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Chaos and thermal noise in a Josephson junction coupled to a resonant tank

James A. Blackburn
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Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
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Selected dynamical modes are investigated for the autonomous system formed from a dc biased Josephson
junction which is resistively coupled to a resonant tank. A hysteretic zone in the current-voltage characteristic
is shown to result from coexisting chaotic and periodic states. The detailed features of these states, including
the geometrical structure of the attractors and their basins of attraction, as well as thermally induced transitions
between them, are explored.@S0163-1829~96!08021-6#

I. INTRODUCTION

Since the seminal work on chaos in Josephson junctions
by Hubermanet al.,1 it has been realized that superconduct-
ing weak links may exhibit chaotic dynamical behavior. The
most commonly studied configuration has been that of a ca-
pacitive Josephson junction under the influence of ac current
excitation. This nonautonomous system, governed as it is by
a second-order differential equation with an external har-
monic forcing function and presumed to model a junction
under the influence of microwave irradiation, displays all of
the rich dynamics which might be expected of a driven non-
linear device.2

Jensenet al.3 showed that a capacitive junction with only
dc bias, but loaded by a series or parallel resonant tank,
possesses chaotic modes. Along similar lines, Pedersen and
Davidson4 noted that chaos occurs when a dc biased capaci-
tive junction is coupled to a simpleR-L load. Without ac
bias, these cases are both autonomous, but with the inclusion
of inductance, the equations are of third order. The essential
ingredient in these cases is, therefore, the inductance.

As prospective components in superconducting
electronics,5 Josephson devices of small physical dimensions
are clearly preferred. Small junctions have correspondingly
small, or even negligible, associated self-capacitance. In this
limit neither the nonautonomous isolated ac driven junction
nor the autonomous inductively loaded dc biased junction
can become chaotic, since in both cases the equations are
only of second order. However the possibility of chaos re-
turns when two or more zero-capacitance junctions are
coupled in arrays.6

Another interesting and physically realistic arrangement
which can give rise to chaos consists of a dc biased Joseph-
son junction of negligible capacitance~highly overdamped!
which is coupled to a tank circuit containing both inductance
and capacitance. This particular system is the subject of our
study. It is conceptually appealing because it is autonomous

and so is free of the ambiguity which ac forcing inevitably
introduces — that of relating simulation ac amplitudes to
experimentally applied rf fields. Although the results to be
presented here were obtained entirely from numerical calcu-
lations, all the parameters are in principal relatively easy to
quantify in an experimental setup.

This paper addresses two principal issues. The first is con-
cerned with the appearance of chaotic states in the parameter
space of the system. As is typical in such investigations, the
parameter values chosen for detailed dynamical simulations
are not in any way special except in the sense that they lead
to significant and interesting modes. Of paramount interest is
a range of dc bias current within which chaotic and periodic
states coexist. The second topic concerns the response of the
system to the presence of thermal noise. Not surprisingly,
thermally activated transitions are found to occur between
coexisting states; the rate of such transitions will be used to
infer effective energy barriers.

II. JOSEPHSON JUNCTION AND TANK

Figure 1 illustrates a Josephson junction~the bowtie la-
belled sinf) coupled via resistorr to a tank made up of the
parallel combination of inductorL and capacitorC. Both the
coupling resistor and the junction shuntRJ are shown with
Johnson noise sources. The following equation is immedi-

FIG. 1. Josephson junction resistively coupled to a resonant tank
comprised of a parallel inductor and capacitor. Noise currents shunt
the two resistors.
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ately evident from Kirchhoff’s laws:

I B5I Csinf1
VJ

RJ
1I N

J 1I X , ~1!

where I B is the external dc bias current,I C is the junction
critical current,f is the junction phase parameter, andVJ
andRJ are the junction voltage and shunt resistance, respec-
tively. The noise current associated with the junction normal
resistance is denotedI N

J , while I X represents the current
flowing into the coupling resistor. But

I X5I N
r 1

~VJ2VT!

r
~2!

in which VT signifies the tank voltage~acrossC or L) and
I N
r is the noise source shunting the coupling resistor. The
junction voltage and phase are connected by the Josephson
relation

df

dt
5
2eVJ

\
. ~3!

