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Cytokinin accumulation and an altered ethylene
response mediate the pleiotropic phenotype of the
pea nodulation mutant R50 (sym176)

Brett J. Ferguson, Ericka M. Wiebe, R.J. Neil Emery, and Frédérique C. Guinel

Abstract: R50 (sym16), a pleiotropic mutant of Pisum sativum L., is short, has thickened internodes and roots, and has
a reduced number of lateral roots and nodules. Its low nodule phenotype can be restored with the application of ethyl-
ene inhibitors; furthermore, it can be mimicked by applying cytokinins (CKs) to the roots of the parent line ‘Sparkle’.
Here, we report on the etiolation phenotypes of R50 and ‘Sparkle’, and on the interactive roles of ethylene and CKs in
these lines. R50 displayed an altered etiolation phenotype, as it was shorter and thicker, and had more developed leaves
than dark-grown ‘Sparkle’. Shoot morphological differences induced by exogenous ethylene or CKs were found to be
less severe for R50. Ethylene inhibitor application induced root and shoot elongation and encouraged apical hook open-
ing in both etiolated lines. Liquid chromatography — tandem mass spectrometry analysis indicated that CK concentra-
tions in R50 were higher than in ‘Sparkle’, particularly in mature shoots where the levels were maintained at elevated
concentrations. These differences indicate a reduction in the CK catabolism of R50. The accumulation of CKs can be
directly related to several traits of R50, with the reduced number of nodules and altered shoot ethylene response being
likely indirect effects.

Key words: cytokinin, de-etiolation, ethylene, etiolation, pea, nodulation mutant.

Résumé : Le R50 (sym 16), un mutant pléiotrope du Pisum sativum L., est court, posséde des entre-nceuds et des raci-
nes épaissies ainsi qu’un nombre réduit de racines latérales et de nodules. Son phénotype a faible nodulation peut &tre
restauré par |’application d’inhibiteurs de 1’éthyléne; on peut de plus le reproduire par 1’application de cytokinines
(CKs) aux racines de la lignée parentale ‘Sparkle’. Les auteurs font ici état des phénotypes d’étiolement du R50 et de
la lignée parentale ‘Sparkle’, sur les roles interactifs de 1’éthyléne et des CKs sur ces lignées. Le R50 montre une alté-
ration du phénotype d’étiolement, étant plus court, plus épais, et développant plus de feuilles que le ‘Sparkle’ cultivé a
I’ obscurité. On constate que les différences morphologiques de la tige, induites par 1’éthyléne exogéne ou les CKs, sont
moins séveres chez le R50. Une application d’inhibiteurs de 1’éthyléne induit 1’élongation des tiges et des racines et
encourage le déroulement de la courbe apicale chez les deux lignées étiolées. Les analyses de chromatographie en
phase liquide — spectrométrie de masse en tandem indiquent que les teneurs en CKs sont plus élevées chez le R50 que
chez le ‘Sparkle’, surtout chez les tiges matures ou les teneurs se maintiennent élevées. Ces différences indiquent une
réduction du catabolisme des CKs chez le R50. L’accumulation de CKs peut étre directement reliée a plusieurs caracte-
res du R50, la réduction du nombre de nodules et la réaction modifiée de la tige a 1’éthyléne étant vraisemblablement
des effets indirects.

Mots clés : cytokinine, désétiolement, éthyléne, étiolement, pois, mutant de la nodulation.

[Traduit par la Rédaction]

Introduction properly (Kneen and LaRue 1988). It has a short stature,
thick internodes and roots, fewer and shorter lateral roots,

Mutants have proven to be useful tools for determining  and a lower chlorophyll content in young leaves (Guinel and
the roles of various signalling components in plants. R50 Sloetjes 2000). While most of these characteristics suggest a
(syml16), a pleiotropic mutant of Pisum sativum L. ‘Sparkle’  role for ethylene in the R50 phenotype, others traits such as
(pea), was originally selected for its inability to nodulate wrinkled leaves (Kneen et al. 1994) and abnormal develop-
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ment of vascular tissue (Ferguson 2002) indicate a potential
role for cytokinins (CKs; e.g., Rupp et al. 1999; Werner et
al. 2003).

In R50, nodule development is blocked early; both infec-
tion threads and nodule primordia fail to progress properly
(Guinel and Sloetjes 2000). Interestingly, treating the parent
line ‘Sparkle’ with exogenous CKs induces a block in nod-
ule organogenesis comparable to that of R50 (Lorteau et al.
2001), suggesting a role for CKs in the R50 nodulation phe-
notype. If R50 has an overabundance of CKs, an overpro-
duction of ethylene would be expected (e.g., Lorteau et al.
2001). Indeed, R50 appears either to overproduce or to be
overly sensitive to ethylene as root treatment with ethylene
inhibitors restores nodule numbers to those of ‘Sparkle’
(Guinel and Sloetjes 2000). To date, the involvement of CK
in nodulation has been investigated mainly by the applica-
tion of exogenous compounds (e.g., Lorteau et al. 2001), and
more recently by the use of a transgenic model plant (Lofus
japonicus) that overproduces the degradative enzyme
cytokinin oxidase (CKX; Lohar et al. 2004). Thus, R50
could not only aid in the identification of the role of ethyl-
ene in nodulation, but it could also be an effective tool for
studying the role(s) of CKs in this symbiotic process.

In this paper, we demonstrate that R50 accumulates CKs
and uncouple the roles of CKs and ethylene in the R50 phe-
notype by growing the plants in the dark. R50 displayed a
reduced etiolation phenotype. Its shoots were less sensitive
to exogenous ethylene than those of ‘Sparkle’, whereas the
roots of both pea lines were similar in their ethylene re-
sponse. These findings may be explained by the endogenous
concentrations of CKs, which were elevated in R50 seedling
roots and shoots and maintained at high levels in the shoot
as the plant matures.

