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Phase locking between Fiske and flux-flow modes in coupled sine-Gordon systems

Niels Gro”nbech-Jensen
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

James A. Blackburn
Department of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5

Mogens R. Samuelsen
Physics Department, The Technical University of Denmark, DK-2800 Lyngby, Denmark

~Received 7 December 1995!

We investigate nonlinear resonant modes in coupled sine-Gordon systems with open boundary conditions.
The system models coupled Josephson junctions with boundary conditions representing the situation where an
external magnetic field is applied. The so-called Fiske modes are found to exist in phase-locked states where
the equivalent voltages across the individual coupled Josephson junctions are either identical or identical with
opposite signs. The analysis covers all Fiske modes including the flux-flow region. We present a comprehen-
sive comparison between results on analytical treatment and direct numerical simulations of the coupled field
equations.@S0163-1829~96!05718-9#

I. INTRODUCTION

Inductively coupled pairs of long Josephson junctions
have been extensively investigated based on the experimen-
tal geometries and coupling mechanisms suggested in Refs.
1–6. The coupled system exhibits two different characteristic
velocities for the linear1 and the nonlinear~relativistic!7,8

modes, and this feature has led to several interesting obser-
vations such as phase locking between various modes in the
coupled systems,4,7–13power emissions exceeding the super-
radiant limit,10,14,15and stability of energetically unfavorable
bound states of fluxon modes.9,16 Most theoretical analyses
based on coupled and perturbed sine-Gordon systems have
been done for the single soliton~fluxon! solutions, represent-
ing the zero-field dynamics of a trapped magnetic flux quan-
tum in each junction. However, other interesting modes are
relevant for this system. In particular, the so-called Fiske and
flux-flow modes,17–24arising when the system is placed in a
magnetic field which is in the plane of the barrier and per-
pendicular to the long axis of the junction, are extremely
stable and therefore useful in experimental
configurations.10–12,25–30These modes are characterized by
resonances at the linear cavity frequencies and appear when
the junctions are embedded in an external magnetic field. A
subset of the Fiske resonances are called flux flow when the
normalized frequency~voltage!is near the normalized exter-
nal magnetic field~see below!. We note that previous theo-
retical work has been published on flux-flow configurations
in coupled systems31 as well as in single junctions, applying
a moving kink soliton train solution as basis for the analysis.
However, such an ansatz gives rise to a single resonance~the
asymptotic propagation velocity! in the current-voltage char-
acteristics and it can therefore not adequately describe the
Fiske resonances within the flux-flow regime. The difficulty
originates near the boundaries of the system, where, e.g., the
injection process of a fluxon into the system, while keeping
the boundary magnetic field constant, is incommensurate

with the kink soliton solutions. As a result, the important
details of multiple Fiske resonances are not considered in
those treatments.

In this paper we generalize the Kulik theory18–20 to in-
clude phase-locked states between two inductively and/or ca-
pacitively coupled systems with aiding or opposing bias.
This method describes the nonlinear modes as small resonant
perturbations to a linear background. The advantage of this
approach is that all the Fiske~cavity! resonances are
represented—including the flux flow regime—as results of
the damping, bias, and boundary conditions, and we can
therefore obtain a reasonably good understanding of the
complicated dynamics of phase-locked excitations in
coupled Josephson systems in external magnetic fields.

The reality of the fabrication process implies that any
sample of Josephson junctions is characterized by a distribu-
tion of system parameters. As a consequence it is never as-
sured that two devices will respond with, e.g., the same fre-
quency to the same external perturbation. Even if the
systems are coupled, certain conditions must be satisfied be-
fore some form of synchronization can be obtained. The aim
of this paper is to investigate the question of when the ex-
perimentally relevant Fiske modes can be expected to syn-
chronize in a pair of coupled Josephson junctions~sine-
Gordon systems!. For simplicity we have decided to
represent any difference between the two systems as a dif-
ference between their bias conditions. Thus, the coupled sys-
tems are modeled as being identical except for their indi-
vidual bias. We note that differences in other parameters can
easily be included in the analysis,32 but we have here decided
to simplify the expressions by limiting the parameter space.
In Sec. II we develop the analysis which gives explicit pre-
dictions for the existence of phase-locked states between any
two Fiske~or flux-flow! modes in the two systems. Section
III includes comparisons between the predictions and nu-
merical simulations of the coupled sine-Gordon model. Sec-
tion IV discusses the results and concludes the paper.
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II. PERTURBATION ANALYSIS

