
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Physics and Computer Science Faculty 
Publications Physics and Computer Science 

2000 

Intermittent Synchronization of Resistively Coupled Chaotic Intermittent Synchronization of Resistively Coupled Chaotic 

Josephson Junctions Josephson Junctions 

James A. Blackburn 
Wilfrid Laurier University, jabjabjab@cogeco.ca 

Gregory L. Baker 
Bryn Athyn College of the New Church 

H.J.T. Smith 
University of Waterloo 

Follow this and additional works at: https://scholars.wlu.ca/phys_faculty 

Recommended Citation Recommended Citation 
Blackburn, James A.; Baker, Gregory L.; and Smith, H.J.T., "Intermittent Synchronization of Resistively 
Coupled Chaotic Josephson Junctions" (2000). Physics and Computer Science Faculty Publications. 40. 
https://scholars.wlu.ca/phys_faculty/40 

This Article is brought to you for free and open access by the Physics and Computer Science at Scholars Commons 
@ Laurier. It has been accepted for inclusion in Physics and Computer Science Faculty Publications by an 
authorized administrator of Scholars Commons @ Laurier. For more information, please contact 
scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/phys_faculty
https://scholars.wlu.ca/phys_faculty
https://scholars.wlu.ca/phys
https://scholars.wlu.ca/phys_faculty?utm_source=scholars.wlu.ca%2Fphys_faculty%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/phys_faculty/40?utm_source=scholars.wlu.ca%2Fphys_faculty%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


Intermittent synchronization of resistively coupled chaotic Josephson junctions
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Numerical simulations have been used to investigate the dynamics of a pair of resistively linked Josephson
junctions with ac bias. For suitable choices of parameters, the chaotic states of the two junctions become
intermittently synchronized. Intervals of synchronization are interleaved between bursts of desynchronized
activity. The distributions of these laminar times and their dependence on the coupling strength are determined.
The role of phase winding in the definition of synchronization intervals is considered.

I. INTRODUCTION

In a previous numerical study1 we examined the case of a
coupled pair of forced pendulums and found that intermittent
synchronization of the chaotic motions occurred. We also
reported2 experimental results from a pair of chaotic pendu-
lums coupled through their differential angular velocities.
Again, intermittent synchronization was observed.

The possibility that intermittent synchronized chaos also
might appear in configurations of linked Josephson junctions
arises from the well-known isomorphism between the equa-
tion governing a torque-driven pendulum and that of a
current-biased junction.3 That is the question addressed in
this paper. Thus, two phenomena which have been studied
extensively but separately in connection with Josephson
junctions—synchronized oscillations4 and chaotic
dynamics5–10—appear here in combination.

As a by-product of this investigation, we reflect on the
manner in which the condition of synchronization is conven-
tionally defined and suggest an alternative definition that is
suitable for systems with a periodicity attribute.

II. THEORY

A. Coupled parallel-connected Josephson junctions

The arrangement shown in Fig. 1 consists of a pair of
Josephson junctions wired inparallel with a linking resistor
Rs . Each junction is characterized by an order parameter
phase differencew, a critical currenti c , capacitanceC, and
normal resistanceR. The junctions are biased with identical
ac current sourcesi 0 cosvt, but no dc source is included.
This ac-only driving scenario is commonly adopted to probe
essential chaotic behavior in Josephson systems5,8,11–14and
in driven pendulums.15

The dynamical equations for the two junctions are, in this
case,

\C1

2e

d2w1

dt2
1

\

2eR1

dw1

dt
1 i c1 sinw15 i 0 cosvt2 i s , ~1!

\C2

2e

d2w2

dt2
1

\

2eR2

dw2

dt
1 i c2 sinw25 i 0 cosvt1 i s , ~2!

where the current flowing through the coupling resistor is
given by

i s5
\

2eRs
Fdw1

dt
2

dw2

dt G . ~3!

The junction plasma frequencies are

vJ15A2eic1

\C1
and vJ25A2eic2

\C2
. ~4!

For this case, choose the normalized time scale

t* 5vJ1t. ~5!

The dimensionless damping parameter usually associated
with the resistively shunted junction~RSJ!model is defined
as

bJ5
1

R1
A \

2eic1C1
. ~6!

