��−5,5���−5,5� ,C�, where

W�����,�̃,E� � 

−5

5 

−5

5 � �2

2m

 ��*

�x�

��

�x�
+

��*

�x�

��

�x�
+ �− �b − 1� + �b − 1�2�� ��*

�x�

��

�y�
+

��*

�y�

��

�x�
�

+ �b − 1�2��*

�x�

��

�x�
� + �Vid − E��1 + 2�b − 1� + �b − 1�2��̂*��dx�dy�.

From this, the energies can be calculated with respect to a first- and a second-order approximation
of the weak form. The dashed lines in Fig. 4 show the error in the energy introduced by using the
first- and the second-order approximation of the weak form as a function of both b and b−1 �black
and boxed red lines, respectively�. Here, it is seen that the first-order approximation of the weak
form has an error of less than 1% for b−1 between −0.089 and 0.114, whereas the error of the
second-order approximation of the weak form is within an error of 1% for b−1 between −0.139
and 0.14. It is seen, as expected, that the second-order approximation of the weak form is much
better than the first-order approximation of the weak form. But, when the approximations of the
weak form are compared to the approximations of the strong form, it is seen that the second-order
approximation of the strong form is actually more accurate than the second-order approximation
of the weak form in the negative direction, whereas it is the second-order approximation of the
weak form which is more accurate in the positive direction. Hence, for this two-dimensional
problem it is not easy to say which of the two formulations gives the best results. This differs from
the observations made in the one-dimensional examples above, where it was seen that the approxi-
mations of the weak formulation always were more accurate than the approximations of the strong
formulation.

IV. CONCLUSION

In this article a method to incorporate deformation effects in Hamiltonians has been presented
based on a Taylor series expansion with respect to the deformation. This method was exemplified
with a Hamiltonian of an inhomogeneous crystal structure including spin. For this Hamiltonian,
the second-order Taylor series expansion of the eigenvalue problem was found both in a strong
and a weak formulation. The weak formulation was needed in order to be able to handle defor-
mations that might not be differentiable at interfaces. It was also shown that the weak formulation
could be transformed into a strong formulation with interface boundary conditions.

FIG. 4. �Color online� Graph showing the error in the energies for the quantum wire when using the first- and second-order
approximations.
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One- and two-dimensional examples were presented, where it was shown that the Taylor
series approximations give quite accurate results. In actual fact, an error in the energy within 1%
for a linear strain of up to 5.5% for the first-order approximations and 9.8% for the second-order
approximations was obtained. For the one-dimensional examples, it was also seen that the ap-
proximations of the weak formulation gave considerably more accurate results than the approxi-
mations of the strong formulation. But, for the two-dimensional example, this was not the case.
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APPENDIX A: TAYLOR EXPANSION „STRONG FORMULATION…

First, it should be noted that all the functions under investigation in this appendix, except the
potential V�, are Frechet differentiable. As a consequence, all the usual rules normally associated
with derivatives can be applied.

In the course of finding the Gâteaux derivative of Ĥ, the following lemma will be used:
Lemma A.1. Let F: D→C�B ,M�3,R�� be given by F���=���, G�C�B ,M�3,R��, and �

� Ĉ2, where M�3,R� is the set of 3�3 matrices with real coefficients; then

DF��� · � = ��� ,

DF−1�I� · G = − G ,

D det F�I� · G = Tr�G�

where I�C�B ,GL�3,R�� is given by I�r��ij =�ij, F−1 is the mapping F�F −1 for F
�C�B ,GL�3,R��, and det F is the mapping F�det F. In addition

D2F −1�I� · �G,G� = 2�G�2,

and

D2 det F�I� · �G,G� = 2 Tr��G�co� = 2�G11G22 − G12G21 + G11G33 − G13G31 + G22G33 − G23G32� ,

where �G�co is the matrix of cofactors of G.
Proof of Lemma A.1. Using Eq. �6�, it is seen that

DF��� · � =
d

dt
������ + t����t=0 = ��� .

