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May 24 – 27, 2002, Wilmington, NC, USA pp. 610–617

DYNAMICS OF TORQUE-SPEED PROFILES FOR ELECTRIC
VEHICLES AND NONLINEAR MODELS BASED ON

DIFFERENTIAL-ALGEBRAIC EQUATIONS

Roderick V.N. Melnik and Ningning Song

University of Southern Denmark
MCI, Faculty of Science and Engineering,

Sonderborg, DK-6400, Denmark

Per Sandholdt

Sauer-Danfoss A/S, Nordborg, Denmark

Abstract. The so-called µ − λ curves, where λ is the slip ratio and µ is the nor-
malised traction force or the friction index, are nonlinear functions of the velocity of
the vehicle and the wheel rotational velocity. Despite their predominant use in the
literature, linear approximations of such curves may fail to predict correctly key char-
acteristics of vehicle performance efficiency such as torque-speed profiles. Although
attempts to model these characteristics in the context of slip phenomena have been
made before, to our best knowledge a general model with respect to the vehicle ve-
locity, the wheel rotating velocity, the slip ratio, the traction force, and the torque,
has never been formulated and solved as a coupled nonlinear problem based on a
system of differential-algebraic equations arising naturally in this context. In this
paper, such a model is formulated, solved numerically, and some results of numerical
simulation of driving an electric vehicle on different surface conditions are presented.

1. Introduction. A current trend in finding efficient alternatives to conventional
internal combustion engine vehicles, a major source of urban pollution, brings along
a number of challenging problems for applied mathematicians. In this paper we are
interested in the analysis of performance efficiency of electric vehicles (EV). In
addition to environmental and energy advantages (e.g., [16]), such vehicles have
an impressive potential in terms of new engineering solutions. Indeed, torque in
such vehicles can be generated very fast and accurately for both accelerating and
decelerating modes, while a motor can be attached to each wheel allowing an easier
control of the vehicles.

It is well known that a key measure of efficiency of electric vehicles is their torque-
speed profiles (e.g., [2]). In order to construct such profiles, it is important to be
able to model nonlinear slip phenomena of a wheel. Major difficulties in the solution
of this problem are coming from a complex character of dependencies between the
normalised traction force (or the friction index) µ and the slip ratio λ, not known a
priori, but rather estimated experimentally for typical surface conditions. In what
follows we propose a model based on a system of differential-algebraic equations
that allows us to quantify nonlinear slip phenomena of a wheel. The system links
together the vehicle velocity, the wheel rotating velocity, the slip ratio, the traction
force, and the torque in a one single system which is solved numerically by using

1991 Mathematics Subject Classification. 37M05,65P40,65L80 .
Key words and phrases. Nonlinear slip phenomena, differential-algebraic models.

610



DAE AND DYNAMICS OF ELECTRIC VEHICLES 611

a differential-algebraic solver. We organise this paper as follows. In Section 2 we
formulate a coupled system of differential equations describing the wheel and vehicle
dynamics and specify an algebraic equation for the dependency of the velocities on
the torque. In Section 3 we describe a nonlinear slip ratio model, and in Section 4 we
present the fully coupled model describing electric vehicle dynamics. Representative
examples of computational experiments are discussed in Section 5.

2. Mathematical models for electric vehicle dynamics. In order to describe
the dynamics of electric vehicles we need to couple the vehicle velocity with the
wheel rotational velocity via characteristics of the motor and surface such as the
traction force, the torque, etc. We start our discussion from an equation governing
the dynamics of the vehicle.

2.1. Vehicle motion model. The motion of the vehicle is described in terms of
its longitudinal speed as

IvdV /dt = F̄d(t, λ)− F̄aerod − F̄gravity − F̄rolling, (1)

where V is the vehicle velocity, and λ is the slip ratio. The gravity force, F̄gravity,
and the rolling resistance, F̄rolling, are

F̄gravity = M sin(α), F̄rolling = M(µ cos(α) + µ̃V ), (2)

where α is the road/surface angle, µ characterises the road surface for a particular
wheel, so that it can be understood as the friction coefficient between wheel and
road, and µ̃ is the friction coefficient for wheel mechanism that accounts for friction
in the wheel bearings and other speed-dependent retarding torques (e.g., [1]). As
pointed out in [1], the road surface cannot be characterised independently of the
wheel because the rolling resistance of a particular surface also depends on wheel
specific factors, e.g. tire pressure, thread type, etc. Other functions to be defined
in (1) are the aerodynamic drag, F̄aerod, the vehicle inertia, Iv, and the normalised
traction force, F̄d(t, λ). The first of the above quantities is defined as follows (e.g.,
[5, 1])