Therefore withi 0* 5 i 0 / i c1 , V5v/vJ1 and

as5
R1

Rs
bJ , ~7!

FIG. 1. Two Josephson junctions connected in parallel and
linked by a resistorRs .
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Eqs.~1! and ~2! become

ẅ11bJẇ11sinw15 i 0* cosVt* 2as@ẇ12ẇ2#, ~8!

ẅ21FR1

R2

C1

C2
GbJẇ21FvJ2

vJ1
G2

sinw2

5FC1

C2
G i 0* cosVt* 2FC1

C2
Gas@ẇ22ẇ1#. ~9!

For the special case of junctions which areidentical,

ẅ11bJẇ11sinw15 i 0* cosVt* 2as@ẇ12ẇ2#, ~10!

ẅ21bJẇ21sinw25 i 0* cosVt* 2as@ẇ22ẇ1#. ~11!

Note that the coupling arises naturally as a direct conse-
quence of the exchange of current through the resistorRS

and that it depends on the differential voltage (ẇ12ẇ2).16 In
the pendulum analog,2 this translates to a differential angular
velocity term which in that instance was generated by a
magnet–eddy-current linkage module.

B. Shunted series-connected Josephson junctions

For completeness, we also present an obvious alternate
configuration for linking a pair of Josephson junctions as
illustrated in Fig. 2. In this case the devices are connected in
series.17–21The appropriate equations for the phase variables
are now

\C1

2e

d2w1

dt2
1

\

2eR1

dw1

dt
1 i c1 sinw15 i 0 cosvt2 i s ,

~12!

\C2

2e

d2w2

dt2
1

\

2eR2

dw2

dt
1 i c2 sinw25 i 0 cosvt2 i s ,

~13!

where i s , the current flowing through the shunt resistor, is
given by

i s5
\

2eRs
Fdw1

dt
1

dw2

dt G . ~14!

Notice that the cross-coupling of these equations now de-
pends on thesum (ẇ11ẇ2), in contrast to the parallel-
connected case which involved thedifference(ẇ12ẇ2) as in

Eqs. ~10! and ~11!. Our interest in this paper lies with this
latter form of interaction, and we will not pursue the series-
connected case further.

It could be added that other coupling schemes lead to still
different types of terms. For example, Doedelet al.22 consid-
ered a system in which the mixing depended on the differ-
ence in the phases rather than in the phase derivatives.

III. NUMERICAL SIMULATIONS

Equations~10! and~11! were solved using a fourth-order
Runge-Kutta routine in double-precision arithmetic. As
noted in the Introduction, the principal goal is to explore
possible modes of synchronized chaos. Clearly, this requires
that parameters be chosen so that the individual junctions are
operating chaotically. Confirmation of this state was pro-
vided by the appearance of the time seriesẇ(t) and by the
manifestation of strange attractors in the phase plane. For all
the simulations reported here, we selectedbJ50.25, i 0*
51.20, andV50.60. The computational time gridDt* was
set at 0.005 of a drive cycle.

A troublesome computational artifact can appear when
and if the precise equalityw15w2 occurs. Then the mutual
interaction terms exactly vanish and the pair of equations
~10! and ~11! become identical. It has been observed1,23,24

that finite-precision calculations may indeed ‘‘find’’ such
special solutions and when they do the junctions exactly mir-
ror each other indefinitely. A protection against this spurious
locking is afforded by the addition of very small levels of
random noise to the ac drive terms.

IV. SYNCHRONIZATION

A representative time series for the voltage difference
(ẇ12ẇ2) is shown in Fig. 3. As the figure clearly reveals,
the junctions exhibitintermittent synchronizatonof their cha-
otic motions. When synchronized, (ẇ12ẇ2) is small. Desyn-
chronizing bursts interrupt these laminar intervals in an ob-
viously irregular fashion.

While it is intuitively sensible to associate the condition
of being synchronized with something like smallness in the
differential voltage, i.e.,u(ẇ12ẇ2)u<d, the selection of a
specific threshold is problematic. In a situation where sys-
tems become synchronized and then remain synchronized,
the particular value assigned tod affects only the moment of
the onset of locking. But when systems move in and out of
synchronization, such as the case presented here, the choice
has an impact on the perceived distribution of locking inter-
vals.

