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Ejaculate investment in a promiscuous rodent,
Peromyscus maniculatus: effects of
population density and social role

Tristan A.F. Long* and Robert Montgomerie

Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada

ABSTRACT

Questions: How does average male investment in ejaculates vary with changing population
density (and thus with the risk of sperm competition) in a promiscuous species? Do individual
male investment strategies vary with population density?

Data studied: Total testicular mass, somatic mass and annual population density for
wild-caught male deer mice, Peromyscus maniculatus, collected by snap-trapping over a 23-year
period in Algonquin Provincial Park, Ontario, Canada.

Search methods: We analysed the relation between mean testicular mass and mouse
population densities across years. To investigate individual investment patterns, we compared
the relation between total testicular mass and somatic mass among males for years differing in
population density.

Conclusions: Average investment in the testes was positively correlated with annual
population density. An individual’s investment in testes depended on both the abundance of
rival males and on relative body size, a trait associated with social rank.

Keywords: ejaculate investment, mating system, Peromyscus maniculatus, population density,
sexual selection, sperm competition, testicular mass.

INTRODUCTION

Sperm competition is the post-copulatory competition between the ejaculates of rival males
for the fertilization of a female’s ova (Parker, 1970). This widespread phenomenon has
influenced the evolution of a broad diversity of sexual behaviours, as well as anatomical and
physiological traits (for reviews, see Smith, 1984; Birkhead and Møller, 1992, 1998). Sperm competition
theory (Parker, 1990, 1998) predicts that when females mate with more than one male, and their
ejaculates overlap temporally in the female’s reproductive tract, selection will favour those
male traits that improve the ability to secure paternity. Many interspecific comparative
studies (e.g. Harcourt et al., 1981; Kenagy and Trombulak, 1986; Briskie, 1993; Hosken, 1997; Byrne et al., 2002) have
found that relative testis size is frequently positively correlated with the potential for sperm

* Author to whom all correspondence should be addressed. e-mail: longt@biology.queensu.ca
Consult the copyright statement on the inside front cover for non-commercial copying policies.

Evolutionary Ecology Research, 2006, 8: 345–356

© 2006 Tristan A.F. Long



competition, supporting the hypothesis that there is an adaptive basis for variation in
ejaculate investment.

In many species, the opportunity for promiscuity (and thus sperm competition) is closely
related to the distribution of sexually mature individuals, which in turn is influenced by the
dispersion of resources in the environment (Emlen and Oring, 1977; Davies and Lundberg, 1984; Ostfeld,

1990). Thus, spatial or temporal variation in ecological conditions may shape the probability
[or ‘risk’ (Parker, 1998)] that a population’s males experience sperm competition (Birkhead and

Møller, 1992), and affect their reproductive tactics. For instance, a high local density of
breeding adults can increase the opportunity for promiscuity due to a greater likelihood of
interactions between the sexes (Emlen and Oring, 1977; Reynolds, 1996). This prediction has been
supported by field studies that have found that the frequency of polyandry or extra-pair
copulations and fertilizations is positively related to the local population density (Davies and

Lundberg, 1984; Westneat and Sherman, 1997). As a result, the risk of sperm competition experienced by
males may vary temporally, and selection should favour the evolution of males who can
respond to cues in the social environment and adopt reproductive tactics that maximize
fitness (Gage and Barnard, 1996).

Most attempts to investigate male responses to variation in the risk of sperm competition
have been laboratory-based, and have involved experimentally placing males into social
situations that differ in the probability of sperm competition (e.g. Gage and Baker, 1991; Gage and

Barnard, 1996; Wedell and Cook, 1999; Hosken and Ward, 2001). Few studies have examined male responses
to varying social situations in free-living populations, where individuals experience natural
levels of variation in the risk of sperm competition (but see Ribble and Millar, 1992; Stockley and Purvis,

1993; Pitcher and Stutchbury, 1998).
The deer mouse, Peromyscus maniculatus (Rodentia; Muridae), is a good model species

in which to study whether the response of males to changing socio-sexual conditions is
adaptive with respect to the risk of sperm competition. Deer mice have a polygynous or
promiscuous mating system (Wolff, 1989; Ribble and Millar, 1996) and lack many of the characteristic
traits of monogamy [e.g. sexual monomorphism, small litter size, slow maturation,
extensive paternal behaviour (Dewsbury, 1981a)]. Moreover, several ecological and social factors
probably alter the actual intensity of their promiscuity (Wolff, 1989).