We investigate the configuration of two parallel coupled
long Josephson junctions,7

fxx2f tt2sinf5af t2h12D1cxx2D2c tt , ~1!

cxx2c tt2sinc5ac t2h22D1fxx2D2f tt , ~2!

where the boundary conditions for a stacked configuration2

are given byG̃,

fx~0!5fx~L !5~11D1!
21G̃5G, ~3!

cx~0!5cx~L !5~11D1!
21G̃5G. ~4!

In this modelf andc describe the phase differences of the
macroscopic superconducting quantum-mechanical wave
functions measured across each of the two junctions. The
spatial coordinate,x, is normalized to the characteristic Jo-
sephson length,lJ'A\/2edm0I c, and the normalized length
of the systems is given byL. The temporal dimension,t, is
normalized to the inverse Josephson plasma frequency,
vJ

21'A\e/2etoI c. Here, the permeability is given bym0 ,
the permittivity bye, and the critical current density isI c .
The electric and magnetic thicknesses of the junction are
given by the insulating layerto andd52lL1to , lL being
the magnetic penetration depth of the superconductors. Tun-
neling of super current is represented by the sine terms, qua-
siparticle tunneling is specified by the dissipation parameter
a, and the normalized bias currents forced through the junc-
tions areh1 andh2 , respectively. The coupling mechanisms
are given by the parametersD1 ~inductive!3,4 and D2
~capacitive!.7 The normalized external magnetic field, which
is in the plane of each junction and perpendicular to their
long axes, is given byG̃.

We note that for the ‘‘side by side’’ geometry of junctions
described in Refs. 4 and 5 the boundary conditions are

fx~0!5fx~L !5~12D1!
21G̃5G,

2cx~0!52cx~L !5~12D1!
21G̃5G.

However, in the following we will only consider the bound-
ary conditions given by Eqs.~3! and ~4!, since the analysis,
numerical simulations, and results are qualitatively very
similar to the treatment below.

In place of Eqs.~1!–~4! we can rewrite the dynamical
equations in terms of the phase variables,u andv, given by

u5
f1c

2
, ~5!

v5
f2c

2
, ~6!

in which case the dynamical equations are

~11D1!uxx2~12D2!utt2sinu cosv5aut2hs , ~7!

~12D1!vxx2~11D2!v tt2sinv cosu5av t2hd . ~8!

The new bias parameters are:

hs5
h11h2

2
, ~9!

hd5
h12h2

2
, ~10!

and the appropriate boundary conditions are given by

ux~0!5ux~L !5~11D1!
21G̃5G, ~11!

vx~0!5vx~L !50. ~12!

We will now focus our attention to phase-locked Fiske
~and flux flow! solutions of equations~1! and ~2!. The fol-
lowing treatment is further limited to the cases where the
phasesf andc evolve according to

U K E
0

L

f tdxL U5U K E
0

L

c tdxL U,
where^ & indicates temporal averaging. This is the simplest
of a number of possible definitions of locking, but other
cases of phase-locked dynamics can be obtained using the
same formalism as presented below. Following the approach
in Refs. 18, 19, 33, and 34, where the Fiske modes in a
single junction were treated, we apply trial functions for the
coupled system of the form

f5f01Gx1vt1 (
m50

`

~Amcosvt1Bmsinvt !coskmx,

~13!

c5c01Gx1svt1 (
m50

`

~Cmcosvt1Dmsinvt !coskmx,

~14!

where f0 and c0 are constants,km5mp/L, and s561
determines the sign of the frequency~normalized voltage!.
These trial functions assume monochromatic and near-linear
behavior of the phases with no frequency mixing to higher
harmonics through the nonlinear terms. Clearly, these are
severe assumptions which limit the validity of the resulting
predictions, but, as we shall see, we find fairly close agree-
ment between our perturbation analysis and full numerical
simulations of the phase equations.

