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PHYSICAL REVIEW B VOLUME 9, NUMBER 9 1 MAY 1974

Self-resonance in cylindrical Josephson junctions*

M. A. H. Nerenberg' and J. A. Blackburn
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada
(Received 30 November 1973)

The I-V characteristics of self-resonant cylindrical Josephson junctions in the presence of parallei
applied magnetic fields have been calculated using a first-order perturbation technique.

I. INTRODUCTION

It has been known for some time'~? that the box-
like dielectric cavity which comprises the tunnel-
ing barrier in many thin-film Josephson junctions
possesses certain resonant modes which, when ex-
cited, tend to modify the zero-frequency current-
voltage characteristics of these devices. The
mechanism has its origin in the ac Josephson ef-
fect and arises when the junction is biased at a
point where the Josephson frequency is matched to
a cavity mode. In such a situation there is strong
feedback in the sense that sustained standing waves
occur which lead to an extra induced voltage across
the junction. It is the perturbing effect of this ad-
ditional voltage which finally causes the appear-
ance of finite zero-frequency currents; without the
feedback only a harmonic Josephson supercurrent
would occur. Theory and experiments have clear-
ly demonstrated that the amount of dc current at
given bias at or near resonance is sensitive to
magnetic fields applied parallel to the plane of the
junction.

The only geometry which has been extensively
investigated theoretically is that of the above-men-
tioned rectangular cavity between superconductors.
Recently, however, some experimental results
were reported by Bermon and Mesak® for the case
of a cylindrical cavity. Although they were able to
verify the expected bias points at which resonance
matching would occur, no attempt was made to
quantitatively characterize the magnetic field sen-
sitivities. We present in this paper a complete
discussion of the effect of applied fields and give
some quantitative estimates of appropriate model
parameters.

II. THEORY OF THE CYLINDRICAL CAVITY

The partial differential equation governing the
self-induced perturbation voltage v was given by
Eck ef al.® and may be expressed in polar coordi-
nates (remembering that v does not depend on the
axial coordinate) as
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where ¢=c(l/de)"'?; d=2x+1; and the symbols rep-
resent physical quantities as follows: [ is the bar-
rier thickness, X is the penetration depth, j, is the
tunneling amplitude, w is the Josephson angular
frequency w=2 eV/#%, @ is the adjustable damping
parameter reflecting losses, € is the dielectric
constant of the barrier region, and ¢, e, 7 have
their usual meanings. Note that all equations and
constants are expressed in Gaussian units. The
applied magnetic field will be specified in terms of
the conventional parameter % as k=(2ed/7%c)H.
Finally, we specify the geometry of the problem by
means of Fig, 1.

The perturbation technique of solving Eq. (1)
consists of replacing the current term on the right-
hand side by its lowest-order approximation
j .= j sin{wt - krsing), in which case

= (%%) cos(wt - krsing) . (2)

We now seek solutions to Eq. (2) in the form

FIG. 1. Cylindrical
Josephson junction. The
upper superconductor is
partially omitted for clarity.
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(7, 8,8 = E{ [A T, (Vpm?) cOS(76) + AZ) T ( Yum?) 8in(n6)] coswt
+ [ BT (Yam?) cOS(16) + B2, (Vum?) sin(n)] sinwt} | (3)

T
the sum over n running from 0-<, while m ranges substituted into the differential equation (2), it is

from 1 to infinity. The J, are nth-order Bessel possible to show that the expansion coefficients
functions of the first kind. In other words, the have the following forms:
self-induced voltage v(7, 0, f) is expanded in terms .
of the normal modes of a cylindrical cavity® oper- AL :_.(ML)( 21/ L, 2\) . (6a)
ating in the TM mode and the boundary conditions " (1= 7anC /'Y + (1/Q) S
ite th<.—:- pemphery (7= R) have been accounted for by B <_.ZL) ( —(1-72,T2%/w?) )a (6b)

quiring mm "\ ew J\(1-73,C z/wi)z +(1/Q)¢ /)™’

Ji’l( YnmR) =0. (4)
. . AL - (4"’71) ( )s (6¢)

Thus if the mth zero of J, is denoted X,,, we have m =\ ew J\(1-vZ,C 2/w2)2+ /@y )

Yam=Xom/ R . (5) B (4m)(( (1= 3,C%/ )

If the expression for (7, 6, #) given in Eq. (3) is €ew J\(1-7E,C Z/wz)z +(1/QF ) brm > (6d)
—
where
Ay =0 for » odd
2kR[J, 1 (kR) - J;,,(kRR)]
+ for n even +#kR
= " 1= (RR/ X N = 1K) Ko
==2 for n even, X,,=kR
2kR Jy(ER)
for n=0 Xom* ER
1 - (RR/ Xom)* Jo(Xom) v
==1, for n=0, Xom=FER;
bym=0 for n even or zero

. ZkR[Jn-,L(kR) - Jn*l(kR)]
B [1 - (kR/)(nm)E](Xﬁm - nz)Jn(Xnm)

=2, for nodd, X,,=

for nodd, X,,#ER

With the expansion for v now fully determined, the position- and time-dependent phase may be written
& = wf - rsing — ¥y + 22 f w(t"yat' . Q)

The phase constant ¥, has been discussed elsewhere’ and represents a correction of the approach of Eck e?
al.’ to this type of problem. It can be thought of as a relative phase shift between the free-junction oscil-
lations [ = sin(w? - k¥ sin6)] and the effective self-field generation which also occurs to lowest order at an
angular frequency w. The nef Josephson current corresponding to Eq. (7). is given by j=j sin(¢); this is
frequency modulated and contains a nonzero dc (zero-frequency) term which we denote (j). The time-in-
dependent spatially averaged current Jy, is just