In deer mice, the activity patterns of mature males are closely tied to those of mature
females (Metzgar, 1979), and males will maintain home ranges, at least in part, to obtain access
to females in reproductive condition (Wolff, 1985; Ostfeld, 1990). The ability to access these females
will often depend on the local population density, which normally varies from 1 to 25
individuals per hectare (Banfield, 1974). At high densities, socially dominant males are able
to monopolize the home ranges of several females (Mihok, 1979; Wolff and Cicirello, 1990),
simultaneously displacing subordinate males [who become transient, and have limited
exposure to mature females (Mihok, 1979)]. When population densities are low, neighbouring
females no longer occupy contiguous home ranges (Wolff, 1985), and males generally interact
with fewer females (Mihok, 1979). Thus, in free-living populations of deer mice, the density of
breeding individuals has the potential to dramatically influence the amount of intrasexual
competition, and thus the risk of sperm competition, that is faced by males.

Studies of wild deer mouse populations have also provided indirect evidence that the
local risk of sperm competition can be quite variable. Genetic parentage analyses have
shown that between 10% and 43% of litters are sired by multiple males (Birdsall and Nash, 1973;

Merrit and Wu, 1975; Ribble and Millar, 1996), and estimates of testis size also vary dramatically
between populations (Kenagy and Trombulak, 1986; Ribble and Millar, 1992). Unfortunately, none of these
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studies report breeding population densities, so it is impossible to determine whether
differences in the risk of sperm competition associated with population density contributed
to any of this variation.

Evolutionarily stable strategy (ESS) modelling of sperm competition was used by Parker
(1990) to predict how a male’s investment in his ejaculate should facultatively change
in response to the overall risk of sperm competition. In this model, males should increase
their expenditure on sperm in direct proportion to the risk of sperm competition to prevent
loss of paternity to rival males. We tested this prediction using data collected from adult
males in a free-living population of P. maniculatus whose breeding season population
density fluctuated almost five-fold over a 23-year period (Fig. 1), and thus has potentially
experienced much variation in sperm competition risk.

METHODS

Study area and field methods

We used data obtained from a P. maniculatus population located in the vicinity of Lake
Sasajewun, Algonquin Provincial Park, Ontario, Canada (48�30�N, 78�40�W) that was
studied as part of a larger investigation of population dynamics in small mammals (Fryxell

et al., 1998). During May–September from 1965 to 1987, deer mice were collected during bi-
monthly trapping sessions that usually spanned three to four consecutive nights. Trapping
took place along trap-lines that consisted of 20–40 stations located at 10-m intervals in stands
of hardwood forest dominated by sugar maple, Acer saccharum. At each station, either one or
two snap-traps (Woodstream Museum Special or Victor Four-Ways traps) were deployed.
Traps were baited with a mixture of rolled oats and peanut butter, and set before sunset. The
following morning, traps were checked and dead mice were taken to the laboratory for
measurement. Male mice were weighed to the nearest 0.1 g, dissected, and the length and
width of the left testis measured to the nearest millimetre.

As snap-traps collected both mature and immature mice, it was necessary to differentiate
between them, as only the former are relevant for this study of sperm competition. Sexually
mature mice typically have testes more than 7 mm long (Jameson, 1953; Gram et al., 1982), so we
analysed data only from males that met this criterion. To ensure that we studied only males
in full breeding condition, we restricted our analyses to mice collected on days of the year
165 through 215, corresponding to the peak breeding period of May and early June in this
(J.B. Falls, personal communication) and other (Beer and MacLeod, 1966; Sadleir, 1974) deer mouse populations.
Additionally, we used data only from years where at least 10 sexually mature males had been
captured during the peak breeding period, to ensure that the calculated mean values would
be reasonably accurate. In total, 124 mice from nine different years were used in the analyses
(Fig. 1).

Estimates of ejaculate investment

Using the testis length (cm) and width (cm) of mature males, we employed Møller’s (1991)

corrected formula to calculate the combined mass (g) of both testes as [2 × 1.083 g−3 × 1.33π ×
(radius of testis width)2 × radius of testis length], and used this measure (hereafter called
‘testicular mass’) as an index of energetic investment in ejaculates. It is generally accepted
that sperm production capacity is correlated with the size of the testes, since the number of
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by males within years at different annual mean population densities. To do this, we
categorized years as having a ‘high’, ‘medium’ or ‘low’ mouse population density, such that
each category contained a roughly equal number of years (see Fig. 2), and then performed
an analysis of covariance on testicular mass, with somatic mass and population density
category as predictor variables. This analysis revealed a significant interaction between the
two predictors (Table 1). Thus, the relation between testicular mass and somatic mass varied
significantly between population density categories.