The above ansatz reads for the equivalent system, Eqs.~7!
and ~8!,

u5u01Gx1
11s

2
vt1 (

m50

`

3SAm1Cm

2
cosvt1

Bm1Dm

2
sinvt D coskmx, ~15!

v5v01
12s

2
vt1 (

m50

`

3SAm2Cm

2
cosvt1

Bm2Dm

2
sinvt D coskmx, ~16!

whereu05(f01c0)/2 andv05(f02c0)/2. Inserting these
into Eqs. ~7! and ~8!, multiplying the equations by cosknx,
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integrating the spatial dimension, and maintaining only terms
of up to first order inAn , Bn , Cn , andDn , yields for terms

oscillating atv the following two equations from which
An , Bn , Cn , andDn can be extracted:

@~12D2!v
22~11D1!kn

2#FAn1Cn

2
cosvt1

Bn1Dn

2
sinvt G1avFAn1Cn

2
sinvt2

Bn1Dn

2
cosvt G

5cosS 12s

2
vt1v0D FZn~2!~GL ! cosS 11s

2
vt1u0D2Zn

~1!~GL ! sinS 11s

2
vt1u0D G , ~17!

@~11D2!v
22~12D1!kn

2#FAn2Cn

2
cosvt1

Bn2Dn

2
sinvt G1avFAn2Cn

2
sinvt2

Bn2Dn

2
cosvt G

5sinS 12s

2
vt1v0D FZn~1!~GL ! cosS 11s

2
vt1u0D1Zn

~2!~GL ! sinS 11s

2
vt1u0D G , ~18!

whereZn
(1)(GL) andZn

(2)(GL) are given by

Zn
~1!~GL !5

2

L~11dn,0!
E
0

L

cosGx cosknxdx

52
2GL

11dn,0

~21!nsinGL

~np!22~GL !2
, ~19!

Zn
~2!~GL !5

2

L~11dn,0!
E
0

L

cosGx sinknxdx

52
2GL

11dn,0

12~21!ncosGL

~np!22~GL !2
, ~20!

and wheredm,n51 for m5n anddm,n50 for mÞn. From
Eqs. ~17! and ~18! can then be extracted the coefficients,
An , Bn , Cn , and Dn . Note that unlike the case of kink
solitons, where good trial functions can be generated only for
the extreme cases off5c andf52c ~see, e.g., Ref. 9!,
we can here find a useful approximate solution forall phase
differences between the two phases. This is essential when
finding the locking range at a given frequency, since this
range is determined by the dynamics of the modesbetween

the two extreme cases,f5c andf52c.
In the following we will, for simplicity, consider the cases

of unidirectional (s51) and antidirectional (s521)
propagation separately.

A. s[1

This case implies that the normalized voltage drops (v1
andv2),

v15
1

L K E
0

L

f tdxL ,
v25

1

L K E
0

L

c tdxL ,
of the two systems must be identical. Since there is no ac
drive on the system we can choose to omit one of the con-
stant phases. In this case we choose to eliminateu0 from the
calculations, sincev0 holds the time difference between the
locked Fiske modes. We then find the amplitudes of the in-
duced resonances from Eqs.~17! and ~18! to be

An1Cn

2
5
Zn

~2!~GL !@~12D2!v
22~11D1!kn

2#1Zn
~1!~GL !av

@~12D2!v
22~11D1!kn

2#21~av!2
cosv0 , ~21!

Bn1Dn

2
5
Zn

~1!~GL !@~12D2!v
22~11D1!kn

2#2Zn
~2!~GL !av

@~12D2!v
22~11D1!kn

2#21~av!2
cosv0 , ~22!

An2Cn

2
5
Zn

~1!~GL !@~11D2!v
22~12D1!kn

2#2Zn
~2!~GL !av

@~11D2!v
22~12D1!kn

2#21~av!2
sinv0 , ~23!