1 'R r2r
Jg = f I jyrdédr .
7Rz ), ) ) r (8)
It can be shown that, subject to the definition
—porel 1/Q
Ynm=tan (m’z;}z/—wz) ) (9)

(4)= (—-‘Zz‘ﬁ )E =72 _ir7(: )?(I/Q)z]l,z{cos(zpm) cos(k7 sinf + ¥,)

€W" Jnym
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and thus using Eq. (8),

Jao/J1 = (ameljy R?/Hec? X %,)[J 1 cos(¥y) + I 2 sin(¥y)] ,

where

go- L5 (gmll = (= 110/Q) + apyfL+ (- 1Y)Q ~ X5/ X3)) Pm)

nym

and
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X (@, cOS(16) ~ by Sin(26)] + SiN(P,y) Sin(Rr 5ind + ¥o)| @,y cos(n6) + by, sin(n6)]} , (10)
(11)

(T = X2,/ PXT)+ (1/QF 12)

(13)

@ _1 bl = (= 1)")(1 = X2 /7PX3) + agg1+ (- 1)")(1/Q)
7 ’nz,.,zm('m (1—)fﬁ,‘/f'z%(’n)h(l/Q)2 P "M) :

Note that we have introduced the dimensionless voltage 1= (wR)/(X,¢). The term P,,, is given by

p - \ERI( X[y (RR) = Jyy (RE)]
mm= 2[xZ, - (kR)]

= = (BR)JIo(Xom)d1(RR)/ [ X — (RRY]
= [(Xim = na)/ZXﬁm] Jﬁ(Xnm)

The question now arises as to the appropriate
conditions governing the phase-shift parameter ¥g;
we adopt the view that ¥, is adjusted by the device
itself in order to accommodate the conditions im-
posed by external circuitry. In the case of con-
stant-current sources, a ¥, will be realized such
that at each bias point (1, V), I=1I_,, for that V:

(‘I’o)opt = ta-n.l(J(Z)/Jm) (14)

is the appropriate phase lag for maximum current
and this value of ¥, guarantees J4 =0; without such
optimization (in fact with ¥;=0), negative currents
occur for certain ranges of voltage!

Equations (11)—(14) plus the expressions for a,,,
bymy Pam constitute a complete solution of the prob-
lem. We see that resonances may be anticipated
at the dimensionless voltages: 11=X,,/X;. The
first ten such points have the numerical values
1.000, 1.659, 2.081, 2.282, 2.888, 2.896, 3.485,
3.642, 3.810, 4.074. Clearly, some of these will
be grouped quite closely and a high degree of peak
overlap is expected unless the effective @ is quite
large.

III. COMPARISON WITH EXPERIMENT

For simplicity we shall display J*=J“ cos(¥)
+dJ® gin(¥,) vs normalized voltage 7; results in
this form may be scaled to the dimensionless cur-
rent Jy/j; by means of the factor given in Eq. (11).
Thus with [ = j,(rR?),

Jao/d1= (4ed11/h’chf1)J* . (15)

Using the data of Bermon and Mesak* as a guide,
we have, with I; ~5 mA and A~ 500 f&, the approxi-
mate relationship J4./j;= (0. 09)J*.

In Fig. 2 we present the I-V characteristics

for n+0, X,,#kR

for n=0, X;,#kR
for X,.=kR .

L

computed for @ =10 and two different magnetic
fields determined by the conditions kR=1.5X,; and

kR=4Xy. The first case shown in Fig. 2(a) cor-
6 T T T i L 1
(a)
45 B=15 N
30} 4
J*
1) .
(b)
0.225F B-40 .
J*
o1so} 4
o075} 4
[l L 1 I ] 1
) [ 2 3 a 5 6 7
n

FIG. 2. Computed current-voltage characteristics for
a cylindrical junction with @ =10 and two different values
of applied magnetic field. Dimensionless volta%e m=wR/
X4; ©) and special current [7* =JD cos(¥;) + J @ sin(¥,)]
units have been employed. The field parameter is defined
as B=EkR/X,.
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FIG. 3. Three-dimen-
sional perspective view of
the J* —n B surface for a
cylindrical junction with
@=10. The current and
voltage units are the same
as for Fig. 2.

VOLTAGE

responds to a field nearly “matched” to the first
resonance; the analogous condition in a rectangular
junction is kL =7. Figure 2(b) illustrates the ap-
pearance of the I-V curve for kR=4X,, and it is
seen that higher order resonances now dominate al-
though all current peaks are a good deal smaller
than the first peak amplitude at 2R=1.5X,,. Ap-
plying the scaling factor of 0.09 to these data, we
see that for the first resonance (Jy/71)max= 0-45; in
other words the first resonance at optimum bias
field should achieve about 45% of the maximum ze-
ro-voltage Josephson supercurrent. This estimate
is at least reasonable and adjustments to obtain
better fits to experimental data only apply to the
damping parameter @ (which we assigned the nomi-
nal value of 10).

The truly complex structure of the I-V curves
and the nature of their field dependence is best il-

lustrated by a three-dimensional plot such as shown
in Fig. 3.
IV. CONCLUSIONS

We have found expressions for the zero-frequen-
cy current-voltage characteristics of self-resonant
cylindrical Josephson junctions by employing a per-
turbation technique. Current peaks are shown to
occur at a discrete, but not evenly spaced, set of
voltages and their magnetic field sensitivity has
been examined. A sample calculation indicates
that these formulas are consistent with the experi-
mental data of Bermon and Mesak.
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