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DESYNCHRONIZATION OF LARGE SCALE
DELAYED NEURAL NETWORKS

YUMING CHEN, YING SUE HUANG, AND JIANHONG WU

(Communicated by Hal L. Smith)

Abstract. We consider a ring of identical neurons with delayed nearest neigh-
borhood inhibitory interaction. Under general conditions, such a network has
a slowly oscillatory synchronous periodic solution which is completely charac-
terized by a scalar delay differential equation with negative feedback. Despite
the fact that the slowly oscillatory periodic solution of the scalar equation is
stable, we show that the associated synchronous solution is unstable if the size
of the network is large.

1. Introduction

We consider a ring of identical neurons with delayed nearest neighborhood in-
hibitory interaction. The dynamics of such a network is described by the following
system of delay differential equations

ẋi(t) = −µxi(t)−
1
2

[f(xi−1(t− r)) + f(xi+1(t− r))] ,(1)

where i (mod n) for a given positive integer n, µ and r are positive real constants
and the activation function f : R→ R is bounded and C1-smooth with f(0) = 0 and
f ′(x) > 0 for all x ∈ R. Such a system is a special case of the well-known Hopfield’s
model for a network of amplifiers (neurons) which, as an electronic device, was
designed as a hardware implementation of biological neural networks (Hopfield [6]).
The delay was first explicitly introduced by Marcus and Westervelt [9] to account
for the finite switching speed of amplifiers. It should be mentioned that the constant
r here is not the absolute size of the time lag required for the communication and
response among neurons. In fact, system (1) is obtained after some rescaling and
reparametrization, and the constant r represents the ratio of the absolute size of
the delay over the relaxation time of the system (see, for example, Belair, Campbell
and van den Driessche [1], Marcus and Westervelt [9] and Wu [11]). Hence, this
constant can be relatively large, and in such a case the dynamics of system (1)
can be significantly different from that of the corresponding ordinary differential
equation model.
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The focus of this paper is the desynchronization of system (1) with large n. For
system (1), we say that a solution x = (x1, · · · , xn)T : [−r,∞)→ Rn is synchronous
if x1(t) = · · · = xn(t) for all t ∈ [−r,∞), and asynchronous if otherwise. Similarly,
we can speak of synchronous or asynchronous states in the phase space Cn =
C([−r, 0];Rn).

A synchronous solution is completely characterized by the following scalar delay
differential equation with negative feedback

ż(t) = −µz(t)− f(z(t− r))(2)

which has been extensively investigated in the literature. In particular, it is shown
that for r in a certain range equation (2) has a slowly oscillatory periodic solution.
Here and in what follows, a slowly oscillatory periodic solution of equation (2) is a
periodic solution p : R→ R of (2) such that distances of consecutive zeros are larger
than r, and the minimal period ω is the distance of 3 consecutive zeros. Clearly,
ω > 2r. The stability of such a periodic solution of (2) was studied by Chow
and Walther [3] (coupled with the technique developed in Ivanov, Lani-Wayda and
Walther [7] since µ > 0) and by Xie [12, 14, 13], to name a few. Such a stability
implies the stability of the synchronized periodic solution ps = (p, · · · , p)T : R→ Rn
of the network (1) under small synchronous perturbation. This paper, however,
shows that the above periodic solution of (1) is always unstable (of course, under
asynchronous perturbation) if the network is large. This shows, in terms of the
aforementioned stability of the periodic solution p of (2), that the large scale and
the delayed inhibitation jointly lead to desynchronization in the considered network
of neurons.

2. Main results

Let p : R → R be a slowly oscillatory periodic solution of (2) of the minimal
period ω > 2r. Let ps be the corresponding synchronous periodic solution of system
(1). By linearizing system (1) around ps, we obtain the following linear periodic
delay differential system:

ẏi(t) = −µyi(t)−
1
2
f ′(p(t− r))[yi−1(t− r) + yi+1(t− r)] ,(3)

where i (mod n).
Let CnC = C([−r, 0];Cn) and let MC : CnC → CnC be the monodromy operator of

system (3), namely

MC(φ)(s) = yφ(ω + s) for s ∈ [−r, 0], φ ∈ CnC ,

where yφ is the solution y = (y1, · · · , yn)T : [−r,∞) → Cn of system (3) with
y(s) = φ(s) for s ∈ [−r, 0]. Because ω > 2r, MC is linear, continuous and compact,
and every point λ ∈ σ(MC) \ {0} is an eigenvalue of finite multiplicity and is
isolated in σ(MC). These eigenvalues are called Floquet multipliers of ps, which
determine the linear stability of the synchronous periodic solution ps. See, for
example, Diekmann, van Gils, Verduyn Lunel and Walther [4].