Bn2Dn

2
5

2Zn
~2!~GL !@~11D2!v

22~12D1!kn
2#2Zn

~1!~GL !av

@~11D2!v
22~12D1!kn

2#21~av!2
sinv0 . ~24!
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The corresponding dc component of the dynamics is then
found by inserting Eqs.~15!, ~16!, and~21!–~24! into Eq.
~7!. We are then able to evaluate the normalized dc current-
voltage @hs-v ~I-V!# characteristics of the coupled and
locked system as

hs5av1
1

2 (
n52`

`
~GL/2!2 sin2@~GL2np!/2#

@~GL1np!/2#2@~GL2np!/2#2

3F av sin2v0
@~11D2!v

22~12D1!kn
2#21~av!2

1
av cos2v0

@~12D2!v
22~11D1!kn

2#21~av!2G . ~25!

This expression is valid when the second term on the right-
hand side is relatively small, i.e., when the locked Fiske
steps are small or are on the parts of the I-V curve close to
the Ohmic line. The internal phase,v0 , determines if the
mode consists of two identical Fiske modes (v050), two
opposite (v05p/2), or a mixture of the two extreme cases.
As can be seen from Eq.~25! the two extreme cases have
their resonances at different frequencies, which is equivalent
to the split velocities of kink solitons discussed in Refs. 7–9.
The internal phase can be controlled by the external bias
currents, since the difference in bias currents can be shown
to have the following relationship with the internal phase
@this is done by inserting Eqs.~15!, ~16!, and~21!–~24! into
Eq. ~8!#:

hd5sin~2v0!
1

4 (
n52`

`
~GL/2!2sin2@~GL2np!/2#

@~GL1np!/2#2@~GL2np!/2#2

3F ~11D2!v
22~12D1!kn

2

@~11D2!v
22~12D1!kn

2#21~av!2

2
~12D2!v

22~11D1!kn
2

@~12D2!v
22~11D1!kn

2#21~av!2G . ~26!

This relationship also gives the limits to the difference in dc
bias for which the locked states of Fiske modes can exist.
Varyingv0 from2p/4 top/4 requires the difference in bias,
hd , to vary between its extreme values which can easily be
obtained from Eq.~26!.

B. s[21

When the two systems are biased with forces of opposite
signs, the two phases,f andc, evolve in opposite directions
as well (v152v2). In this case we can therefore choose to
omit v0 from the calculations since this phase does not con-
tain important information about the locked state. We then
find the counter pairs of Eqs.~21!–~24! for this case:

An1Cn

2
5@Zn

~2!~GL ! cosu01Zn
~1!~GL ! sinu0#

3
~12D2!v

22~11D1!kn
2

@~12D2!v
22~11D1!kn

2#21~av!2
,

~27!

Bn1Dn

2
52@Zn

~2!~GL ! cosu01Zn
~1!~GL ! sinu0#

3
av

@~12D2!v
22~11D1!kn

2#21~av!2
,

~28!

An2Cn

2
5@Zn

~1!~GL ! cosu02Zn
~2!~GL ! sinu0#

3
av

@~11D2!v
22~12D1!kn

2#21~av!2
,

~29!

Bn2Dn

2
5@Zn

~1!~GL ! cosu02Zn
~2!~GL ! sinu0#

3
~11D2!v

22~12D1!kn
2

@~11D2!v
22~12D1!kn

2#21~av!2
.

~30!

As before the dc component of the dynamics can be found by
inserting Eqs.~15!, ~16!, and~27!–~30! into the same equa-
tions, ~7! and ~8!. The difference in bias,hd , is now the
parameter giving the structure of the dc behavior, and the
sum of the biases,hs , gives the range of locking as well as
the constant phase,u0 ,

hd5av1
1

2 (
n52`

`
~GL/2!2 sin2@~GL2np!/2#

@~GL1np!/2#2@~GL2np!/2#2

3F av sin2@ ũ01n~p/2!#

@~11D2!v
22~12D1!kn

2#21~av!2

1
av cos2@ ũ01n~p/2!#

@~12D2!v
22~11D1!kn

2#21~av!2G , ~31!