In what is to follow, it will be useful to employ the di-
mensionless parameters:

a5
\

2e
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\
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2#
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Since\/2eIC is an effective junction inductance7 LJ , a is
the ratio of Josephson inductance to tank inductance. Simi-
larly, b is the ratio of two time constants,LJ /RJ andRJC .
Normalizing current asi5I /I C , voltage asv5V/I CRJ , and
time ast5t@2eICRJ /\#, and combining Eqs.~1 ! and ~2!,

ḟ5
g

g11 F i B2sinf1
vT
g

2 i N
J 2 i N

r G , ~4!

where the overdot signifies a derivative in normalized time.
The law of inductionVT5L(dIL /dt) becomes

i̇ L5a@vT#. ~5!

Finally, beginning with an expression for the capacitor
current,I cap5C(dVT /dt) and usingI cap5I X2I L , we have

v̇T5
b

11g
@ i B2sinf2vT2 i N

J 1g i N
r #2b i L . ~6!

The noise current source associated with the finite oper-
ating temperature for resistorRJ is given by the standard
expression8–11

I N
J 5A2kT

RJdt
N~0,1!.

N(0,1) is a random number with Gaussian distribution,
zero mean, and variance 1;dt is the time grid for the nu-
merical integrations and on which the random numbers are
updated. Using the previously defined dimensionless time
scale and employing the Josephson-junction coupling energy
EJ5\I C/2e, this becomes

i N
J 5sN~0,1!, ~7!

with

s5A2kT

EJ

1

dt
.

It is easily seen that

i N
r 5 i N

J g21/2. ~8!

Equations~4!,~5!, and~6! can then be expressed in final
form as

ḟ5
g

g11 F i B2sinf1
vT
g

2sS N11
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Ag
D G , ~9!

i̇ L5a@vT#, ~10!

v̇T5
b
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@ i B2sinf2vT2s~N12AgN2!#2b i L ,

~11!

with N1 andN2 denoting independent random numbers of
the formN(0,1) . Hence the coordinates of the autonomous
system are the junction phase, inductor current, and tank
voltage, (f,i L ,vT), and its evolution in time can be visual-
ized in the form of trajectories in this three-dimensional
space. Apart from initial conditions, numerical values for the
three dimensionless parameters (a,b,g) must be specified as
well as an amplitude for the noise parameters ~equivalent to
setting the temperature!.

In a graduate thesis by Macki,12 computed current-voltage
characteristics for the junction/tank system with the param-
eter set@a50.07;b5 2

7;g5 3
7] contained a number of inter-

esting features, including a hysteresis loop located in the
vicinity of i B51.9. This same set was adopted for the
present study.

It is worth taking note of the time scales in this problem.
The tank circuit by itself has the well-known resonant fre-
quencyv05@LC#2(1/2); its corresponding period in normal-
ized time units can be shown to bePT52p@ab#2(1/2).By
comparison, an isolated Josephson junction with a bias of
say twice the critical current would oscillate at approxi-
mately vJ'2@2eICRJ /\#, which has a corresponding pe-
riod, in normalized time units, ofPJ5p.

Numerical solutions of the system of coupled first-order
differential equations~9!, ~10!, and~11!#were computed us-
ing a fourth-order Runge Kutta routine with fixed step size.
For the parameter set just mentioned, the characteristic peri-
ods for tank and junction oscillations would bePT544.43
andPJ53.14. Hence the shorter time scale ofPJ must be
considered when choosing the step size for numerical inte-
grations. For the results presented here, adt of about
0.001PJ was used, although a coarser grid would likely have
been acceptable.