Our main result is as follows:

Theorem. Let p : R→ R be a slowly oscillatory periodic solution of (2) and let ps

be the corresponding synchronous periodic solution of system (1). Then for large n,
ps is linearly unstable. More precisely, ps has a real Floquet multiplier larger than
1.
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3. The proof and remarks

Let σ(MC) be the spectrum of the monodromy operator of system (3). Our
goal is to show that σ(MC) contains a real λ > 1 if n is large. For the sake of
simplicity, we let Mb : CC = C1

C → CC denote the linear compact operator given by
(Mbϕ)(θ) = uϕ(ω + θ) for θ ∈ [−r, 0], where b : R→ R is a continuous map with a
period ω > 2r, uϕ is the solution of

u̇(t) = −µu(t) + b(t)u(t− r)(4)

with uϕ |[−r,0]= ϕ ∈ CC. Note that λ ∈ σ(Mb) \ {0} if and only if (4) has a nonzero
solution u : R→ C such that u(t+ ω) = λu(t) for all t ∈ R (see, for example, Hale
and Verduyn Lunel [5], Diekmann, van Gils, Verduyn Lunel and Walther [4]).

Let

bk(t) = −f ′(p(t− r)) cos
2kπ
n
, k ∈ {0, 1, · · · , n− 1} .(5)

We have

Lemma 1.
n−1⋃
k=0

σ(Mbk) \ {0} ⊂ σ(MC) \ {0}.

Proof. Assume λ ∈ σ(Mbk) \ {0} for some k ∈ {0, 1, · · · , n− 1}. Then there exists
ψ ∈ CC \ {0} such that the solution of (4) with b = bk and u |[−r,0]= ψ satisfies
u(t+ ω) = λu(t) for t ≥ −r. Let y = (y1, · · · , yn)T : [−r,∞)→ Cn be given by

yj(t) = ei
2π
n kju(t), t ≥ −r, j = 1, · · · , n.

Then for t ≥ 0, we have

ẏj(t) = ei
2π
n kj [−µu(t) + bk(t)u(t− r)] = −µyj(t) + ei

2π
n kjbk(t)u(t− r) .

Note that

yj−1(t− r) + yj+1(t− r) = [ei
2π
n k(j−1) + ei

2π
n k(j+1)]u(t− r)

= 2 cos
2πk
n
ei

2π
n kju(t− r) .

Therefore for t ≥ 0, we have

ẏj(t) = −µyj(t)−
1
2
f ′(p(t− r))[yj−1(t− r) + yj+1(t− r)] .

As y |[−r,0]= (ei
2π
n k, ei

2π
n (2k), · · · , ei 2π

n (nk))Tψ ∈ CnC \ {0} and

yj(t+ ω) = ei
2π
n kju(t+ ω) = λei

2π
n kju(t) = λyj(t), t ≥ −r, j = 1, · · · , n,

we conclude that λ ∈ σ(MC). This completes the proof.

The next result concerns the leading eigenvalue of M−b0 , where −b0 =
f ′(p(t− r)). Recall that ω > 2r.

Lemma 2. There exists a real simple eigenvalue λ > 1 of M−b0 with an associated
eigenvector φ ∈ C+ := {φ ∈ C([−r, 0];R); φ(s) > 0 for s ∈ [−r, 0]}.

Proof. Due to the increasing property of f , it is easy to show that M−b0 |C : C =
C1 → C is a positive linear operator. Therefore, the existence of a real eigenvalue
λ > 0 of M−b0 associated with an eigenvector φ ∈ C+ is an immediate consequence
of the Krein-Rutman theorem (see, for example, Smith [10]). So it suffices to show
that λ > 1.
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We are going to use the following simple coupling technique (used in the work
of Chen, Krisztin and Wu [2]): (X,Y )T : R → C2 is a solution of the decoupled
system

Ẋ(t) = −µX(t) + b0(t)X(t− r)(6)

and

Ẏ (t) = −µY (t)− b0(t)Y (t− r)(7)

if and only if (U, V )T : R→ C2 given by

U(t) = X(t) + Y (t), V (t) = −X(t) + Y (t)(8)

is a solution of the coupled system{
U̇(t) = −µU(t)− b0(t)V (t− r) ,
V̇ (t) = −µV (t)− b0(t)U(t− r) .(9)