Let F0, G�C�B ,M�3,R��, F0 invertible, and let ��R be given such that F0+ tG is invertible for
all t� �−� ,��. Observe that

�F0 − tG�−1 − F 0
−1

t
=

F 0
−1

t
��I + tGF 0

−1�−1 − I� = − F 0
−1�I + tGF 0

−1�−1GF0
−1.

From this it follows that the limit for t→0 exists and

DF −1�F0� · G = − F 0
−1GF 0

−1. �A1�

With F0= I the second result in Lemma A.1 is found. From Eq. �A1� it is also found that
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D2F −1�F0� · �G,G� = D�− F −1GF −1��F0� · �G� = 2F 0
−1GF 0

−1GF 0
−1.

With F0= I, the third result is obtained.
It is known that

det F = F1 � F2 · F3, �A2�

where Fi is the ith column of F. From Eq. �A2�, it is seen that

D det F�F0� · G = G1 � �F0�2 · �F0�3 + �F0�1 � G2 · �F0�3 + �F0�1 � �F0�2 · G3, �A3�

i.e.,

D det F�I� · G = Tr G .

Using Eq. �A3�, it is found that

D2 det F�F0� · G = 2�G1 � G2 · �F0�3 + �F0�1 � G2 · G3 + G1 � �F0�2 · G3� ,

giving

D2 det F�I� · G = 2 Tr Gco.

�

1. The kinetic part K„F…

The second-order Taylor series expansion is given by

KF � KI + DKI · �F − I� +
1

2
D2KI · �F − I,F − I� ,

where KF is given in Eq. �4�. Using the chain rule, Lemma A.1, and the definition of the Gâteaux
derivative, it can be shown that

DKF0
· G =

�2

2m��DF −1�F0� · G� ji
�

�xj�
��F 0

−1 � �0�ki
�

�xk�
� + �F 0

−1 � �0� ji
�

�xj�
��DF −1�F0� · G�ki

�

�xk�
�� ,

�A4�

That is

DKI · G =
�2

2m��G + GT� jk
�

�xj�

�

�xk�
+

�

�xi�
��G�ki�

�

�xk�
� .

The second derivative of the kinetic part K�F� can be found from Eq. �A4� using that
D2F��0� ·�=0 for all � and �0, giving

D2KI · �G,G� = −
�2

m ��GGT� jk
�

�xj�

�

�xk�
+ �G� ji

�

�xj�
��G�ki�

�

�xk�
+ �G2 + �GT�2� jk

�

�xj�

�

�xk�

+
�

�xi�
��G2�ki�

�

�xk�
� .
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2. The spin-orbit part, HSO

The second-order Taylor series expansion of the spin-orbit part is given by

H�
SO � Hid

SO + DHid
SO · �� − id� +

1

2
D2Hid

SO · �� − id,� − id� ,

where H�
SO is given in Eq. �5�. Again using �6�, Lemma A.1, and the chain rule, it is straightfor-

ward to show that

DH�0

SO · � = − i
�2

4m2c2 ���F 0
−1 � �0�T���DV�0

· ��� � ��F 0
−1 � �0�T��� · �

+ �D�F −1�T�F0� · �������V�0
� � ��F 0

−1 � �0�T��� · �

+ ��F 0
−1 � �0�T��V�0

� � �D�F −1�T�F0� · �������� · �� , �A5�

where F0=���0. That is

DHid
SO · � = − i

�2

4m2c2 �����DVid · ��� � �� · � − ����T��Vid� � �� · � − ���Vid� � ���T�� · �� .

From Eq. �A5�, the second derivative of HSO is found, arriving at

D2Hid
SO · ��,�� = − i

�2

2m2c2�− ����T���DVid · ��� � �� · � − ����DVid · ��� � ����T��� · �

+
1

2
����D2Vid · ��,���� � ���� · � + ����T��Vid� � ����T��� · �

+ �����T�2��Vid� � �p� · � + ���Vid� � �����T�2��� · �� .