Materials and methods

Plant growth conditions

‘Sparkle” and R50 seeds were surface-sterilized in an 8%
(v/v) bleach solution (5.25% NaOCl) for 4 min followed by
three 3-min rinses in sterilized water; they were placed in
water and left overnight in darkness to imbibe. Unless stated
otherwise, they were then planted individually in
Conetainers™ (66 mL, 2.5 cm x 16 cm, Stuewe & Sons
Inc., Corvallis, Oregon) filled with sterile vermiculite (Holi-
day, Vil Vermiculite Inc., Toronto, Ontario). The
Conetainers™ were wrapped in aluminium foil to exclude
light from the roots and held in 1-L beakers (dark treatment)
or trays (light treatment) containing water. Plants were
grown either under continuous darkness (temperature regime
explained later) for the etiolation studies or under a 23 °C :
18 °C, 16 h : 8 h light:dark regime in a growth-room under
incandescent (OGE 600 h, 60-120 W, 120 V, General Elec-
tric) and cool white fluorescent lights (Watt-Miser GE,
F96TIZ-CW-HO-WM), yielding a photosynthetic photon
flux density of 280 umol-m=2-s7".

Etiolation characterization

To determine the effect of ethylene on R50, 10 mL of ei-
ther water (control) or the immediate ethylene precursor
ACC (l-amino-cyclopropane 1-carboxylic acid; Sigma-
Aldrich Canada Ltd, Oakville, Ontario; 1 mmol-L~! made up
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in water) were administered. Treatments were applied 3, 6,
and 9 d after planting (DAP) to the vermiculite surface of
plants held in either 16 h : 8 h light:dark or continuous dark-
ness. Treatments of the plants growing in the dark were
made under green light (40 W, 120 V, Decocolour Solid,
General Electric). Light-grown plants were subjected to a
temperature regime of 23 °C : 18 °C, whereas those in dark-
ness were grown at a temperature of 21 °C. After 5, 8, or 11
DAP, shoot and root lengths, number of lateral roots, and
epicotyl hook angle were measured. The hook angle was
measured as the angle between the vertical base of the
epicotyl and the apical portion. The shoots and roots were
then excised, dried at 60 °C for 3 d, and weighed. For each
parameter, at least 6 control- and 6 ACC-treated plants were
assessed in each of three repeated experiments.

The effects of CKs and ethylene inhibitors on etiolated
plants were determined by treating dark-grown seedlings at
3, 6, and 9 DAP with 10 mL of either water or water with a
drop of 100% ethanol (control), the synthetic CK benzyl
aminopurine (BAP, 10 umol-L™! initially dissolved in a drop
of 100% ethanol; Sigma-Aldrich), or the ethylene inhibitor
aminoethoxy vinyl glycine (AVG, 10 pmol-L™!'; Sigma-
Aldrich). The seedlings were harvested at 5, §, and 11 DAP,
respectively, and the same parameters as above were mea-
sured. Two separate experiments using 12 control and 12
treated plants were performed, but at different times of the
year, in a darkroom not equipped with a temperature control.
As a consequence, the plants grown in the winter were
shorter than the plants grown in the summer. Because of this
difference in height, data were standardized for comparative
purposes (see statistical analysis).

Exogenous ethylene treatment

Imbibed seeds were set on wet sterile Petri plates for 2 d
before being planted in vermiculite-filled Conetainers™
(560 mL). These were placed into a wood frame that was fit-
ted and sealed atop an opaque-plastic chamber (125 L) in
such a way that the roots of the seedlings could be treated
with ethylene, while their shoots remained in open air. Ex-
ogenous ethylene was applied continuously to ‘Sparkle’ and
R50 according to the methods of Lee and LaRue (1992) as
modified by Geil et al. (2001). Four chambers received a
continuous flow of either 0, 1.1, 2.5, or 5.7 uL/L ethylene.
The ethylene gas, adjusted by microvalves (Nupro, Wil-
loughby, Ohio) and mixed with air, was released into the wa-
ter that filled the bottom of the chamber. The flow-rate
through each line was adjusted to 2 L/min using a flow me-
ter (7631T-603; Matheson Gas Products, Whitby, Ontario).

Throughout the experiment, the concentration of ethylene
around the roots in each chamber was monitored. One-
millilitre air samples were collected from 14-cm-long,
0.635-cm internal diameter, septum-capped PVC tubes that
had been inserted into one Conetainer™ during the setup of
each chamber. The samples were injected manually into a
Perkin-Elmer 3920B gas chromatograph (GC; Perkin-Elmer,
Norwalk, Connecticut) equipped with a flame ionization de-
tector. The GC was fitted with a 1.83-m stainless steel col-
umn (0.3175-cm outer diameter) packed with Porapak N
(80/100 mesh; Chromatographic Specialists Inc., Brockville,
Ontario). The column temperature was held at 115 °C and
the carrier gas (He) flow rate was held at 23 mL/min; the
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Fig. 1. Eleven-day-old Pisum sativum ‘Sparkle’ and R50 (sym16)
treated with either water (~ACC) or 1 mmol-L~' ACC (+ACC)
under either a 16 h : 8 h light:dark regime (A; scale bar = 1.74
cm) or continuous darkness (B; scale bar = 2.20 cm).
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head pressure was 42 psi (1 psi = 6.895 kPa). Samples of air
from the growth room were also analysed to ensure that the
air surrounding the shoots was free of ethylene. The mor-
phological parameters mentioned above, and the diameter of
the third internode, were measured at 5, 8, and 11 DAP. At
least 10 plants were sampled in each of three different ex-
periments.