F̄aerod = CdAdρsgn(V − V̄w)(V − V̄w)2, (3)

where Ad is the cross-sectional area constant pertinent to the drag, ρ is the air
density, Cd is the specific aerodynamic drag coefficient, and V̄w is the wind speed
in the direction of the vehicle’s motion. We note that aerodynamic resistance is
not a significant factor as long as we deal with off-road vehicles operating under 48
km/h [15]. The rotational inertia of the wheels and the electric motor is taken into
account in the acceleration term by using the effective mass of the vehicle

Iv = M/g + f(nw, rw, Iw, Im), (4)

where f is a function of the number of the wheel (nw), radius of the wheel (rw),
rotational inertia of the wheel (Iw), and the electric motor (Im). An explicit approx-
imation to f can be found in [1]. A generalisation of the model to the many-wheel
scenario can also be considered [14, 15]. Finally, we define the normalised traction
force via the relationship

Fd = µ(λ)N, 0 ≤ λ ≤ 1, (5)

where N is the normal force defined on the flat surfaces as N = Mg (here F̄d =
Fd/g).
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Our main interest here is in off-road vehicles, in particular those that are designed
for traction. Specifically, we are interested in modelling the dynamics of electric
greens mowers, e.g. Ransomes E-Plex II type electric vehicles. In this case, for the
flat surface situation system (1)–(5) is reduced to

MdV /dt = Fd(t, λ), (6)

where the key to understanding of vehicle dynamics is kept by Fd. Note that we
include here the full nonlinear dependency on λ in the tire driving force. Some
simplified models are known in the literature where instead of λ one defines another
parameter attempting to exclude from the definition of λ the wheel radius [5].
However, in typical analyses of the situation considered so far in the literature (e.g.
[10, 11]) the model (1)–(5) is linearised with respect to the slip ratio which is defined
as

λ = 1− V/Vw, Vw ≥ V ; λ = Vw/V − 1, V ≥ Vw, (7)

where Vw = rω is the velocity of the wheel, r is the wheel radius (assumed here
constant), and ω is the angular velocity. From a physical point of view the situ-
ation in (7) where Vw ≥ V corresponds to the accelerating wheel, while V ≥ Vw

corresponds to the decelerating wheel.

2.2. Model for the wheel dynamics. For the wheel dynamics we have

IwdVw/dt = KgKT (δ −Kgϕ)−BwVw − Fd(t, λ), (8)

where Iw is the wheel inertia, and Bw is used to account for the speed-dependent
friction-force against the wheel shaft motion. Before proceeding further with speci-
fication of parameters in (8), we note that in the most general setting this equation
should be coupled to the evolution equation for the motor shaft speed (n) which
can be written as follows

Imdn/dt = g(n, Bm,KT ,Kg, δ, ϕ, Te, u), (9)

where Bm is the parametrised characteristic of the speed-dependent friction-force
for the motor shaft, KT is the torsional stiffness of the transmission which provides
coupling between the motor and the wheel by the gear ratio Kg. In (9) Te is the
motor torque before the reduction, ϕ (determined from dϕ/dt = Vw) is the wheel
position, and δ (determined from dδ/dt = n) is the motor shaft position. In the
context of off-road vehicles, system (8)–(9) can be simplified to

MwdVw/dt = Fm − Fd(t, λ), (10)

where Fm is the force generated by engine, that is in our case by the motor torque.
Following [11], we consider here a one-wheel model. Further, we note that for the
electric vehicles of interest the motor torque can be determined from the relation-
ships connecting it with the power, P , and the wheel velocity

Fm = Tw/rw, where Tw = P/ω, ω = Vw/rw, (11)

and Tw is the wheel torque. In the case of Ransomes E-Plux II, the power is supplied
by a 48V battery, and the input power to the mower as a function of current ia can
be written as

P = ktωia = kt
Vw

r
ia, (12)
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Figure 1. Approximating µ − λ curves for dry (left) and wet
(right) grass.

where ia is the supplied current. For simplicity the torque constant (kt) was set to
1 in experiments reported below. Gear ratio and the total moment of inertia are
implemented into the model in a straightforward manner.