We then examined the relation between testicular mass and somatic mass for groups
of individual adult males that were collected in years with different population densities
(Fig. 3). Consistent with the results of analysis of covariance (Table 1), the regression
between testicular mass and somatic mass varied with population density category. In
addition, relative testicular mass, expressed as a percentage of total body mass, was signifi-
cantly larger at high density (3.96%) than at low density (1.95%; t-test, t72 = 6.4, P < 0.0001;
Table 2). Moreover, at high densities, there was a negative correlation between testicular
mass and soma mass (Fig. 3a), while at low densities there was a strong positive correlation
(Fig. 3c). Males collected at medium population densities exhibited an intermediate,
positive correlation between their testicular and somatic masses (Fig. 3b). The slopes
of the RMA regressions from all three population density categories were significantly
different from 0 (all | t-statistics | > 4.99, all P < 0.05, randomization tests). Furthermore,
the slopes of both the ‘high’ and ‘low’, but not the ‘medium’, population density regressions
were significantly different from isometry (i.e. slope = 1), but in opposite directions.

DISCUSSION

Does population density affect average male ejaculate investment?

In the P. maniculatus population that we studied, the average mass of a male’s testes during
the peak of the breeding season was positively correlated with the local population density
(Fig. 2). This is consistent with Parker’s (1990) prediction that males should invest more
resources in their ejaculates as the risk of sperm competition rises. Since sperm production
is often a direct function of the size of the testes (e.g. Hoditscheck and Best, 1983), building larger
sperm-producing organs should enhance a male’s ability to transfer large numbers of sperm
during copulation, and ultimately secure more paternity following post-copulatory com-
petition between ejaculates (Parker, 1998).

In a comparative study of testis size in northern populations of P. maniculatus, Ribble
and Millar (1992) found considerable variation in both body and testis length, some of which
was attributed to differences in the length of the breeding season from site to site. They

Table 1. Results of analysis of covariance comparing the testicular mass of mature P. maniculatus
males collected at high, medium and low population densities (F5,123 = 18.8, P < 0.001, R2 = 0.44)

Source of variation SS d.f. F P

Somatic mass (g) 0.01 1,123 0.78 0.38
Population density category 0.60 2,123 19.0 <0.001
Somatic mass × population density category 0.18 2,123 5.7 0.004
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As a result, males would face a greater risk of sperm competition in populations located in
warmer regions compared with those in colder regions (Ribble and Millar, 1992). The results of
our study are consistent with this hypothesis that intraspecific variation in testicular mass
is associated with differences in the likelihood of sperm competition. When population
density was high (increased risk of sperm competition), males had testes that were, on
average, twice as large as those of males trapped at relatively low density.

An alternative interpretation of the observed pattern of testes investment is that males
are responding to some factor other than risk of sperm competition, such as food
availability that covaries with population density. Thus, males might produce large testes
only if there is ample food available. Although we do not have data on annual food
availability, the non-significant negative relation between somatic mass and population
density suggests that, if anything, mice were slightly larger in low-density years. Addition-
ally, our interpretation has focused mainly on potential gains in sperm production
associated with larger testicular mass, while there may be other testicular products, such as
testosterone, whose production is also correlated with organ size (e.g. Schulte-Hostedde et al., 2003;

but see Joyce et al., 1993, for an exception). Although we cannot address these potential covariates with
the data available, the relationship between testis size, hormone levels and sperm production
at different population densities presents an interesting subject for future research.

How does ejaculate investment by different-sized males
respond to population density?

In this study, we make the assumption that male social dominance rank in P. maniculatus is
positively correlated with somatic mass. Dominance ranks in male deer mice are rapidly
established through antagonistic encounters, and remain stable over time (Dewsbury, 1981b). In
laboratory-reared deer mice, heavier males are typically dominant over lighter males in
intrasexual aggressive interactions, and dominant males are approached more frequently by
females, and complete more mounts, intromissions and ejaculations with females than do
subdominant males (Dewsbury, 1979). Ultimately, dominant males are able to ‘secure privileged,
though not exclusive, access to females’ (Dewsbury, 1981b, p. 890). Based on these observations, it
appears that somatic mass is a reasonable index of social dominance, and can be used to
study whether ejaculate investment strategies of males of different social rank vary with
population density.