Cytokinin extraction and separation

CKs were extracted from plants harvested at 9 and 17
DAP, and separated under conditions established by Emery
et al. (1998) to prevent or minimize enzyme activity causing
CK nucleotide degradation and CK isomerization. Frozen
root or shoot (6-10 g fresh mass (FM)) samples were ho-
mogenized (Ultra-Turrax T8; IKA-Werke GmbH, Staufen,
Germany) over ice in cold (-20 °C) modified Bieleski ex-
traction buffer (15:4:1 CH;0H:H,0:HCOOH, by volume) at
5 mL-g”! FM. One hundred nanograms of each of the fol-
lowing deuterated CKs, [*HgliP, [*H(][9R]iP, trans-[*Hs]Z,
[’H;1DZ, trans-[’Hs][9R]Z, [*H;][9R]IDZ, [*H¢][9R-MP]iP,
and [2H6] [9R-MP]DZ (Apex Organics, Honiton, Devon,
UK), were added as internal standards for quantification of
endogenous CKs using the isotope dilution method. Samples
were allowed to extract passively overnight at —20 °C, and
solids were recovered by centrifugation (24 000g, 15 min,
4 °C) and re-extracted for 30 min in extraction buffer at —
20 °C. Pooled supernatants were dried in vacuo at 40 °C and
residues were reconstituted in 5 mL of 1.0 mol-L™" formic
acid. Extract pH was verified to be <2.8 to ensure CKs were
entirely cations. Extracts were purified according to Dobrev
and Kaminek (2002) on a mixed mode reverse-phase-cation-
exchange Oasis MCX-SPE column (Waters, Mississauga,
Ontario), preconditioned with 5 mL of CH;0H, followed by
5 mL of 1.0 mol-L~! HCOOH. Once the sample was loaded,
the column was washed with 5 mL of 1.0 mol-L~! HCOOH,
followed by 5 mL of CH;0H. CK nucleotides were first
eluted with 5 mL of 0.35 mol-L’ NH,OH; and then the CK
free bases and ribosides were eluted with 5 mL of 0.35
mol-L™' NH,OH in 60% (v/v) CH;OH. All samples were
dried in vacuo at 40 °C. Three independent samples from
three different harvests were analysed for every datum.

For quantification, nucleotides eluted from the MCX-SPE
column were degraded to nucleosides by incubation with 3.4
units of alkaline phosphatase (P 4252; Sigma-Aldrich) in 1
mL of 0.1 mol-L~! methanolamine-HCI (pH 10.4) for 12 h at
37 °C (Emery et al. 2000). Resultant nucleosides were dried
in vacuo and reconstituted in double-distilled water for fur-
ther purification on a reversed-phase C;g column (500 mg,
AccuBOND ODS; Fisher Scientific, Mississauga, Ontario)
preconditioned with 20 mL of double-distilled water, fol-
lowed by 10 mL of CH;OH. After loading the sample, the
column was washed with 20 mL of double-distilled water.
Nucleosides were eluted with 20 mL of 80:20 (v/v) methanol :
double-distilled water and dried in vacuo at 40 °C.

LC (+ES) MS/MS quantification of endogenous
cytokinins

CKs from tissue samples were separated and analyzed by
a Waters 2680 Alliance HPLC system (LC; Waters, Milford,
Massachusetts) linked to a Quattro-LC triple quadrupole mass
spectrometer (MS; Micromass, Altrincham, UK) equipped with

© 2005 NRC Canada
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Fig. 2. Epicotyl height of two Pisum sativum lines at different
ages (A, day 5; B, day 8; C, day 11) and under different growth
conditions (treated without (only water; —ACC) or with ACC (1
mmol-L™!; +ACC) at 3, 6, and 9 d after planting in either light
or dark conditions). Values are means + SE from all replicates (n =
18). Means with the same letters indicate significant treatment
effects within a pea line (a—d) or significant effects of pea line
within a treatment (e-h).

a Z-spray ionization source. Positive electrospray (+ES) in-
terface was used for all analyses (LC (+ES) MS/MS). A
sample volume of 20 UL was injected into a Genesis Cg re-
versed-phase column (4 pm, 150 mm X 2.1 mm; Jones Chro-
matography, Foster City, California). CKs were eluted with
an increasing gradient of acetonitrile (A) mixed with 0.1%
formic acid in 20 mmol-L! ammonium acetate (v/v; pH ad-
justed to 4.0) (B) at a flow rate of 0.2 mL/min. The initial
conditions were 8% A and 92% B, changing linearly after 5
min to 15% A and 85% B for 2 min, followed by 100% B for
2 min, and then linearly returning back to initial conditions
for 2 min. The effluent was introduced into the electrospray
source (source block temperature of 80 °C, desolvation tem-
perature of 250 °C), and CKs were quantified by multiple re-
action monitoring of the mother (parent) ion and the
appropriate daughter (product) ion as in Prinsen et al. (1995).

Statistical analysis

For all morphological experiments where statistics were
employed, controls refer to water-treated plants, grown ei-
ther in light and dark regime or continuously in the dark. For
the ACC and dark treatments, one-way analysis of variance
(ANOVA) was used to determine any significant difference
existing between pea lines and, within each pea line, be-
tween treatments. These tests followed a normality test, the
outcome of which determined, if necessary, the pairwise
multiple comparison procedure used after the ANOVA test.
If the normality test passed, the Tukey test was performed; if
it failed, the Dunn’s method test was used. For the BAP and
AVG treatments, two-way ANOVA was used to determine
significance between pea lines and, within each pea line, be-
tween treatments; these tests were also performed to deter-
mine any significant interaction between pea lines and
treatments. They were followed, if necessary, by pairwise
multiple comparison procedures (Tukey). Only differences
with P <0.05 were considered significant. Because the two
replicate experiments performed to study the effects of BAP
and AVG on etiolated seedlings were run at different times
of the year, the morphology of the plants was different (see
Results). The results, which followed the same trend
between experiments, varied enough to require that, for mean-
ingful comparison, each trait was expressed as a percentage of
the control. All statistics were performed using SigmaStat®
version 2.03 software (SPSS Inc., Chicago, Illinois).

Results

Etiolation characteristics

Control
‘Sparkle’ responded to continuous darkness as expected
(—ACC; Figs. 1-4). The epicotyl was spindly and tall, with

Can. J. Bot. Vol. 83, 2005

Day 5

50 | a,b,f

Epicotyl Height (mm)

Day 8
a,b,f

[e]

Epicotyl Height (mm)

a,b,f Day 11

m)

m
-
N
o

.