3. Nonlinear slip ratio models. Constructing realistic models for the slip ratio is
known to be a difficult problem [6]. At the same time, this problem, often discussed
in the context of the tire-road friction estimation techniques, becomes the subject
of one of the most important research areas in modelling the vehicle dynamics. The
basis for most of the existing methodologies lies with the assumption that the slip
ratio, λ, (sometimes called the slope or longitudinal stiffness) is sufficient to provide
an accurate estimate for the friction, µ. A number of different approximations
for µ(λ) curves have been proposed in the literature [15, 7]. Rational polynomial
approximations such as µ = kλ/(aλ2 + bλ + 1) are among those most frequently
used (k, a and b are given constants). However, such approximations lead to a
non-zero slip when the traction force is zero, so that the slip computed from the
such approximations gives a significant offset. Although this fact has been already
discussed in the literature (e.g., [3]), most of the models are still based on the linear
approximation λ = µ/k. In this paper we use the following approximation for the
µ− λ curve

µ = µ0 sin
{

µ1 arctan
[
µ2(1− µ3)λ +

µ3

µ2
arctan(µ2λ)

]}
. (13)

This dependency reproduces very well all surface conditions we have had to deal
with in this project. Based on Sauer-Danfoss data for different surfaces of interest,
we found that for all of them we can choose µ1 = 22 and µ3 = 1. The other two
coefficients in (13) can be chosen as specified in Table 1. The µ− λ curves for dry
and wet grass are plotted in Fig. 1. There is substantial evidence to suggest that
the data quality is effectively assessed by the variation in µ(t) [3]. The methodology
we have developed in this paper provides a consistent and systematic approach to
constructing µ(t).

4. Nonlinear models for EV dynamics based on differential-algebraic
equations. As we have already mentioned, most models proposed in the literature
so far in the context of constructing torque-speed profiles are based on simplified,
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Surface type Dry grass Sand Ice Wet grass
µ0 0.5 0.35 0.25 0.015
µ2 13.0965 12.93 11.95 13.6

Table 1. Approximating µ−λ curves: coefficients for typical sur-
face conditions.

typically linear models (e.g., [11] and references therein). Ultimately, in such mod-
els the dynamics of the wheel and of the vehicle can be uncoupled precluding a
systematic treatment of realistic surface conditions. On the contrary, the approach
proposed in this paper allows us to deal with the coupling of the velocities via the
torque, slip ratio, and the traction force. Summarising the discussion of Sections
1–3 and denoting y1 ≡ Vw, y2 ≡ V , y3 ≡ λ, y4 ≡ µ, y5 ≡ P , we arrive at the
following system of differential-algebraic equations





dy1

dt
=

1
Mw

(
y5

y1
− y4Mg

)
,

dy2

dt
=

1
M

y4gMw,

0 = −y4 + µ0 sin
{

µ1 arctan
[
µ2(1− µ3)y3 +

µ3

µ2
arctan(µ2y3)

]}
,

0 = −y3 + min
(∣∣∣∣1−

y2

y1

∣∣∣∣ ,

∣∣∣∣1−
y1

y2

∣∣∣∣
)

, 0 = −y5 +
y1

r
ia.

(14)

If we denote a vector of differential variables by x, and the vector of algebraic vari-
ables by z, system (14) can be cast in the general form of semi-explicit differential-
algebraic (DAE) models

x′ = f(x, z, t), & g(x, z, t) = 0 (15)

with the general solution represented in terms of yT = [xT zT ]. The degree of
singularity of (15) is linked to nilpotency of the associated matrix pencils (e.g., [4]).
System (14) has been analysed numerically by using three algorithms, the Gear
backward differentiation formula, a modified Rosenbrock formula of order 2, and
our own iterative scheme. The latter is based on a MATLAB-based time-adaptive
algorithm with explicit verification of the condition on the maximum power. The
system, which in its reduced form has index 1, has been solved for different situations
of interest, providing further insight into key characteristics of the performance
dynamics of electric vehicles. The results of computational experiments with some
typical inputs are discussed in Section 5.