The results of our analyses on the relation between ejaculate investment and sperm
competition risk (Fig. 3) are in accord with Parker’s (1990) ESS predictions for a ‘loaded
raffle’ fertilization system, wherein some males (in this case, large, dominant ones) are
favoured over others (i.e. small males) with respect to sperm competition. The negative
correlation between testicular mass and somatic mass among individuals at high population
density (Fig. 3a) indicates that smaller males invest relatively more in their ejaculates than
do larger (presumably higher-ranked) males. When population densities were low, testicular
mass scaled positively with somatic mass (Figs. 3b and 3c). The differences in the relation
between investment in ejaculates by males of different sizes collected in years with different
population densities presumably reflects how male reproductive tactics are influenced by
relative access to females. In the wild, subordinate males typically have little contact with
mature females at high population density (Mihok, 1979), and are predicted to invest more in
ejaculates (Parker, 1990) to maximize the impact of their limited mating opportunities. Con-
versely, at low population density when access to females is more evenly distributed across
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males, dominance rank becomes less important, and subordinate males are not predicted
to invest heavily in their ejaculates (Parker, 1990). When females are distantly spaced, the
only way in which a male may enhance his individual reproductive success is through long,
extra-territorial excursions to find other potential mates (Mihok, 1979; Wolff and Cicirello, 1990). It is
notable that under low-density conditions, there was a positive allometric relationship
between total testicular mass and somatic mass in our population (Fig. 3c), suggesting that
larger males invested relatively more heavily in their ejaculates so that they could capitalize
on these encounters with breeding females. Finally, if the sperm competition raffle had been
‘fair’ rather than ‘loaded’ (Parker, 1990), there should have been no difference in the relative
ejaculate investment made by males of all sizes at different population densities. The results
of our analyses do not support that hypothesis.

A previous interspecific analysis of the correlation between testis and soma sizes in
mammals (Stockley and Purvis, 1993) found that small males in continuous-breeding species (i.e.
those with high risk of sperm competition) had disproportionately larger testes than did
seasonally breeding species (with lower risk of sperm competition), where their testicular
and somatic masses were positively correlated. Our results are consistent with these findings,
as we observed that the relative investment in ejaculates by males of different sizes varied
with the local risk of sperm competition (Fig. 3).

Since the production of ejaculates is a non-trivial expense for P. maniculatus males
(Dewsbury, 1982), we would expect that the costs of increased investment in the testes would
be offset by the gains made in sperm competition contests. Dewsbury (1979, 1981b) observed
that large (dominant) males often achieved a greater number of ejaculations with females
than did small (subordinate) males. Despite this apparent difference in reproductive success,
dominant males did not father a greater proportion of their mate’s litters than did
the subordinate males in some experiments (Table 2 in Dewsbury, 1979). Our findings suggest
an explanation based in sperm competition theory: smaller males, with larger testes, are able
to offset their copulatory disadvantage through a greater numerical representation of
sperm in the female’s reproductive tract. Based on the regression for the high population
density category (Fig. 3a), a small male (17.0 g) would have had testes that were 2.4 times
larger than a male that is much heavier (21.0 g). If the daily sperm production rate per gram
of parenchyma for P. maniculatus is similar to that of Rattus norvegicus (see Møller, 1989),
the smaller male’s testes will produce 14.2 × 106 more sperm per day than those of the
larger male. Under high-density social conditions, this additional sperm production
capacity may allow small males to compete effectively with larger, dominant males for
paternity.

Our research highlights some important issues that should be considered when under-
taking future intra- and interspecific studies of sperm competition. It is common practice in
interspecific studies to use a mean value of testis mass for each species (e.g. Harcourt et al., 1981;

Kenagy and Trombulak, 1986). As we have shown, the ejaculate investment by P. maniculatus males
depends on both population density and body size and cannot be readily characterized by
the species’ mean value. If the calculation of mean testis mass is based on solitary studies,
or on those with limited sampling, this could obviously lead to inaccurate estimates, and
incorrect conclusions. Similarly, intraspecific studies may misconstrue the risk of sperm
competition within a population. It was only through the extended temporal scale of this
study that we were able to show that risk from sperm competition is not constant from year
to year. Care should be used when combining data obtained from individuals collected from
different populations and times.
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