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ACCOUNTING FOR THE EFFECT OF INTERNAL VISCOSITY
IN DUMBBELL MODELS FOR POLYMERIC FLUIDS AND

RELAXATION OF DNA

Xiao-Dong Yang1,2 and Roderick V. N. Melnik2

1Department of Engineering Mechanics,
Shenyang Institute of Aeronautical Engineering,

Shenyang 110136, China

2Mathematical Modelling & Computational Sciences,
Wilfrid Laurier University,

Waterloo, Ontario, Canada N2L 3C5

Abstract. The coarse-graining approach is one of the most important mod-
eling methods in research of long-chain polymers such as DNA molecules. The
dumbbell model is a simple but efficient way to describe the behavior of poly-
mers in solutions. In this paper, the dumbbell model with internal viscosity
(IV) for concentrated polymeric liquids is analyzed for the steady-state and
time-dependent elongational flow and steady-state shear flow. In the elonga-
tional flow case, by analyzing the governing ordinary differential equations the
contribution of the IV to the stress tensor is discussed for fluids subjected to
a sudden elongational jerk. In the shear flow case, the governing stochastic
differential equation of the finitely extensible nonlinear elastic dumbbell model
is solved numerically. For this case, the extensions of DNA molecules for differ-
ent shear rates are analyzed, and the comparison with the experimental data
is carried out to estimate the contribution of the effect of internal viscosity.

1. Introduction. Modeling the macromolecules is the groundwork to study the
bulk rheology of polymeric solutions [1] and to chase the dynamics of a single mol-
ecule in detail [2]. The simple version of the elastic dumbbell model (bead-spring-
bead model) introduced by Kuhn and Kuhn [3], as well as the finitely extensible
nonlinear elastic (FENE) model [4, 5] have been widely employed in the investiga-
tions of polymeric solutions and melts. If the entropic springs among the beads are
assumed nonlinear and/or other factors are taken into account, in most cases the
governing equations of the system can not be solved analytically, and the problem
should be attacked with numerical methods. Increasing beads numbers in the mol-
ecule chain modeling makes the numerical simulation extremely time-consuming,
sometimes completely impractical. The dumbbell model with only two beads is
computationally efficient. Also it can yield good results as we underline in this
contribution.

It is known that resistance to deformation of the polymer molecule arises from
both the friction between the polymer and the solvent, and the polymer molecule
itself. There exists a dissipative mechanism producing the resistant force because
of the energy consumption of rotations of the molecule bonds and other movements
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contributing to the polymer’s configuration. As a result, the connector tension can
be represented as a spring, linear or nonlinear, and a linear dashpot in parallel [3].

In this paper the dumbbell model with IV is analyzed for the elongational flows.
Further, in steady shear flow, the FENE dumbbell model with IV is used to study
the extensions of the molecules. Despite model simplicity, the influence of the IV
could be uncovered in the resulting equations and the corresponding curves when
time-dependent strain rates are applied to the complex fluid. The FENE dumbbell
model with IV is employed to describe the DNA molecules in steady shear flow. The
results of molecule extension obtained by numerical computation are compared to
those obtained in experiment by Smith et al [6]. The plot of extension for different
Weissenberg numbers is superimposed by the data from different models, such as,
the bead-spring model with wormlike spring by Jendrejack et al [7] and the classic
FENE dumbbell model by Hur and Shaqfeh [8].

The paper is organized as follows. In Section 2, we shall deduce the governing
equations for the dumbbell model with IV and discuss the analytical pre-averaging
method in the steady-state elongational flow case and the numerical method we
apply for the shear flow case. In Section 3, several representative examples are
presented, followed by concluding remarks of Section 4.

2. Governing equations. For the dumbbell model with internal viscosity, the
spring force is a function of the configuration vector and configuration velocity. This
force is the combination of connector force and the IV force, which is a function of
the speed of the conformation variation. If we consider also the finitely extensible
nonlinear elastic property, we can get the force law acting on the system in the
following form:

F
(
Q,

dQ
dt

)
=

HQ

1− (Q/Q0)
2 + K

(
QQ
Q2

)
dQ
dt

, (1)

where Q is the connector vector of the two beads of the dumbbell and its extension
is denoted by Q. In equation (1), Q0 is the maximum spring extension, and when
the extension of the dumbbell approaches this value, the spring force tends to be
infinite; H and K are Hookean constant and interval viscous coefficient. The first
term of the right hand side in equation (1) is responsible for the FENE spring force
proposed by Warner[5]. Considering the forces described above, the equation of
motion for one bead can be obtained if the inertial term is neglected. It is assumed
that there is no interaction among the beads of different dumbbells and the viscous
drag coefficient is due to the resistance of the flow denoted further by ζ. According
to the phase-space theorem [9], the equation of motion can be represented by the
equation of the dumbbell configuration vector Q:

dQ
dt

=
(

δ − 1
(ζ/2K) + 1

QQ
Q2

)
·
(

[κ ·Q]− 2kT

ζ

∂

∂Q
ln ψ − 2

ζ

H

1− (Q/Q0)
2 Q

)
,

(2)
where ψ is the configuration distribution function of Q changing with time. The
fluid velocity is given by specifying transpose of imposed fluid velocity gradient κ,
and δ is a unit matrix.