III. DYNAMICS: NOISELESS CASE „s50…

Of central importance to the material in this and the fol-
lowing sections will be the representation of Poincare´ plots.
Since the junction phase enters Eqs.~9!, ~10!, and~11! only
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as sinf, f6m(2p) will also always be a solution and the
phase variable can~if it is useful to do so!then be restricted
to the range2p to p. Because this is an autonomous sys-
tem, obviously there is no external ‘‘strobe.’’ Instead, we
choose to sample the coordinatesi L and vT every time the
phase variablef reaches some preset reference value. The
selection of this reference value is entirely arbitrary, al-
though the visual appearance of the resulting Poincare´ sec-
tion depends upon the choice made. Unless specified other-
wise, a reference phase ofp was used.

The hysteresis loop in the current-voltage characteristic
for this system, which was alluded to in the previous section,
spans the range 1.8139<i B<1.9520. The upper and lower
branches of this loop arise from distinct dynamical modes
which clearly coexist at any selected bias current within the
domain of the hysteresis. Such coexistence is clearly evident
in the bifurcation diagram shown in Fig. 2. For each setting
of bias current, values of junction voltage (ḟ) ~sampled at
f5p) are plotted. Clearly, below the onset of the hysteresis
at i B51.8139 only a period-3 solution prevails. Above the
terminating point of the loop ati B51.9520 only a period-1
solution exists. When the loop is entered from below and the
bias is slowly incremented, the period-3 solution prevails,
with the exception of the brief doubled behavior in the
miniloops, until the end point is reached. Conversely, if the
loop is entered from above and the bias is slowly decre-
mented, then a period doubling sequence occurs leading to
chaos, before the abrupt return to period-3.

This study focusses on the region of bias current just
above 1.8139 because here is found an interesting coexist-
ence of a chaotic state with a periodic state. Therefore we
now fix the bias current ati B51.8150. As remarked above,
the period-3 state can be reached by ramping the bias up to
1.8150 from below the loop, while the chaotic state can be
reached by ramping the bias down from above the loop. Sup-
pose, instead, that the numerical solution of system~9!, ~10!,
~11! is computed directly from a specific initial condition,
@f(t50); iL(t50);vT(t50)#. In such a case, the system
ultimately will reach either the chaotic state, or the period-3
state. The domain of starting values leading to a given attrac-
tor is itsbasin of attraction.

Figure 3 is a composite plot in thei L2vT plane contain-
ing both attractors and basins~the reversed direction on the

i L axis has been chosen for visual consistency with some
figures to follow!. One of the three initial conditions is pre-
set, namelyf5p. The period-3 state appears as three dots.
The chaotic state produces the fishhook. When magnified,
this fishhook has a finite thickness and is fractal, as usual for
a strange attractor. The white regions of the figure represent
the basin of attraction of the chaotic state; the black regions
are the basin for the period-3 orbit. Note the near contact of
the strange attractor with the basin boundary in two places,
while the period-3 attractor~black dots! is situated deep
within its own basin. As we shall see, this implies that it will
be much easier to force transitions out of chaos than the
reverse. Figure 4 is constructed in the same manner as Fig. 3,
except that the reference phase here isf50.

The Poincare´ sections in Figs. 3 and 4~fishhooks!are
produced by just two particular choices for the definition of
the strobing event,f50 orp. In other words, the complete

FIG. 2. Bifurcation diagram illustrating ascending and descend-
ing branches in the hysteresis loop. Beyond the hysteresis~shaded
regions!the mode is either period-3 or period-1.

FIG. 3. Poincare´ section~fishhook!and period-3 attractor~black
dots!for a reference phasef5p. The shaded region is the basin of
attraction for the period-3 state; the white region is the basin of
attraction for the chaotic state.