APPENDIX B: TAYLOR EXPANSION „WEAK FORMULATION…

In the course of determining the weak formulation, Theorem B.1 was used. First, two prob-
lems are introduced.

�I� Find � and E such that

W����� � �,�,E� = 0,

for all �+ ,�−�Cc

���B� ,C�.

�II� Find � and E such that

W�����,�,E� = 0,

for all �+ ,�−�Cc

�B ,C�.

Theorem B.1. Problem I and II are equivalent.
Proof. Let � and E be a solution to problem �II�, and assume that there exists a �= ��+ ,�−�T,

with �+ ,�−�Cc

���B� ,C�, such that W����� �� ,� ,E��0. It is easily seen, using a regularizer �see

Ref. 19�, that there exists two sequences of functions in Cc

�B ,C�, denoted �+� and �−�, such that

��+� ,�−��T→� �� for �→0. Using the dominated convergence theorem �see Ref. 16�, it can be
shown that

lim
�→0

�W������+�,�−��T,�,E�� = W����� � �,�,E�;

at the same time using that � and E is a solution to problem �II�, it is found that
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lim
�→0

�W������+�,�−��T,�,E�� = 0.

But, this contradicts the assumption that W����� �� ,� ,E��0. From this it is seen that
W����� �� ,� ,E�=0 for all �+ ,�−�Cc


���B� ,C�, showing that � and E is also a solution to problem
�I�.

That a solution to problem �I� is also a solution to problem �II� is shown in a similar manner
by changing to coordinates on ��B� in the integrals. �

1. The kinetic part, K �
±

Using the expressions in Lemma A.1, it is found that

�DK�0

± · ����±,�� =
�2

2m



B\

���DF −1�F0� · �����F 0

−1 � ��T�ij
���±�*

�xi�

��±

�xj�
det F0

+ ��F 0
−1 � ���DF −1�F0� · ����T�ij

���±�*

�xi�

��±

�xj�
det F0 dV�

+ ��F 0
−1 � ���F 0

−1 � ��T�ij
���±�*

�xi�

��±

�xj�
D det F�F0� · ����dV�, �B1�

where F0=���0, giving

�DKid
± · ����±,�� = −

�2

2m



B\

���� + ���T�ij

���±�*

�xi�

��±

�xj�
−

���±�*

�xi�

��±

�xi�
Tr�����dV�.

Continuing from Eq. �B1�, it is seen that

�D2K id
± · ��,�����±,�� =

�2

m



B\

�������2 + ����T�2 + ����������T�ij

���±�*

�xi�

��±

�xj�
dV�

− ���� + ���T�ij
���±�*

�xi�

��±

�xj�
Tr�����dV� +

���±�*

�xi�

��±

�xi�
Tr������co��dV�.

2. The potential part, V �
±

Again using Lemma A.1, it is found that

�DV�0

± · ����±,�� = 

B

�±
*�DV�0

· � det F0 + V�0
� �0D det F�F0� · �����±dV�, �B2�

that is

�DV id
± · ����±,�� = 


B
�±

*�DVid · � + Vid Tr�������±dV�.

The second-order derivative is found using Eq. �B2� and Lemma A.1, giving

�D2V �0

± · ����±,�� = 

B

�±
*�D2Vid · ��,�� + 2DVid · � Tr����� + 2Vid Tr������co���±dV�.
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3. The spin-orbit part, H �
SO,±

Finding the derivatives of the spin-orbit part is straightforward, giving

�DHid
SO,± · ����±,�� = − i

�2

2m2c2

B\


�±
*����T� � ��Vid · ��� + � � ���DVid · �� · ����±dV�

and

�D2Hid
SO,± · ��,�����±,�� = − i

�2

2m2c2

B\


�±
*�2���T� � ���DVid · �� · ����±dV�

− i
�2

2m2c2

B\


�±
*�� � ���D2Vid · ��,��� · ����±dV�.
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