100 A

80 -

60 -

Epicotyl Height (

40 -

20

Light

Dark
-ACC

|:| Sparkle

Light Dark
+ ACC

] rso

the height difference between light- and dark-grown plants
increasing as the seedlings became older (Fig. 2). This con-
spicuous increase in size was not accompanied by a similar
increase in dry mass (DM); by day 11, the DM of the etio-
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Fig. 3. Apical hook angle of seedlings of two Pisum sativum
lines at different ages (A, day 5; B, day 8; C, day 11) and under
different growth conditions (treated without (only water; —ACC)
or with ACC (1 mmol-L™'; +ACC) at 3, 6, and 9 d after planting
in either light or dark conditions). Values are means + SE from
all replicates (n = 18). Means with the same letters indicate sig-
nificant treatment effects within a pea line (a—c) or significant ef-
fects of pea line within a treatment (d—g).

lated seedlings was in fact significantly smaller than those of
light-grown seedlings (39 = 4 and 50 + 6 mg, respectively).
In addition, light-grown seedlings exhibited fully opened
apical hooks at 8 DAP, whereas dark-grown seedlings had
relatively closed hooks even at 11 DAP (Fig. 3). By 11
DAP, the leaves of etiolated plants were chlorotic and
poorly developed whereas those of light-grown seedlings
were green and fully formed, but not yet mature (Fig. 1). No
differences were seen in the primary root length of light-
and dark-grown ‘Sparkle’ seedlings (Fig. 4). However, the
DM of the entire root system of etiolated plants was less
than that of light-grown plants (26 = 1 and 45 = 4 mg, re-
spectively, at 11 DAP); these differences increased as the
plants aged. Lateral root numbers did not account for these
DM variations as the number of roots increased in the dark
(40 £ 3 versus 27 = 3 in the light at 11 DAP).

For all parameters measured, except apical hook curva-
ture, the differences between light- and dark-grown RS50
(Fig. 1) were similar to those of ‘Sparkle’, but smaller in
scale (Figs. 2 and 4). Etiolated R50 was taller than light-
grown R50, but shorter and thicker than dark-grown ‘Spar-
kle’ (Figs. 1 and 2). In light-grown conditions, there was no
difference between the primary root lengths of R50 and
‘Sparkle’ (Figs. 1 and 4); however, the DM of the R50 root
system was smaller (38 + 2 and 45 + 4 mg for R50 and
‘Sparkle’, respectively, at 11 DAP). Dark conditions did not
alter these two parameters in R50 (Fig. 4), although the lat-
eral root number doubled (20 £ 1 to 44 + 3 at 11 DAP). In
contrast, the apical hooks of R50 seedlings grown in the
dark were much more open than those of ‘Sparkle’, whereas
in the light, they were much less open (Fig. 3). Furthermore,
although chlorotic, the leaves of dark-grown R50 were much
more developed than those of dark-grown ‘Sparkle’ (Fig. 1).

Ethylene precursor treatment

‘Sparkle’ and R50 seedlings responded differently to the
ACC treatment, which effectively resulted in the production
of endogenous ethylene. In the light, ACC-treated ‘Sparkle’
exhibited a shorter epicotyl (Fig. 2), a slightly more exagger-
ated apical hook (Fig. 3), and a smaller root system with a
shorter primary root than control (i.e., light-grown, non-
ACC-treated) seedlings (Figs. 1A and 4). The number of lat-
eral roots was not altered by the ACC treatment (about 30 by
11 DAP). In the dark, ACC-treated ‘Sparkle’ was also much
shorter than nontreated plants (Figs. 1B and 2), and this dif-
ference in epicotyl height increased as the seedlings grew
older (Fig. 2). The epicotyl DM of etiolated ACC-treated
‘Sparkle’ was also smaller than that of ACC-treated seed-
lings grown in the light (data not shown). The apical hook of
dark-grown, ACC-treated ‘Sparkle’ was as accentuated as
that of etiolated, nontreated ‘Sparkle’, but more exaggerated
than that of seedlings grown in the light, with or without
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Apical Hook Angle (degrees)

Apical Hook Angle (degrees)
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|:| Sparkle . R50

ACC (Fig. 3). The primary root of dark-grown, ACC-treated
‘Sparkle’ decreased in length (Fig. 4), but not in the number
of emerged secondary roots it bore (i.e., 32 + 3 by 11 DAP).
In addition, the difference observed in the root system DM
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Fig. 4. Primary root length of seedlings of two Pisum sativum
lines at different ages (A, day 5; B, day 8; C, day 11) and under
different growth conditions (treated without (only water; —ACC)
or with ACC (1 mmol-L™'; +ACC) at 3, 6, and 9 d after planting
in either light or dark conditions). Values are means + SE from
all replicates (n = 18). Means with the same letters indicate sig-
nificant treatment effects within a pea line (a and b) or signifi-
cant effects of pea line within a treatment (c).

between the control and the treatment increased with age
(data not shown).

Although R50 responded to the presence of ACC, its re-
sponse was not as strong as that of ‘Sparkle’ (Figs. 1-4). In
the light, there were no differences in epicotyl height be-
tween non-ACC-treated and ACC-treated seedlings (Figs. 1
and 2). In contrast, there was a decrease in primary root
length (Fig. 4) that was accompanied by an increase in lat-
eral root number (from 20 + 1 without ACC to 37 + 3 with
ACC at 11 DAP), resulting in similar root system DM. Fur-
thermore, as in ‘Sparkle’, ACC did not affect the opening of
the apical hook, which by 11 DAP had completely opened in
all plants (Fig. 3). In dark conditions, as in the light, R50
was not as strongly affected by ACC as ‘Sparkle’ (Figs. 2—
4). ACC-treated R50 epicotyls were reduced in height and
DM, but these reductions were less pronounced than those
for treated ‘Sparkle’ (Figs. 1B and 2). Furthermore, the cur-
vature of the apical hook of ACC-treated R50 was more ex-
aggerated than that of nontreated light-grown R50 (Fig. 3),
but less than that of either nontreated or treated etiolated
‘Sparkle’ at all ages examined (Fig. 3). As in the light, ACC
treatment decreased the length of R50 primary roots by half
(Fig. 4), but had no effect on the number of lateral roots or
root system DM (data not shown).