hs5sin~2ũ0!
1

4 (
n52`

`

~21!n

3
~GL/2!2 sin2@~GL2np!/2#

@~GL1np!/2#2@~GL2np!/2#2

3F ~11D2!v
22~12D1!kn

2

@~11D2!v
22~12D1!kn

2#21~av!2

2
~12D2!v

22~11D1!kn
2

@~12D2!v
22~11D1!kn

2#21~av!2G , ~32!
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whereũ05u01GL/2. As in the above case, we can extract
the locking range by varyingũ0 between2p/4 andp/4 and
observe the extreme values of Eq.~32!.

It is important to notice that both pairs of expressions Eqs.
~25!and~26!and~31!and~32!are, under the given approxi-
mations, valid forall Fiske modes~all n), including the so-
called flux-flow region, whereuvu'kn'uGu. It is also worth
noting that the above expressions predict the situation where
an unbiased system can be ‘‘pulled’’ into frequency locking
by its biased neighbor operated in a Fiske mode. This situa-
tion is found foruhsu5uhdu. It is further interesting that the
above expressions Eqs.~31! and ~32! also predict that an
unbiased system (uhsu5uhdu) can be driven into a mode
where

K E
0

L

f t dxL 52K E
0

L

c t dxL .
III. NUMERICAL SIMULATIONS

We have performed direct numerical simulations of the
coupled phase equations using an explicit second-order finite
difference Verlet-type integrator in time and space for the
system given by Eqs.~7! and ~8!. The spatial and temporal
discretizations,dt&dx, were varied up todx50.05 in order
to ensure sufficient resolution of the modes in time and
space. For a single sine-Gordon system, stability of the Ver-
let integrator requiresdt<dx, while@due to the characteris-
tic velocity, u5A(11D1)/(12D2)# the coupled system re-
quiresdt,dx. All simulations were performed by allowing
a transient time of the dynamics to be at least 4000 normal-
ized time units followed by an equal averaging time for each
acquired number. Given the large parameter space, we have
fixed the boundary condition atG59.5. We have further
limited our comparisons to the case of inductive coupling
D1 (D250). This has been done for two reasons. First, mag-
netic coupling has been considered the important mechanism
for Josephson systems.~In Ref. 8 it was found that the small
amplitude limit of the capacitively coupled system is equiva-
lent to coupled nonlinear Schro¨dinger equations modeling
coupled optical fibers.35! Second, other publications, e.g.,
Ref. 9, have demonstrated that comparisons between pertur-
bation analyses and numerical simulations for the capacitive
coupling behave with the same reliability as for the inductive
coupling.

The quantities we have decided to compare are the lock-
ing ranges between the two systems with nonequal biases
and we therefore started the systems in a given Fiske mode
with equal (uh1u5uh2u) bias. We then increased the differ-
ence betweenuh1u anduh2u in small increments, while keep-
ing the average ofuh1u and uh2u constant. The individual
average frequencies were monitored during this procedure to
determine if the coupled systems were phase locked or not.

In Fig. 1 we have shown theI-V curves for a system with
parametersL52, a50.1, and D150.1. The curves are
shown near the flux-flow modes, which in this case are the
Fiske modes centered aroundn56. Figure 1~a!shows the
I-V curves forhs5h15h2 (s51) with solid curves repre-
senting the expressions Eq.~26! for v050 andv05p/2. The
dots (d) represent the results of the numerical simulations.
The mode indicated with FSn(1) is thenth Fiske step where