2.1. Pre-averaging methodology for elongational flows. Consider the Hookean
spring dumbbell model with IV, the evolution of the configuration distribution func-
tion ψ governed by the Smoluchowski equation can be obtained by the diffusive
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theorem:
∂ψ

∂t
= − ∂

∂Q

(
δ − 1

(ζ/2K) + 1
QQ
Q2

)
·
(

[κ ·Q]− 2kT

ζ

∂

∂Q
ln ψ − 2

ζ
HQ

)
ψ. (3)

The explicit solution to equation (3) is difficult to obtain. However, we can av-
erage the coefficient of the viscous term of equation (1) about the configuration
distribution in equilibrium in advance:

ηi =
1

(ζ/2K) + 1
·
〈

QQ
Q2

〉

eq

=
1

(ζ/2K) + 1
·
∫

QQ
Q2

ψeqdQ, (4)

where the distribution function in equilibrium is defined as in [9]

ψeq =
e−HQ2/2KT

∫
e−HQ2/2KT dQ

. (5)

From the Smoluchowski equation we can obtain the differential equation written
with respect to the average value of conformation tensor QQ

d 〈QQ〉
dt

= (1− ηi) ·
(

κ · 〈QQ〉+ 〈QQ〉 · κT +
4kT

ζ
δ − 4

ζ
H 〈QQ〉

)
. (6)

Using the elementary physical derivation, the stress tensor can be expressed by the
Kramers equation where the solvent viscosity is neglected for concentrated solution.
Wedgewood [12] discovered that in some cases the Kramers equation for the spring
model and spring-and-dashpot model yields the similar results. Here, we adopt the
Kramers equation with spring model for simplicity,

τ = −nH 〈QQ〉+ nkTδ. (7)

Although the internal viscosity is not considered in the Kramers equation, the
effects of the internal viscosity have been incorporated in equation (6). In this
model the stress tensor does depend on the internal viscosity force as indicated
by Wedgewood [12]. Applying the convected differentiation operation to Kramers
equation and substituting equations (6) and (7) into the result yield

τ (1) +
4H (1− ηi)

ζ
τ + ηiκ · τ + ηiτ · κT =

(
ηiκ + ηiκ

T
)
nkTδ − nkTγ(1), (8)

where notations

τ (1) =
∂τ

∂t
− κ · τ − τ · κT (9)

and
γ(1) = γ̇ = κ + κT (10)

are used. Using equations (9) and (10), equation (8) could be simplified to

∂τ

∂t
− (1− ηi)

(
κ · τ + τ · κT

)
+

4H (1− ηi)
ζ

τ = − (1− ηi)nkTγ(1). (11)

For steady-state elongational or shear flows, the material equation (11) degener-
ates into the constitutive equation without the internal viscosity. It is abnormal to
find that internal viscosity pays no contribution in the steady state flow. However,
we have used the Kramers equation of stress tensor to demonstrate the effect of IV
in the steady state flows [10]. In this contribution, for the time-dependent deforma-
tion case, the influence of IV is discussed qualitatively in the absence of accurate
stress tensor expressions. We will discuss this issue in the next section.
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2.2. Numerical methodology for shear flows. Equation (2) can be solved nu-
merically. We introduce dimensionless parameters

Q̄ =
Q√

kT/H
, t̄ =

t

λ
=

4Ht

ζ
, (12)

so that equation (2) could be cast into the dimensionless form as follows:

dQ̄
dt̄

=
(

δ − 1
(ζ/2K) + 1

Q̄Q̄
Q̄2

)
·
(

[
λκ · Q̄]− 1

2
∂

∂Q̄
ln ψ − 1

2
Q̄

1− (
Q̄

/
Q̄0

)2

)
, (13)

where λ = ζ/4H is the relaxation time of the molecules and
√

kT/H is the root-
mean-square average size of the Hookean dumbbell in one dimension at equilibrium.
For convenience, the bars over the dimensionless parameters are omitted thereafter
without causing confusion.

Next, we can get the dimensionless Smoluchowski equation for this dumbbell
model:

∂ψ

∂t
= − ∂

∂Q
·
[(

δ − 1
ε + 1

QQ
Q2

)
·
(

λκ ·Q− 1
2

Q

1− (Q/Q0)
2

)
ψ

]
+

1
2

∂

∂Q

(
δ − 1

ε + 1
QQ
Q2

)
· ∂

∂Q
ψ,

(14)

where the internal viscosity parameter is defined as ε = 2K/ζ.
With the Ito interpretation we can obtain the equivalent stochastic differential

equation of equation (14), following details given in Appendix A of [11]:

dQ =

[(
δ − ε

ε + 1
QQ
Q2

)
·
(

λκ ·Q− 1
2

Q

1− (Q/Q0)
2

)
− ε

ε + 1
Q
Q2

]
dt

+

[
δ −

(
1−

√
1

ε + 1

)
QQ
Q2

]
· dWt, (15)

where
〈dWt〉 = 0,
〈dWtdWt〉 = δ (t− t′) δdt.