CK treatment

CKs are known to promote the synthesis of endogenous
ethylene in pea seedlings grown either in a light and dark re-
gime (Lorteau et al. 2001) or in etiolating conditions (Bertell
and Eliasson 1992). BAP treatment was thus expected to
give results similar to those obtained with ACC treatment.

By 11 DAP, the epicotyl of BAP-treated, dark-grown
‘Sparkle’ was much shorter than that of the control, but the
curvature of the apical hooks was similar (Table 1). BAP af-
fected neither the emergence nor the growth of lateral roots.
The entire root system had a larger mass than that of
nontreated etiolated ‘Sparkle’ (data not shown) even though
‘Sparkle’ primary roots were shortened (Table 1).

Dark-grown R50 responded differently to BAP than did
‘Sparkle’. At 11 DAP, the epicotyl of R50 was almost unre-
sponsive but its primary root was shorter (Table 1), although
the number of lateral roots and the root DM were not altered
(data not shown). Furthermore, the curve of the apical hook
of R50 was less exaggerated than even that of nontreated
‘Sparkle’ seedlings (Table 1).

Ethylene inhibitor treatment

Both lines responded to AVG in a similar manner (Ta-
ble 2); however, the effect of AVG was less evident in R50
than in ‘Sparkle’. Epicotyl height and primary root length
increased (Table 2), as did their DMs (data not shown). The
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number of lateral roots was unaltered, and the apical hook
curvature was less exaggerated than in nontreated seedlings
(Table 2).
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Table 1. Effect of 10 umol-L~' BAP treatments on two Pisum sativum lines (‘Sparkle’ and R50) grown under dark conditions.

‘Sparkle’ R50

Control mean® 0 BAP 10 wmol-L~' BAP 0 BAP 10 pmol-L~' BAP
Epicotyl height' 10.3420.83 cm 1.00+0.07 0.69+0.06* 0.68+0.05 0.60+0.05
Apical hook angle 131.5312.34 degrees 1.00+0.09 0.97+0.06 1.14x0.08 1.12+0.06
Primary root length 15.78+1.52 cm 1.0020.10 0.77£0.06* 1.23£0.07 0.72+0.05*

Note: Parameters were measured on 11-d-old seedlings that received treatments at 3, 6, and 9 DAP. Two-way ANOVA was performed and significant

treatment and line effects are denoted by * and , respectively.

“Means + SE of control dark-grown, nontreated ‘Sparkle’ from both summer and winter replicates (n = 17). All other values are expressed as a percent-

age (100% = 1) of this value.

Table 2. Effect of 10 umol-L~' AVG treatments on two Pisum sativum lines (‘Sparkle’ and R50) grown under dark conditions.

‘Sparkle’ R50
Control mean® 0 AVG 10 pmol- L' AVG 0 AVG 10 pmol- L' AVG
Epicotyl height? 8.02+1.03 cm 1.00+0.14 1.23+0.13 0.71+£0.07 0.85+0.11
Apical hook angle’ 113.06+9.27 degrees 1.00+0.07 1.27+0.06 1.19+0.07 1.45+0.09*
Primary root length 14.19+£1.45 cm 1.00£0.10 1.01£0.06 1.03+0.04 1.10+0.07

Note: Parameters were measured on 11-d-old seedlings that received treatments at 3, 6, and 9 DAP. Two-way ANOVA was performed and significant

treatment and line effects are denoted by * and ¥, respectively.

“Means + SE of control dark-grown, nontreated ‘Sparkle’ from both summer and winter replicates (n = 17). All other values are expressed as percent-

ages (100% = 1) of these values.

Exogenous ethylene treatment

Exogenous ethylene treatment did not improve the simi-
larity between the two lines. When the rhizosphere was con-
tinuously treated with a constant, relatively low amount of
ethylene (1.1 uL/L), ‘Sparkle’ seedlings were reduced in size
(Figs. 5A and 6A). By 11 DAP, the epicotyl was about 30%
shorter than that of nontreated plants (Fig. 5A), the diameter
of the third internode was almost 45% bigger (Fig. 5B), and
the curvature of the apical hook was more exaggerated
(Fig. 5C). Primary root length (Fig. 6A), lateral root number
(Fig. 6B), and lateral root elongation (Fig. 6C) were all re-
duced (35%, 55%, and 20%, respectively). The severity of
the effects on ‘Sparkle’ increased as the concentration of ap-
plied ethylene was increased to 5.7 uL/L (Figs. 5 and 6).

As was observed in R50 etiolated seedlings treated with
ACC and BAP, the epicotyl of R50 was much less respon-
sive than that of ‘Sparkle’, whereas its root system was as
responsive. However, the response of R50 to exogenous eth-
ylene was quantitatively different from that of ‘Sparkle’
(Figs. 5 and 6). Although there was a decrease in the
epicotyl height of treated versus nontreated R50 seedlings,
the differences induced by the lowest and the highest ethyl-
ene concentrations were less than those observed in ‘Spar-
kle’ (Fig. 5A). A similar observation was made for the
curvature of the apical hook of treated plants, which was
much less exaggerated than that of the treated ‘Sparkle’
seedlings (Fig. 5C). Furthermore, the third internode of R50
increased in diameter upon ethylene treatment (Fig. 5B);
however, the difference between treated and nontreated seed-
lings was much less pronounced for R50 than it was for
‘Sparkle’. The root system of R50 was responsive to ethyl-
ene; for instance, the length of R50 primary roots was simi-
lar to that of ‘Sparkle’ when treated with the higher
concentrations of ethylene (Fig. 6A). By 11 DAP, the length
of R50 primary roots was reduced by more than 60%, and
the number of lateral roots by 40%, but the length of the

longest lateral roots was not different from that of the con-
trol (Fig. 6C).