This point is illustrated by the inset of Fig. 3 which shows
a magnified view of the portion of the time series in the box
and also two possible threshold levels:d560.01 andd5
60.001. If voltage differences which do not fall outside the
range60.01 are regarded as meeting the test for synchroni-
zation, then clearly the junctions would be considered to
have a laminar interval stretching from about 14.0 to about
16.7. However, thresholds set atd560.001 would imply
much shorter laminar runs.

Further evidence of the difficulties posed by threshold-
based testing is provided by the following results. Long

FIG. 2. Two Josephson junctions connected in series and
shunted by a resistor.
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simulation runs (106 drive cycles!were carried out. Using
various thresholdsd, the time series was tested for the oc-
currence of different laminar intervals. Figure 4 shows how
the choice ofd alters the apparent distribution of laminar
times. In such a semilogarithmic plot, the inverse slope of

the approximately linear portion of the data beyond small
laminar values is proportional to the mean laminar time.1

Figure 5 displays the manner in which the apparent mean
laminar duration decreases as a function of the selected
threshold value.

In connection with these issues, we note that to achieve
synchronization, real physical systems require feedback sig-
nals~however small!which are produced from differences in
corresponding dynamical coordinates. One might think of
such differences as providing an ongoing exchange of infor-
mation about the respective dynamical states of each sub-
system. Without this exchange, inherent noise will decouple
even perfectly matched trajectories, resulting in eventual de-
synchronization. In essence, then, physical systems are never
absolutely synchronized.

An alternative definition of laminar intervals can be con-
structed as follows. First note that as with voltage differ-
ences, the phase differences (w12w2) also wander, even in
intervals of obviously high-quality synchronization~see the
upper portion of Fig. 6!. Let the domain of (w12w2) be
divided into zones •••(23p,2p)(2p,p)(p,3p)•••.
Then synchronization can be viewed as continued residence
within any zone. A shift from one zone to an adjacent one
defines aphase windingevent and every such event marks
both the end of one synchronizing intervaland the beginning
of the next. Thus laminar times are the intervals between
phase winding events, and so are defined uniquely and with-
out recourse to an arbitrarily chosen threshold value.

These ideas are illustrated in lower portion of Fig. 6. The
winding numberW increments and decrements according to
the direction of the 2p slips in angle between the oscillators.

The definition of synchronization just proposed is perhaps
somewhat counterintuitive in that it does not associate the
near equality of coordinates with thecondition of being
synchronized—but only with thequality of the synchroniza-
tion. That is to say, synchronization is considered to hold
even in situations where motions do not track very closely; it

FIG. 3. Portion of the time seriesẇ12ẇ2 showing intermittent
synchronization between the junctions. The box highlights a region
of strong locking. Inset: magnified portion of the time series. The
dotted horizontal lines are at thresholdsd560.01 and d
560.001.

FIG. 4. Distribution of laminar times for coupled junctions.
Laminar lengths are measured in forcing drive cycles. Results for
a50.15 and four different threshold values (d) are shown.

FIG. 5. Dependence of apparent mean laminar time on the
choice of threshold.

PRB 62 5933INTERMITTENT SYNCHRONIZATION OF RESISTIVELY . . .



is broken only when a phase slip event occurs.
A seeming paradox in this approach is posed by the hy-

pothetical case of two lossless uncoupled pendulums which
are both performing classical small oscillations. Neither pen-
dulum achieves phase winding and there can be no phase
slippage. Hence our test would say that they are synchro-
nized even though there is no linkage connecting them. On
the other hand, according to the more conventional threshold
criterion, the pendulums might or might not be considered to
be synchronized depending on the arbitrary choice of thresh-
old magnitude. No matter how small a chosen threshold, still
smaller uncoupled oscillations could be contrived which
would still be judged to be synchronized according to the
conventional test. In other words, to the question of whether
these two uncoupled pendulums are synchronized, the phase
winding test would say yes while the threshold test could say
either yes or no.