f5c (v050) and the one indicated by FSn(2) is the
v05p/2 mode wherefx'2cx . Thus, as can be seen
from Eqs. ~25! and ~31!, the usual Fiske resonance at
v5kn is now split into two resonances at
v5A(16D1)/(17D2)kn . Note that only for thev050,
s51, andhs50 modes can we rescale the Fiske steps to the
uncoupled ones described in Ref. 33. Due to the boundary
conditions a direct scaling cannot be made in any other case.
Figure 1~a!illustrates the good comparison between the pre-
dicted split Fiske resonances and the numerical results when
the two systems are biased equally. As the difference in bias
is increased, while the sum is kept constant, the dynamics
changes since the internal phasev0 is determined byhd @see
Eq. ~26!#. Figure 1~b! shows theI-V curve for the extreme
value of hd , where the two Fiske modes unlock and
uv0u5p/4, while Fig. 1~c! shows the maximum value of
hd for which the system stays in a locked state of Fiske
modes. Here, the solid curve represents the maximum value
of expression Eq.~26! ~for v05p/4) and the dots represent
numerical simulations. The dots are displayed as pairs,
where the lower is a value ofhd in a locked state and the
upper is a value of an unlocked state. The agreement be-
tween our analysis@see Eqs.~25!and~26!#and the numerical
results is very good, as is obvious from Fig. 1~c!.

In Fig. 2 we have shown the same comparison for the
s521 modes. In this case we keephd constant and vary
hs from 0 until the system unlocks. We find almost the same
locking range, and the simulations are in as good agreement
with the prediction as in the case ofs51 shown in Fig. 1.
Using the fluxon picture for the flux-flow mode, this means
that phase-locking between two fluxon arrays is achieved as
easily when they move in the opposite direction as when
they move in the same direction—and the two locking phe-
nomena are described by the same mechanism. In Fig. 3 are
shown examples of comparisons in the parts of the parameter
space where the first Fiske steps~FS1(6)) are localized. We
have here chosen to display the comparison in locking-range
only. Figure 3~a!shows the cases51, and Fig. 3~b!shows
s521. Reasonably good agreement between analysis and
simulations is again apparent, although the FS1(1) modes
have weaker locking than predicted. Figures 3~c! and 3~d!
show the same system, but forD150.2. Here we find better
agreement than in Figs. 3~a!and 3~b!. The reason for this is,
of course, the relatively primitive analysis given in Sec. II.
WhenD1 is small, FSn

(1) and FSn(2) are closely positioned
on the frequency scale. Depending on the dissipation param-
eter, the two resonances will mix through the nonlinearity of
the system and deviations from the single-mode analysis
given above may be expected. For moderately large coupling
constants this becomes less of a problem as the splitting
between the characteristic velocities becomes larger. How-
ever, if the coupling is large enough for, e.g., FS2(2) to be
close to FS1(1), this problem arises again. These are there-
fore important considerations when designing coupled Jo-
sephson systems with optimized locking capabilities.

Yet another important observation is that the locking
range seems to saturate with increasing coupling. The lock-
ing range forD150.2 is of the same magnitude as for
D150.1. It is therefore not necessarily desirable with respect
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to phase locking to simply increase the coupling between the
two systems. This is in agreement with the results for fluxon
locking,7,9 where a moderate coupling parameter (D1'0.1)
in many cases creates roughly the same locking range as a
larger coupling parameter.

In order to demonstrate the validity of the present analysis
for longer systems, we have performed simulations for
L510 as well. Figures 4 and 5 summarize the simulations
for the first Fiske step~FS1(6)) for a system given by
a50.1 andD150.1. The comparisons for theI-V curves for
v050 ~solid! and v05p/2 ~dashed!show reasonable, but
not perfect, agreement. In both Figs. 4~a! (s51) and 5~a!
(s521) we observe a smaller deviation from the linear
curves than predicted by the theory. This is in good agree-
ment with the assumptions built into the analysis. The corre-
sponding locking ranges between the Fiske modes are shown
in Figs. 4~b!and 5~b!. As for theL52 cases we find rela-
tively good agreement between analysis and simulations. A

general trend seems to be that the ‘‘fast’’ modes~FS1(1))
have smaller locking ranges than predicted, whereas the slow
modes~FS1(2)) are given almost perfectly by the expres-
sions above. Still, we note that all qualitative features of the
locking range and the order of magnitude seem to be well
addressed by the above description of the dynamics. It
should be pointed out that the analysis in this paper contains
no information about the stability of the observed modes—
only about their existence. We can therefore not give general
comments on when to expect the different branches on the
I-V curves to be relevant. A comprehensive stability analysis
was given in Ref. 9 for isolated kink solitons in coupled
systems. This analysis, using the profile of the soliton, led to
the conclusion that the fast~slow! mode of kink solitons
could never ~only! be stable at velocities
u,A12D1/A11D2. Given the close relation between kink
solitons and Fiske modes, it might be expected that the same
would be true for Fiske states. However, looking at Fig. 4~a!,