Cytokinin identification and quantification

The concentrations of various CKs present in ‘Sparkle’
and R50 plants at 9 and 17 DAP are shown in Tables 3 and
4, respectively. At 9 DAP (Table 3), the most abundant CK
group in shoots and roots of both lines was the nucleotides:
trans-[9R-MP]Z, cis-[9R-MP]Z, [9R-MP]DZ, and iP-NT.
The most abundant riboside was [9R]iP, with trans-[9R]Z,
cis-[9R]Z, and [9R]DZ present in smaller quantities. By 17
DAP (Table 4), the riboside-CK abundance was more similar
to that of the nucleotides. At both times, the free base forms,
such as cis- and trans-Z and DZ, were either in very low
abundance or not detected. Relatively low concentrations of
iP were seen, but this reflected its superior recovery rates
compared with those of the other free bases. This progres-
sion of lowered abundance from nucleotide to riboside and
then to free base is consistent with the pathways of CK
biosynthesis recently proposed by Sakakibara and Takei
(2002), whereby any of the nucleotides, which are early
pathway forms, can be converted to their ribose equivalents
in a parallel ribosyl-CK pathway. The free bases, following
the further conversion of the ribosides, are regarded as late
pathway members.

At 9 DAP, CK profiles between ‘Sparkle’ and R50 were
qualitatively quite similar (Table 3), and total CK concentra-
tions were comparable (Fig. 7), although some notable quan-
titative differences in specific forms of CK were apparent.
For example, the concentration of the nucleotide [9R-
MP]DZ in R50 roots was twice that in ‘Sparkle’ (Table 3).
This difference was further reflected in [9R]DZ, which was
abundant in R50 but detected only at trace concentrations in
‘Sparkle’ (Table 3). In the shoots, iP-NT and [9R]iP concen-
trations were both greater in R50 than in ‘Sparkle’ (Table 3),
but there were no major differences between the two lines in
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Fig. 5. Epicotyl height (A), third internode diameter (B), and
apical hook curvature (C) of Pisum sativum ‘Sparkle’ and R50
seedlings, the roots of which were continuously treated with ex-
ogenous ethylene. Measurements were made on 11-d-old seed-
lings; values are means = SE (n = 32). Statistical comparisons
between the two untreated pea lines (significant differences an-
notated a), the control and treatments of each line (significant
differences annotated b and c, for ‘Sparkle’ and R50, respec-
tively), treatments within a line (significant differences annotated
d and e, for ‘Sparkle’ and R50, respectively), and the two pea
lines treated with the same concentration of ethylene (significant
differences annotated f) are indicated.

unsaturated side-chain hydroxylated CKs (i.e., those pre-
sumed active).

By 17 DAP, the total CK concentration generally de-
creased in roots of both lines (Fig. 7), especially the CK-
nucleotides and [9R]iP (compare Table 3 to Table 4). How-
ever, the concentration of total CK nucleotides was markedly
higher in R50. This was specifically reflected in the concen-
trations of cis- and trans-[9R-MP]Z, and [9R-MP]DZ, which
were all greater in R50 than in ‘Sparkle’. Greater differences
between R50 and ‘Sparkle’ were observed in the shoots
where the total CK in R50 remained at a similar level from 9
to 17 DAP (compare Table 3 to Table 4), whereas that of
‘Sparkle’ was reduced by more than 50% (Fig. 7). Thus, by
17 DAP the total CK level of R50 shoots was approximately
three times that of ‘Sparkle’, and the total plant CK level
was more than double (Fig. 7).

Discussion

Although R50 was originally selected as a nodulation mu-
tant, its phenotype is quite complex, suggesting that the al-
tered gene product, SYMI16, affects many aspects of
vegetative development, including nodule organogenesis.
The overall higher concentrations of CKs that were detected
in the mutant, particularly in its mature shoot, make R50 ex-
tremely valuable because it is the first legume mutant to dis-
play this trait. We propose a direct link between high
endogenous CK concentration and the partial etiolation phe-
notype of R50, and an indirect link to its altered ethylene re-
sponse.

The etiolation phenotype and CK profile of R50

Because dark-grown seedlings of R50 have a variety of
characteristics normally associated with light-grown plants,
R50 exhibits an etiolation phenotype, albeit partial. Another
pea mutant, /ipl, has previously been characterized as dis-
playing a de-etiolation phenotype (Frances et al. 1992).
Light-grown lip] plants are shorter and darker green than the
wild type; although their fertility is reduced, they flower and
senesce at the same time as the wild type (Frances et al.
1992). R50 is different from /ip/ when grown in the light as
its epicotyls are pale and it has normal fertility despite its
delayed timing of flowering and senescence. Because the
lip] mutant has been shown to be deficient in a photo-
morphogenesis repressor (Frances and Thompson 1997), it is
probably more relevant to compare R50 to the etiolation mu-
tants of Arabidopsis that also accumulate CKs.

Can. J. Bot. Vol. 83, 2005
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The Arabidopsis de-etiolation mutant det/ has reduced
fertility, a saturated response to CKs and relatively normal
concentrations of CKs (Chory et al. 1994). Other
Arabidopsis de-etiolation mutants include ampl, which has
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Fig. 6. Primary root length (A), number of lateral roots (B), and
length of the longest lateral roots (C) of Pisum sativum ‘Sparkle’
and R50 seedlings, the roots of which were continuously treated
with exogenous ethylene. Measurements were made on 11-d-old
seedlings; values are means + SE (n = 32). Statistical compari-
sons are described in Fig. 5.

slightly elevated concentrations of CKs (Chaudhury et al.
1993; Nogué et al. 2000) and hocl, which displays short epi-
cotyls, a bushy architecture, and a higher number of rosettes
in the light (Catterou et al. 2002). hocl is a dark-green mu-
tant that accumulates two and seven times more total CKs in
its shoots and roots, respectively, than the wild-type
(Catterou et al. 2002). By comparison, the total concentra-
tions of CKs in the shoot and root of R50 were three- and
two-fold, respectively, those in ‘Sparkle’. An increased CK
concentration in R50 could influence the light-regulated sig-
nalling pathway, thus contributing to the partial etiolation
phenotype of the plant.