FIG. 4. Same as the Fig. 3, but taken at a reference phase
f50.
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strange attractor in the space@f,i L ,vT# is only hinted at by
each of these sections. The entire strange attractor is illus-
trated in Fig. 5. The end caps atf56p are just the fish-
hooks in Fig. 3; Fig. 4 corresponds to a slice atf50. This
surface is, in fact, a fractal Mo¨bius ribbon in which the twist
occurs in the neighborhood off52 radians. A line along the
back edge advances to the front while the leading edge rolls
under and moves to the rear.

The period-3 attractor is shown in Fig. 6 where it is rep-
resented by a trajectory which advances steadily in the phase
variable. This curve completes a full cycle after any phase
advance of 332p, a property which can be discerned in the
figure by noting that the starting point on the@vT ,i L ,2p#
plane is the same as the finishing point on the@vT ,i L,5p#
plane. This figure also includes three cycles of the strange
attractor joined end on end. The period-3 trajectory can be
seen to wrap itself once around the Mo¨bius washboard in the
course of the net phase advance of 6p. A view of this same
period-3 orbit looking down the phase axis~or, equivalently,
projected onto thei L2vT plane! is shown in Fig. 7. Also
plotted is the projection of the strange attractor on this same
plane, and in this view the chaotic nature of the orbit is quite
apparent.

IV. DYNAMICS: FINITE TEMPERATURE „s>0…

The addition of thermal~or indeed other forms of! energy
to this system will perturb whichever of the two coexisting
states may be occupied at a given moment. Intuitively, it can
be appreciated that given sufficient thermal noise and after
an adequate amount of time, excitation from one attractor to
the other can take place. Flipping back and forth between
attractors is also possible, although the directional transfer
rates may be extremely unequal.

The issue of thermally driven escape from attractors is of
some practical significance, noise being ubiquitous. It is also
an appealing topic because it links classical stochastic theory
with modern nonlinear dynamics. Furthermore, the depen-
dence of mean lifetime on noise amplitude serves as a probe
of the effective energy barriers of the system.

Both ac driven Josephson junctions,10,13 and logistic14 as
well as quadratic15 maps have served as model systems. As
discussed by Kautz10 and Beale,14 the mean escape time for
thermal excitation from an attractor is governed by an ex-
pression of the form

^tesc&5t0expFE0

kTG ,
whereE0 is the depth of the effective potential well contain-
ing the system. Thus a plot of the natural log of mean escape
time versus reciprocal noise temperature should be a straight
line of slopeE0 ~see Kautz10 Fig. 3, Beale14 Fig. 2, and
Grassberger15 Fig. 2!. We follow a similar procedure here to
evaluate the barrier height for noise-driven transitions out of
chaos. Note thats2dt52kT/EJ and so the slope of a graph
of ln(^tesc&) versus 2@s2dt#21 would be

slope5e, ~12!

with e[E0 /EJ being the normalized barrier height.
For selected noise amplitudes,s, the mean escape time

was determined as follows. The numerical simulation of the
system equations~9!, ~10!, and ~11! was started on the
strange attractor and followed until it fell within small target
zones surrounding each of the period-3 attractor points

FIG. 5. Complete strange attractor in@ i L ,vT ,f# space for
i B51.815. The surface is a fractal Mo¨bius band, twisting in the
vicinity of f52 radians.

FIG. 6. Three cycles of the strange attractor, and a complete
coexisting period-3 orbit fori B51.815.

FIG. 7. Strange attractor and period-3 orbits projected onto the
i L2vT plane.
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marked in Fig. 3. Then the previous initial conditions were
used in a noiseless simulation which proceeded until the next
point in the Poincare´ section was reached. This point then
served as a fresh initial condition for a new escape simula-
tion ~with noise once again!. Because each successive point
on a strange attractor is not correlated with previous values,
the set of escape times found in this way yields a meaningful
average. In the present study, 200 trials were carried out for
each selecteds. The results are displayed in Fig. 8. The
deviation from linearity at small abscissae is not unexpected
since the thermal activation model is thought to apply only at
low temperatures. As the temperature rises~moving to the
left! escape routes other than the minimum energy one char-
acterized bye become possible, and the mean lifetime begins
to decline rapidly. From the slope of 0.1131025 one obtains
a barrier height ofe51.131026. This number illustrates the
very small depth of the effective potential well within which
the chaotic state resides. Of course the particular value ofe
will depend quite sensitively on the nearness of the bias cur-
rent i B to the boundary value (1.8139 in this example!, at
which e vanishes.