FIG. 1. Normalized current-voltage characteristics and locking
ranges for the system given by Eqs.~1!–~4! with parameters:
L52, G59.5, a50.1, D150.1, D250, ands51. Lines represent
the result of the analysis, Eqs.~25!and~26!, andd shows the result
of numerical simulations. The Fiske resonances are shown as ver-
tical dashed lines.~a! hs vs v; hd50, v050. ~b! hs vs v; Maxi-
mumhd andv05p/4. ~c! hd vs v; The locking range is given by
the maximum value of Eq.~26! for v05p/4.

FIG. 2. Normalized current-voltage characteristics and locking
ranges for the system given by Eqs.~1!–~4! with parameters:
L52, G59.5, a50.1, D150.1, D250, ands521. Lines repre-
sent the result of the analysis, Eqs.~31! and~32!, andd shows the
result of numerical simulations. The Fiske resonances are shown as
vertical dashed lines.~a! hd vs v; hs50, ũ050. ~b! hd vs v;
Maximumhs andũ05p/4. ~c! hs vsv; The locking range is given
by the maximum value of Eq.~32! for ũ05p/4.
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FIG. 3. The locking ranges in bias for a system given byL52, G59.5, a50.1, andD250. The Fiske resonances are shown as vertical
dashed lines. Dots (d) represent the results of numerical simulations of Eqs.~1!–~4! and solid lines represent the results of the analysis, Eq.
~26! (s51 andD150.1) ~a!, Eq.~32! (s521 andD150.1) ~b!, Eq. ~26! (s51 andD150.2) ~c!, Eq. ~32! (s521 andD150.2) ~d!.

FIG. 4. Normalized current-voltage characteristics and locking
ranges for the system given by Eqs.~1!–~4! with parameters:
L510,G59.5,a50.1,D150.1,D250, ands51. Lines represent
the result of the analysis, Eqs.~25!and~26!, andd shows the result
of numerical simulations. The Fiske resonances are shown as ver-
tical dashed lines.~a! hs vs v; hd50, v050. ~b! hd vs v; The
locking range is given by the maximum value of Eq.~26! for
v05p/4.

FIG. 5. Normalized current-voltage characteristics and locking
ranges for the system given by Eqs.~1!–~4! with parameters:
L510,G59.5, a50.1, D150.1, D250, ands521. Lines repre-
sent the result of the analysis, Eqs.~31! and~32!, andd shows the
result of numerical simulations. The Fiske resonances are shown as
vertical dashed lines.~a! hd vs v; hs50, ũ050. ~b! hs vs v;
The locking range is given by the maximum value of Eq.~32!
for ũ05p/4.
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we find a large overlap in frequency~speed!between the two
branches of FS1. Thus, the stability information from kink
solitons cannot be extrapolated over to the Fiske and flux-
flow modes discussed here. The analysis predicts the locking
range to be independent of which branch~fast or slow!the
dynamics is operated at; i.e., only the frequency determines
the locking range. Figure 4 also demonstrates this feature.
Indeed, for the frequency range of overlap between FS1(1)

and FS1(2) in Fig. 4~a!, we find the corresponding locking
ranges in Fig. 4~b! to be independent of which branch is
considered@Fig. 4~b!has two sets of overlapping dots, rep-
resenting the phase-locking simulations of the two modes#.