(16)

If ε = 0 in equation (15), the stochastic differential equation degenerates into the
case for the classic FENE dumbbell model as described in the references [8] and
[13].

The steady state simple shear flow in the Cartesian coordinate system has the
velocity in three dimensions, vx = γ̇y, vy = 0, vz = 0, where γ̇ = dvx/dy is the shear
rate. In such flow, κ can be expressed as a linear function of shear rate γ̇

κ =




0 1 0
0 0 0
0 0 0


 γ̇. (17)

So we can adjust the parameter λκ in equation (17) by tuning Weissenberg number
Wi defined by Wi = λγ̇.

Based on Euler’s method, equation (15) can be discretized as follows:
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Qt+∆t =Qt

[(
δ − ε

ε + 1
QtQt

Q2
t

)
·
(

Wi ·Qt − 1
2

Qt

1− (Qt/Q0)
2

)
− ε

ε + 1
Qt

Q2
t

]
∆t

+

[
δ −

(
1−

√
1

ε + 1

)
QtQt

Q2
t

]
·∆Wt, (18)

where ∆t is the constant time step and the components of increments ∆Wt =
Wt+∆t − Wt are all independent real-valued random variables with mean 0 and
variance ∆t.

For the FENE dumbbells, at any finite time step, there exists a certain probability
that the simulation extension values exceed the maximum allowed extension Q0.
Hence, we adopt the rejection method that all moves larger than a fixed big value
are rejected. Because the extension that is very close to the maximum allowed value
will bring bad results, as proposed by Öttinger [13], we reject all moves which lead
to a value of Q2 larger than (

1−
√

∆t
)

Q2
0, (19)

where all the variables here are in dimensionless form.

3. Results and examples. In this section, the contribution of IV to rheological
properties of polymeric fluids in time-dependent elongational flows will be demon-
strated by an example presented in Subsection 3.1. In Subsection 3.2, a numerical
method will be applied to the calculation of molecule extension for λ−phage DNA
solutions in shear flows.

3.1. Polymeric fluids in time-dependent elongational flows. If a polymeric
fluid is considered in the Cartesian coordinate system Oxyz and the time-dependent
simple elongational flow is along the z direction, the velocity components in the 3D
case can be assumed as vz = ε̇ (t) z, vx = − 1

2 ε̇ (t)x, vy = − 1
2 ε̇ (t) y, where ε̇(t) is

a scalar time-dependent function describing the coefficient of the velocity gradient.
So the rate of strain could be expressed as

γ̇ =



−1 0 0
0 −1 0
0 0 2


 ε̇ (t) . (20)

Substitution of equation (20) into equation (11) yields

(
1 + λH

1−ηi

∂
∂t

)



τxx τxy τxz

τxy τyy τyz

τxz τyz τzz


− λH



−τxx 0 0

0 −τyy 0
0 0 2τzz


 ε̇ (t)

= −nkTλH



−1 0 0
0 −1 0
0 0 2


 ε̇ (t) ,

(21)

where λH is defined as λH = ζ/4H.
The solution to equation (21) can be obtained by equating every element of the

tensor. The elongational stresses can be obtained as

τzz = −2nkT (1− ηi)
∫ t

−∞
ε̇ (t′) exp

{
−1− ηi

λH

∫ t

t′
[1− 2λH ε̇ (t′′)] dt′′

}
dt′, (22)







DUMBBELL MODEL WITH INTERNAL VISCOSITY 1059

When Wi = 0, that is, the shear rate of the solvent vanishes, the fluctuations of
molecular extension are caused only by the Brownian force bombarding on DNA
molecules of small solvent molecules. When Wi increases, the extension reaches
an asymptotic plateau as found by Smith et al [6] and Hur & Shaqfeh [8]. Our
simulation results have better agreement with the experimental data compared to
the other two simulations presented in Figure 6, especially when the values of the
Weissenberg numbers are high. The good agreement with the experimental results
has demonstrated that the computational efficiency of dumbbell model with internal
viscosity is rather high, given its simplicity.

Figure 4. Extension versus Wi

4. Conclusions. In this paper, the analytical pre-averaging method and the de-
veloped numerical method are applied to the dumbbell model with IV for polymeric
fluids in elongational and shear flows. The contribution of IV to the stress tensor
has been discussed for time-dependent elongational flows. The Brownian dynam-
ics simulation has been used to study the extension between the two beads of the
dumbbell in shear flows. The results are in agreement with the experimental data, in
particular for high Weissenberg numbers. This qualitative and quantitative agree-
ment has demonstrated the efficiency of the dumbbell model with internal viscosity
in the analysis of the rheological properties and dynamics of single DNA molecules.

Acknowledgements. We thank the NSERC, CRC Program, and SHARCNET for
their support.
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