The reverse process in which thermal activation drives the
system from the periodic attractor into chaos is also possible,
but the required thermal energies are much larger. In other
words the effective barrier for transitions in this direction is
higher than for escapes from chaos. Similar results were
found by Kautz.10 We did not carry out any systematic data
generation because of the very much longer simulation runs
which are necessary, although this certainly can be done in
principle. One implication of these results is that relatively
small amounts of thermal noise will drive the system out of
a chaotic state, but probably not into one. Hence a burst of
weak noise here would serve the purpose of ‘‘clearing’’
chaos. At higher steady noise levels, hopping back and forth
between chaotic and periodic states would occur. The resi-
dency times in the two coexisting states would not be equal,

but their relative magnitudes would depend on the closeness
of the biasi B to the boundary value.

Thermal noise will affect the observed hysteresis. Near
the ends of the hysteresis loop, as we have just seen, the
effective barrier separating coexisting states becomes quite
small, at least for transitions in one of the directions. Sup-
pose, for example, the hysteresis loop is entered from above.
In the presence of noise, the lifetime on the chaotic portion
of the upper branch of the loop will decrease significantly as
the boundary ati B51.8139 is approached from the high cur-
rent side. A premature switching from the upper branch to
the lower one will then occur. Likewise, on the ascending
period-3 branch an early transfer to the upper period-1
branch takes place before the boundary ati B51.9520 is
reached. Higher noise temperatures will enhance this process
of hysteresis loop shrinkage. These features are illustrated in
Fig. 9.

The amount of shrinkage, as discussed above, and its im-
pact on the observability of a given loop, depends of course
on the precise values of circuit parameters, as well as the
junction critical current and temperature. As a representative
example, consider a Josephson junction of negligible capaci-
tance with critical currentI C51 mA. The corresponding
junction coupling energyEJ would then be about 2 eV.
With the previously selected parameter values
@ i51.815,a50.07,b52/7# the barrier separating chaos
from period three was found to be approximately
1026EJ—which is about 2m eV. At a temperature of say 1
mK the mean thermal energy,kT, is of the order of 0.1m eV,
a figure which is at least 20 times smaller than the barrier
height. Thus the chaotic state should have an adequate life-
time in the presence of such thermal noise to assure observ-
ability. If the junction had a typical resistance of 1V, then
the a,b values above would imply a tank capacitance
C51.15 pF, a tank inductanceL54.7 pH, and a tank reso-
nant frequency of 70 GHz. These model component values
are in fact rather close to those quoted16 for 4-mm-diameter

FIG. 8. Natural logarithm of the mean lifetime on the chaotic
attractor prior to a thermally induced escape, as a function of recip-
rocal temperature. The slope of the line is 0.11x1025 ~a dimension-
less quantity!.

FIG. 9. Hysteresis loop in the current voltage characteristic for
the junction, with and without noise. For the computational grid
used here, the noise amplitudes50.10 corresponds to
kT/EJ51.431025.
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circular NbAl2O3Nb Josephson junctions interconnected via
superconducting microstrip lines@ I C5365mA, RJ53.5V,
C50.10 pF, L57.25 pH#. We mention these similarities
mainly to emphasize the plausibility of our choice of param-
eter values.

As a final remark, we speculate that a more extensive
investigation of the system behavior likely would turn up
values for @ i C ,a,b,g# for which more robust hysteresis

loops exist—that is loops possessing even larger barriers
against thermal activation.
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