Finally, comparisons for theL510 case in the flux-flow
region are shown. The dynamical behavior turned out to be
extremely complicated in this case and we found mostly cha-
otic dynamics fora50.1 when operating the system near
uvu5uGu. This resulted in inherently unstable resonances
which have therefore been omitted in this the presentation.
The reason for the complicated behavior is a combination of
proximity to the strong flux-flow resonance, whereuvu'G,
and the length of the system. In fact, the system length de-
termines the frequency spacing between the fundamental
Fiske resonances,dvL5p/L, whereas the coupling deter-
mines the spacing between the split modes,dvD1

5A11D12A12D1. Thus, a long system will create more
interference and mixing between the split modes of different
Fiske resonances. Figure 6 indicates all the split Fiske reso-
nances in the flux-flow region. The indicated frequency re-
gion includes~dotted!FSn(2) with n527236 and~dashed!
FSn(1) with n525233. The potential for very complicated
frequency mixing between various Fiske modes is clearly
seen. We have therefore damped the dynamics by increasing
the dissipation parameter toa50.2. Figure 6 shows com-
parisons between the analysis and simulations for the locking
range in a system withL510, a50.2, andD150.1. The
results span several of the resonances, and excellent agree-
ment is found between the analysis and the simulations for
both s51 @Fig. 6~a!#ands521 @Fig. 6~b!#; even for this
very complicated case. The most significant difference be-
tween the simulated locking ranges and the analysis is that a
slight frequency shift seems to be present in the figures. This
is, however, a minor detail, which is not surprising given the
severe approximations built into the analysis.

IV. DISCUSSION

We have analyzed a system of two inductively and ca-
pacitively coupled sine-Gordon phases, which in the induc-
tive case has been used as a model for magnetically coupled
long Josephson junctions. Experimentally, the most fre-
quently studied Fiske and flux-flow resonances,10–12,25,26oc-
cur when an external dc magnetic field is applied to the sys-
tem in order to force flux penetration through the boundaries
of the junctions. The synchronized states have been observed
experimentally and even thes521 case, where the volt-
ages of two Josephson junctions have opposite signs, have
recently been observed experimentally in Ref. 12. We have
developed a spatial multimode theory for the interaction of
two equal resonances and evaluated the range in bias differ-
ence for which these modes stay locked at the same fre-

quency. Very good agreement is found between the analysis
and numerical simulations of both short and long systems for
both the flux-flow and the low-order Fiske steps. Apart from
describing the coupled modes, and hereby understanding
phase locking between the various Fiske modes of equal and
opposite bias and voltage, we have noted several useful fea-
tures for experimental systems. One of the most important
observations is that phase locking seems to saturate with
moderate coupling, as was also found for phase locking be-
tween fluxon modes. The reason for the saturation seems to
be the interference between the various split Fiske reso-
nances in the coupled system. This interference gets worse
for longer systems since the frequency spacing between the
average of the Fiske resonances decreases with length (L).
We have also noticed the dynamics becoming complicated as
the interference gets stronger. If phase locking between pe-
riodic states of Fiske modes is the goal of inductively
coupled Josephson junctions, a large coupling parameter is
therefore not necessarily the optimal situation. On the other
hand, we have also observed that a too weak coupling re-
sulted in complicated dynamics and locking ranges smaller
than predicted. The reason for this is closely related to the
discussion above. For small coupling parameters we only see
the frequency mixing between the split resonances of the
same basic Fiske mode. Similarly, a shorter system is prob-
ably to be preferred over a system of long junctions, since
the Fiske resonances then will be well separated. These con-
siderations should also include the damping parametera,
since this determines the width of the resonances, and

FIG. 6. The locking ranges in bias for a system given by
L510,G59.5,a50.2,D150.1, andD250. The Fiske resonances
FSn(2), for n527236 are shown as vertical dotted lines and
FSn(1), for n525233 are shown as vertical dashed lines. Dots
(d) represent the results of numerical simulations of Eqs.~1!–~4!
and solid lines represent the results of the analysis, Eq.~26!
(s51) ~a!, and Eq.~32! (s521) ~b!.
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thereby the possible mixing. Large damping does stabilize
the dynamics, but it also broadens the interaction in fre-
quency. We finally note that a large value of the normalized
external magnetic field,G̃, seems always to stabilize the dy-
namics and give a much broader range of predictable behav-
ior.
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