Now consider a second pendulum pair to which some
amount of interpendulum coupling has been added. The
phase winding test applied to small oscillations in this new
situation would yield the same answer as before—
synchronized. The intuitive notion that synchronization is a
behavior brought about by interaction may suggest that the
verdict for the just-mentioned coupled case is acceptable
while the verdict for the uncoupled case is unphysical. This
point of view presupposes special knowledge of the relation-
ship between system components. What if it was not known
which pendulum pair was being observed?

In general, the available information concerning two os-
cillators is only that which is contained in simulation or ex-
perimental data setsw1(t) andw2(t) and thus the verdict as
to their seeming synchronization~or absence of it!must be
reached purely on the basis of tests executed on the observa-

tional data. Therefore, synchronization must be strictly a
property of finite observational records. The quality and ro-
bustness of the synchronization, and its physical sources, are
separate issues. This underscores the subtlety of the notion of
synchronization.

Long simulations (106 drive cycles!were carried out for
various values of the coupling coefficienta. In each case,
data were accumulated on the relative frequency of occur-
rence of laminar lengths as now defined by the intervals be-
tween winding number transitions. The results are presented
in Fig. 7. While the general form of these laminar time dis-
tributions is similar to that found when using the conven-
tional threshold test, the winding number criterion is unam-
biguous and generates only one possible distribution for each
selected value ofa.

It is apparent that the mean laminar times~reciprocal
slopes!decrease as the coupling decreases. In the limit of
negligible coupling, the oscillators are essentially free-
running independent chaotic systems whoseapparent re-
sidual synchronization is merely an artifact of differencing
two chaotic data sets which exhibit occasional accidental
proximity of respective points in phase space.

V. SYNCHRONIZATION QUALITY

For Josephson devices, phase derivatives are of central
importance because they are proportional to the junction
voltages. If the two junctions could be perfectly synchro-
nized, thenẇ1(t)5ẇ2(t). However, as explained earlier,
ẇ1(t)5” ẇ2(t) will always be the case for a physical system

FIG. 6. Upper: time series for (w12w2) computed witha
50.15. Lower: winding number corresponding to the upper trace.
The locations of the first few transitions are indicated.

FIG. 7. Relative probability of occurrence of laminar times,
where laminar intervals are defined as the time between transitions
of the winding number. Data for four values of coupling strength
are plotted.
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and therefore a differential voltage will exist across the cou-
pling resistor. The magnitude of this differential voltage is a
manifestation of thequality of synchronization. For Joseph-
son junctions, measurements are complicated by the very
high speed of the phase dynamics. Thus, feasible readings of
junction voltages are in reality smoothed averages. The ob-
served root-mean-squared differential voltage across the cou-
pling resistor is represented by the quantity

A^~ ẇ12ẇ2!2&.

Numerical simulations extending to 500 000 drive cycles
were used to find values of this rms differential voltage.
These calculations were repeated for different values of the
coupling coefficienta. The results shown in Fig. 8 indicate
that the quality of synchronization improves as the coupling
is increased.~We note that the quality factor plays a role that
is somewhat analogous to that of the percentage of locking
time as defined when using a traditional threshold criterion.!
As noted earlier, small amounts of noise prevent false lock-
ing of the two chaotic oscillators. Figure 8 illustrates what
happens when two different noise levels are injected. Not
surprisingly, the smaller noise amplitude leads to improved
synchronization quality, but the effect is only pronounced
once the coupling strength exceeds about 0.15.

VI. CONCLUDING REMARKS

A pair of resistively coupled, parallel-connected Joseph-
son junctions has been shown to exhibit intermittent syn-
chronization of their chaotic states. The important dynamics
considered here are intimately related to the attendant ques-
tions of laminar event definitions. In the present work we
have sought a definition of synchronization which avoids the
pitfall of arbitrariness associated with the notion of thresh-
olds. Intervals of synchronization can be defined as periods
which begin and end with phase-winding events. While de-
veloped here for coupled Josephson junctions, these ideas
should be applicable to synchronization in any system pos-
sessing a coordinate with a wrapping property analogous to
phase periodicity. Indeed, we have successfully used just this
criterion to analyze synchronization in a coupled Ro¨ssler
system.
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