5. Computational experiments. In this section we present some results ob-
tained from computational experiments with model (14) for off-road vehicle data,
in particular for an electric triplex greens mower of the Ransome E-Plex type. This
particular design is a three-wheel electric vehicle model (see also [12]). With ap-
propriate modifications, the developed methodology can also be applied to other
designs of electric vehicles (e.g., [13, 9]). The analysis of the dynamics has been
carried out in conjunction with time-dependent torque/current profiles, an impor-
tant characteristic in preventing slip phenomena. The following three groups of
typical situations have been analysed

• pre-defined surface conditions (either wet or dry grass in each single experi-
ment) for a pre-defined torque/current dynamics;
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Figure 2. Dynamics of the vehicle on a flat dry grass surface.

• changing surface conditions (within a single experiment) for different torque
dynamics;

• different topography of the surface, including uphill/downhill situations, as
well as the general time-dependent angle situation.

In typical situations, torque-speed profiles for electric motors have constant-rate
torque up to the so-called base angular velocity, ωbase, at which the motor reaches its
power limit. Then, the motor still operates with constant power up to the maximum
angular velocity, ωmax. In the case of the electric mower we consider in this paper,
we have estimated the peak performance of the vehicle (e.g., [8]) at Pmax = 1300W,
nmax = 146.78rev/min, ωmax = 15.37rad/sec, ωbase = 7.685rad/sec, Tw,max =
169.2Nm, where n is the typical value for resolutions per minutes (for one wheel).
Initial values for V and Vw in all experiments have been chosen so that they do not
eceeded 5 × 10−3. Other characteristics of the vehicle used in the computational
experiments are M = 221.3kg (the mass of the vehicle is taken as one third of the
total mass unit), Mw = 11.65kg, g = 9.82m/s2, kt = 1Nm/A, rw = 0.254m. As a
first example, we consider the acceleration of the mower on dry grass. In this case
two algebraic equations of the DAE model (14) are simplified to

λ = 1− V/Vw, µ = µ0 sin(arctan(22/µ2 arctan(µ2λ))). (16)

The results for ia = max(338.4(1 − t), 169.2) are shown in Fig. 2. As it is seen,
we have to deal with a large initial slip ratio, up to 0.9 on a unit scale. The
curve of the velocity of the wheel during this time is above the curve of the vehicle
velocity, indicating severeness of slip phenomena. The situation changes after the
slip ratio drops, and the wheel and vehicle velocities are maintained at the same
level. Moving to a wet surface (after 2 seconds) will change this balance, as shown in
Fig. 3. Changing the current/torque to a smoother (e.g., quadratic) profile would
remedy the situation. In the presence of surface roughness, e.g. considering the
vehicle operating on a golf course, for small angles the pattern of the uphill motion
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Figure 3. Dynamics of the vehicle on a flat surface with different properties.

is barely different from that already presented in Fig. 2. However, for sufficiently
high angles the situation, even on a dry grass surface, can be similar to that depicted
in Fig. 3. What is different in these situations is the sign of the vehicle gravitational
force component, so that the traction force is defined in terms of the friction force
Fr and Finc

Fd = Fr + Finc, Fr = µMG cos θ, Finc = Mg sin θ. (17)

Accordingly, two differential equations of system (14) are modified to account for
additional force (Finc)

dVw

dt
=

1
Mw

(
P

Vw
− (µMg cos θ −Mg sin θ)

)
,

dV

dt
= µg cos θ − g sin θ, (18)

while the algebraic equations of the model remain unchanged. The last term in both
equations (18) changes its sign in the downhill motion which helps to maintain the
velocity of the wheel and vehicle at the same level.

Not only the described model allows us to treat different surface conditions, it
also allows us to treat different surface topographies. For example, in Fig. 4 we
present the situation where, after 1 second of operation, the vehicle moves from a
flat dry grass area to a changing topographic surface with θ = 14 sin(4(t− 1)).

In conclusion, we note that although mathematically straightforward, the ex-
tension of our model to many wheel scenarios leads to several new challenges. In
particular, handling characteristics of the vehicle and steering geometry may be-
come quite important, while all forces, e.g. rolling resistances, tractive forces have
to be included into consideration for both the front and rear wheels.
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