We observed greater concentrations of some key CK
forms in R50 (Tables 3 and 4, Fig. 7). Firstly, iP-NT concen-
trations were higher than those of ‘Sparkle’. This may be an
indication of a greater CK biosynthesis in R50 since iP-NT
encompasses the three possible precursor forms in CK
biosynthesis (Sakakibara and Takei 2002). In fact, our meth-
ods did not distinguish [9R-MP]iP from the two other pre-
cursors, [9R-DPJiP and [9R-TPJiP; because of the
requirements of LC-MS/MS, all nucleotides must be
dephosphorylated to ribosides before analysis. Thus in the
nucleotide fraction, [9R-MP]iP, [9R-DP]iP, and [9R-TP]iP
were all analyzed as iP-NT. Secondly, [9R]iP was also
slightly higher in R50. Thirdly, the CKs with saturated
isopentenyl side-chains, [9R]DZ and [9R-MP]DZ, were con-
sistently higher in R50 roots. Such a high level of potentially
active dihydro-CK forms would be difficult for the plant to
eliminate because these are not substrates of CKX, the en-
zyme known to degrade CKs (Jones and Schreiber 1997).
The result is also novel in that these dihydro-CKs have
rarely been detected in root tissues of any species (Emery
and Atkins 2002).

The CK profile of R50 shoots at 17 DAP was different
from that observed at 9 DAP: the concentrations of nucleo-
tides declined, whereas those of the ribosides remained more
or less constant (Tables 3 and 4). In contrast, all CK concen-
trations decreased in ‘Sparkle’ shoots. A decline in total CKs
was observed in all situations, except in R50 shoots. These
findings suggest a slower rate of CK metabolic degradation
and (or) elevated CK synthesis in R50. Nucleotide-CKs have
long been considered resistant to CKX (Laloue and Fox
1989); however, recently, Werner et al. (2003) observed a
significant reduction in [9R-MP]Z and iP-NT in four lines of
CKX-overproducing transgenic Arabidopsis. Because R50
(sym16) was created via gamma radiation (Kneen and LaRue
1988), it is highly probable that it is a loss-of-function mu-
tant, suggesting that the defect in R50 CK metabolism is
probably one occurring in its degradation.

The ethylene-response phenotype of R50
Recently, a role for ethylene in the nodulation phenotype
of R50 was established using ethylene inhibitors that re-
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stored nodulation to a level similar to that of ‘Sparkle’
(Guinel and Sloetjes 2000). An inhibitory role for ethylene
in the regulation of nodule organogenesis had previously
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Table 3. Concentration (in pmol-g”' FM) of individual CKs identified by LC (+ES) MS/MS from shoots and roots of Pisum sativum
‘Sparkle’ and R50 at 9 DAP.

‘Sparkle’ R50

CK Shoot Root Total plant Shoot Root Total plant
cis-Z nd nd nd nd nd nd

trans-7 nd nd nd nd nd nd

Dz nd nd nd nd nd nd

iP 0.26+0.10 0.67+0.23 0.98+0.13 0.19+0.11 0.27+0.06 0.45+0.12
Total free bases 0.26x0.10 0.67+0.23 0.98+0.13 0.19+0.11 0.27+0.06 0.45+0.12
cis-[9R]Z 0.44+0.07 2.27+0.85 2.77+0.84 0.53+0.34 1.03+0.26 1.57+0.43
trans-[9R]Z 0.66x0.15 2.17+0.02 2.92+0.13 0.66+0.55 2.32+0.53 2.98+0.97
[9R]DZ 0.44+0.28 0.18+0.15 1.11+0.12 1.23+0.77 2.03+0.76 4.21x1.16
[9R]iP 3.57+1.51 8.40+4.21 11.78+5.93 5.99+2.96 14.35+3.22 17.27+5.55
Total Ribosides 5.12+1.87 13.03+3.53 18.04+5.68 8.41+£3.90 15.82+4.39 22.43+9.03
cis-[9R-MP]Z 4.00+0.76 3.67+0.79 9.40+1.10 6.81+£2.18 3.53+0.83 10.35+2.96
trans-[9R-MP]Z 8.66+0.91 6.06x3.00 13.80+4.01 10.71+5.64 5.32+3.41 17.71+8.81
[9R-MP]DZ 10.11+4.59 5.97+2.00 20.68+4.75 6.97£2.51 12.13+£3.85 15.36+5.69
iP-NT 2.51+0.21 3.92+0.31 6.35+0.52 4.89+1.62 4.71+0.24 9.59+1.17
Total nucleotides 17.69+6.01 13.60+6.01 28.29+9.29 23.54+12.56 28.03+5.75 50.86+16.22

Note: The following CKs and CK derivatives were analyzed: [9R]iP, isopentenyl-adenosine; frans- and cis-[9R]Z, trans- and cis-zeatin riboside;
[9R]DZ, dihydrozeatin riboside; iP-NT, isopentenyl-nucleotide; trans- and cis-[9R-MP]Z; trans- and cis-zeatin nucleotide; [9R-MP]DZ, dihydrozeatin nu-

cleotide; and iP, isopentenyl adenine. nd, not determined. Values are means + SE (n = 3-4).

Table 4. Concentration (in pmol-g~' FM) of individual CKs identified by LC (+ES) MS/MS from shoots and roots of Pisum sativum
‘Sparkle’ and R50 at 17 DAP.

