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Fig. 6. Correlation analyses of gill silver levels versus whole body
Na* influx rates from the water (A) and gill sodium- and potassium-
activated adenosine triphosphatase (Na*/K*-ATPase) activity (B). Re-
gression coefficients are (A) » = —0.239, p = 0455 and (B) r =
0.442, p = 0.099.

CC, probably via an apical channel, before exerting its toxic
action. An increase in water chloride levels will result in a
decrease in the Ag* levels and a concomitant increase in AgCl,
species, thereby reducing the portion of silver entering as Ag*.
The uncharged AgCl may enter passively. accumulating in all
cell types of the gill (the CC constitute only 10%, or less, of
the total gill cell population [35]). Moreover, Simkiss and Tay-
lor [36] estimated that HgC13 could penetrate lipid membranes
106 times faster than Hg?*. Similarly, AgClL, could be more
persistent than Ag*. Consequently, it is not the amount of silver
on the gill that is important for toxicity, but where and how
it accumulates.

The ions Ag* and Na* have the same charge, an ionic radius
of 1.26 and 0.97 A, respectively [37]. and may share similar
uptake pathways across the gill. The exact mechanism of Na*
entry across the apical membrane of the gill is currently under
debate. Two mechanisms are hypothesized: entry via a Na*
channel coupled to an H*-ATPase, or via an Na*/H*-exchanger
(see review [38]). If Ag* enters via either of these processes,
then Na* will compete with Ag* at the site of entry. Comparing
silver-exposed trout to controls at the same [Na*] shows that
Na*, up to a concentration of 1,500 pM, did not prevent silver-
induced physiological and biochemical disturbances or the ac-
cumulation of gill silver. Janes and Playle [26] found that a
concentration of 16 mM Na* was required to prevent gill silver
accumulation. This suggests that Ag, which was present at 34
nM (i.e., 3.7 pg/L) in this study. has a very strong affinity for
these uptake pathways. The low K, value (Table 1, 53.9 *
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31.7 pM) for Na* uptake in the present control fish compared
to the K value (257.1 * 89.7 pM) previously reported for
trout adapted to Hamilton tap water (moderately hard water,
with 12-fold higher Na* levels, [10]). suggests that the mech-
anism by which these fish adapt to dilute soft water is via an
increase in the affinity of the transport process for sodium.
The decrease in ¥ but constant K for Na* uptake in silver-
exposed soft water-acclimated fish is similar to the type of
inhibition of Na* uptake observed in silver-exposed hard wa-
ter-acclimated fish [10]. This is indicative of a noncompetitive
inhibitor, suggesting that Ag* inhibits transport by binding to
the uptake machinery at a site different from that of Na*. These
findings have been confirmed in vitro, where silver inhibits
Na*/K*-ATPase by interfering with the Mg2*-binding site of
the enzyme [34].

Water hardness. changed by altering calcium concentra-
tions, had no effect on the silver-induced physiological and
biochemical perturbations in rainbow trout. However, it is un-
clear why an increase in Ca2* concentration results in a re-
duction in the accumulation of silver on the gill. This result
corroborates the toxicity data, which show that increasing cal-
cium concentrations reduced silver toxicity by only a small
extent [9.19]. This modest ameliorating effect was attributed
to the stabilizing effect that Ca?* ions have on the gill mem-
brane [17]. The data from this study further question the va-
lidity of the hardness equation for the regulation of silver (see
Introduction and [21]). Consequently, a new approach is need-
ed for the environmental regulation of silver. The advancement
of computer-based geochemical models enables rapid identi-
fication of the metal species present. Recently, a free-ion ac-
tivity model (FIAM) has been derived for determining metal
bioavailabilty (defined as the degree to which a metal is avail-
able for uptake by the organism) [15,39]. In a critical review
of the model, Campbell [15] highlighted a number of studies
where metal bioavailability does not conform to the FIAM.
One such instance was for the accumulation of Ag by the grass
shrimp Palaemoetes pugio at four different salinities [40]. The
results from the present study also confirm that silver, in the
case of rainbow trout in freshwater, does not fit the FIAM.
Moreover, based on geochemical modeling, it is the [Ag*] that
determines toxicity, although it is not the principal factor in
determining metal accumulation (Fig. 5C) [8.9,21].

Another approach that has been proposed for the prediction
of aquatic metal toxicity is the gill metal burden model, which
relates toxicity to the accumulation of metal on the gill [23].
This model has been verified for copper, where the gill Cu
concentration after 24 h correlated well with the eventual LC50
values [27]. However, in the case of silver, gill metal levels
after a 6-h exposure to the metal did not correlate with the
degree of physiological and biochemical perturbations (indi-
cators of toxicity), a finding that corroborates those of McGeer
and Wood [33]. Whether gill silver levels after a different
exposure period (e.g., 3. 12, or 24 h) would correlate to toxicity
is unclear, and warrants further investigation. However, Hogs-
trand et al. [8] and Galvez and Wood [9] found no correlation
between tissue Ag levels and the 96-h LC50 values. Interest-
ingly, Hollis et al. [41]. in a study concerning the effects of
aging DOC on Cd and Cu gill accumulation, found a rela-
tionship between Cu toxicity and gill metal levels, but this
relationship was not apparent for Cd. Taken together, these
results show that general assumptions cannot be drawn for all
metals. In the case of silver, the correlation between Ag* (the
toxic form of silver) and the site of toxic action illustrates that
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this parameter (i.e., gill Na*/K+-ATPase activity) is a good
indicator of the biological impact of silver.

The results from this study confirm that speciation governs

silver toxicity. Furthermore, the results illustrate that the gill
metal burden model does not relate to silver toxicity, as de-
termined by inhibition of Na* influx or inhibition of gill Na*/
K*-ATPase activity. However, [Ag*] is a good indicator of
silver toxicity to rainbow trout. A new regulatory approach
for silver that considers speciation should be considered.
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