‘SparkleA’ R50

CK Shoot Root Total plant Shoot Root Total plant
cis-Z nd nd nd nd nd nd

trans-Z nd nd nd nd nd nd

Dz nd nd nd nd nd nd

iP 0.15+0.06 0.15+0.05 0.31+0.07 0.44+0.19 0.34+0.15 0.78+0.34
Total free bases 0.15+0.06 0.15+0.05 0.31+0.07 0.44+0.19 0.34+0.15 0.78+0.34
cis-[9R]Z 0.76+0.35 0.66+0.23 1.42+0.48 2.01x1.24 2.43+0.40 4.44+1.38
trans-[9R]Z 0.02+0.02 0.42+0.33 0.44+0.34 1.69+0.86 0.59+0.22 2.82+0.92
[OR]DZ 0.76+0.35 0.66+0.22 1.42+0.48 8.27+7.41 0.86+0.28 9.12+6.66
[OR]iP 1.79+0.81 0.54+0.16 2.33+0.88 3.29+1.46 0.99+0.36 4.28+1.71
Total ribosides 3.30£1.09 3.85£1.50 7.15+£2.21 15.25+10.49 4.87+0.87 20.13+11.22
cis-[9R-MP]Z 1.60+0.69 3.83+2.26 5.43+£2.94 2.47+0.68 11.75+7.30 14.21£7.91
trans-[9R-MP]Z 0.92+0.26 0.94+0.35 1.86+0.59 2.90+0.76 2.29+0.79 5.19+1.15
[9R-MP]DZ 0.55+0.15 0.25+0.08 0.61+0.27 2.37+0.33 0.84+0.30 3.36+0.44
iP-NT 3.12+1.32 0.89+0.37 4.02+1.33 6.56+3.45 1.82+0.64 8.37+£3.28
Total nucleotides 5.82+1.10 5.62+2.44 11.45+2.69 13.57+4.57 15.91+8.23 28.97+6.01

Note: The following CKs and CK derivatives were analyzed: [9R]iP, isopentenyl-adenosine; trans- and cis-[9R]Z, trans- and cis-zeatin riboside;
[9R]DZ, dihydrozeatin riboside; iP-NT, isopentenyl-nucleotide; trans- and cis-[9R-MP]Z; trans- and cis-zeatin nucleotide; [9R-MP]DZ, dihydrozeatin nu-

cleotide; and iP, isopentenyl adenine. nd, not determined. Values are means + SE (n = 3-4).

been shown in pea (e.g., Lee and LaRue 1992) and
Medicago truncatula (Penmetsa and Cook 1997). In fact, the
hypernodulation phenotype of the M. truncatula mutant
sickle is linked to ethylene insensitivity (Penmetsa and Cook
1997). Because R50 produces few if any nodules when inoc-
ulated with Rhizobium leguminosarum and its nodulation
phenotype is restored with ethylene inhibitors (Guinel and
Sloetjes 2000), it was thought that R50 overproduces ethyl-
ene or over-responds to endogenous concentrations of the
hormone. However, we have been unable to differentiate
‘Sparkle’ from R50 on the basis of their endogenous produc-

tion of ethylene (data not shown). Furthermore, we show
here that the roots of both ‘Sparkle’ and R50 were qualita-
tively comparable in their response to exogenous ethylene,
whereas the shoots of R50 seemed to be less sensitive to the
hormone. Thus, R50 seedlings appeared to have neither
overproduction of, nor oversensitivity to, ethylene. On the
contrary, the shoots of R50, unlike the roots, were particu-
larly insensitive to exogenous ethylene.

Many hormonal mutants with distinct organ phenotypes
have been characterized. For example, the hypernodulating
mutant of M. truncatula, sunn, exhibits root growth that is
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Fig. 7. Total CK concentration in the shoot, root, and entire
plant of Pisum sativum ‘Sparkle’ and R50 at 9 and 17 DAP.
Values are means + SE of three replicates.
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insensitive to ethylene whereas its triple response phenotype
appears normal, suggesting proper shoot sensitivity to the
hormone (Penmetsa et al. 2003). Interestingly, the
nodulation of sunn is sensitive to ethylene, suggesting that
roots and nodules also respond differently to ethylene. In
Arabidopsis, atypical ethylene phenotypes induced by muta-
tions have been localized in the shoot (Larsen and Chang
2001) and root (Luschnig et al. 1998). Furthermore, using
wol/crel mutants, it was established that the cytokinin re-
ceptor CREI is predominantly located in the root, resulting
in a specific root phenotype in the mutants (reviewed in
Deruére and Kieber 2002). This disparity in organ responses
to hormones has also been shown in transgenic CK-
overproducing plants; for example, the stem vasculature of
Arabidopsis (Rupp et al. 1999) or tobacco (Ainley et al.
1993) is increased and expanded, whereas the root
vasculature appears normal. Moreover, a transgenic
Arabidopsis line overexpressing the KNAT2 homeodomain
protein exhibits some features of a CK overproducer, but the
phenotype is restricted to the aerial parts of light-grown
plants (Hamant et al. 2002). Werner et al. (2001) proposed
that different organ responses to hormones could be due to
distinct patterns of gene expression in hormone-target cells.

The role of ethylene and cytokinin in the R50
phenotype

Individual roles of ethylene and CK are often difficult to
distinguish (Cary et al. 1995; Lorteau et al. 2001); therefore,
it is possible that the two hormones are coupled in inducing
some of the effects observed in R50. CKs are known to pro-
mote the production of ethylene in planta (e.g., Lorteau et al.
2001). In Arabidopsis, the ethylene-insensitive mutant efi5
overproduces both CK (Kudryakova et al. 2001) and ethyl-
ene (Harpham et al. 1991). In addition, when transgenic
Arabidopsis plants carrying the Agrobacterium tumefaciens
CK-biosynthesis gene ipt are crossed with ethylene-
insensitive mutants (including eti5), many of the phenotypic
effects previously observed in the transgenic parent are
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shown to be the result of elevated ethylene levels (van der
Graaff et al. 2001). For example, paleness of the leaves and
short stature are two characteristics of the transgenic plants
that are corrected upon crossing with the ethylene-
insensitive mutants.

R50 also has pale leaves and a short stature and, coupled
with the differences in the CK profiles, one would expect
that the mutant would also produce more ethylene. The ele-
vated CK concentrations could be responsible for the differ-
ences in ethylene response observed in roots and shoots of
R50. The variations in the CK profile are intriguing as they
are opposite to the elevated CK concentrations found in the
roots of the Arabidopsis mutant hocl (Catterou et al. 2002).

Conclusion

R50 appears to be the ideal tool to study the subtle roles
played by endogenous ethylene and CKs in one of the most
important agricultural symbiosis, i.e., nodulation. Among all
the legume mutants that we are aware of, R50 is unique as it
is a partial etiolation mutant that accumulates CKs in its
shoots. This last characteristic could explain the differential
response of shoots and roots towards ethylene.
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