In particular, (ṗ,−ṗ)T : R→ R2 is an ω-periodic solution of (9).
Let F : C2 → C2 be the (real) monodromy operator of system (9). Namely,

F (ψ)(θ) = (Uψ(ω + θ), V ψ(ω + θ))T , θ ∈ [−r, 0], ψ ∈ C2 ,

where (Uψ, V ψ)T is the solution of (9) with (Uψ, V ψ)T |[−r,0]= ψ. Let

K2 = {ψ = (ψ1, ψ2)T ∈ C2; ψi(s) ≥ 0 for all i = 1, 2 and s ∈ [−r, 0]} .

It is easy to verify, due to ω > r and b0(t) < 0 for all t ∈ R, the following order
preserving property

F (K2) ⊂ K2, F 2(K2 \ {0}) ⊂ intK2.(10)

We have noticed that (φ, φ)T ∈ intK2 is an eigenvector of F associated with
some real λ > 0. We now follow the trick in Krisztin, Walther and Wu [8] to show
that λ > 1. If λ < 1, then (φ, φ)T + ε(ṗ0,−ṗ0)T ∈ K2 for small ε > 0 and thus

F j((φ, φ)T + ε(ṗ0,−ṗ0)T ) = λj(φ, φ)T + ε(ṗ0,−ṗ0)T → ε(ṗ0,−ṗ0)T ∈ C2 \K2

as j → ∞. Therefore, for large j, we have F j((φ, φ)T + ε(ṗ0,−ṗ0)T ) /∈ K2, a
contradiction to (10). We now exclude the case where λ = 1 by contradiction.
Assume that λ = 1. There must be τ > 0 such that (φ, φ)T + τ(ṗ0,−ṗ0)T ∈
C2 \ K2. Therefore, there exists s ∈ (0, τ) such that (φ, φ)T + β(ṗ0,−ṗ0)T ∈
intK2 for β ∈ (0, s) and (φ, φ)T + s(ṗ0,−ṗ0)T ∈ K2 \ intK2. We clearly have
(φ, φ)T + s(ṗ0,−ṗ0)T 6= 0 since (φ, φ)T ∈ intK2 and s(−ṗ0,−ṗ0)T /∈ K2. Hence,
F 2((φ, φ)T + s(ṗ0,−ṗ0)T ) = (φ, φ)T + s(ṗ0,−ṗ0)T ∈ K2 \ intK2, a contradiction to
(10). This shows λ > 1, completing the proof.

The following result shows the persistence of the monodromy operator under
small perturbation. For a general result regarding the persistence of the spectra
of Poincaré-type mappings associated with delay differential equations, see Ivanov,
Lani-Wayda and Walther [7].

Lemma 3. Assume that ck : R → R are continuous and ω-periodic and ck(t) →
b0(t) as k →∞, uniformly for t ∈ R. Then for large k, M−ck has a real eigenvalue
λk > 1 with an associated eigenvector φk ∈ C+.
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Proof. Let λ be given in Lemma 2 and define α = 1
ω lnλ. Then there exists a

positive ω-periodic C1-smooth map q : R→ R such that eαtq(t) is a corresponding
(characteristic) solution of (4) with b(t) = −b0(t) for all t ∈ R. Then

q̇(t) + (α+ µ)q(t) + b0(t)e−αrq(t− r) = 0, t ∈ R .(11)

LetH0
ω denote the Banach space of ω-periodic continuous real mappings equipped

with the super-norm |·|H0
ω

and letH1
ω={w ∈ H0

ω; w is C1-smooth and |ẇ|H0
ω
<∞}.

Then H1
ω, equipped with the norm |w|H1

ω
= |w|H0

ω
+ |ẇ|H0

ω
for w ∈ H1

ω is a Banach
space. Define T = (T1, T2) : H1

ω × R×H0
ω → H0

ω × R by

T1(w, ν, b) = ẇ(t) + (µ+ ν)w(t) + b(t)e−νrw(t − r)
and

T2(w, ν, b) =
1
ω

∫ ω

0

w(t)dt − 1
ω

∫ ω

0

q(t)dt ,

where (w, ν, b) ∈ H1
ω × R × H0

ω. Then T (q, α, b0) = 0. We will show that
D(w,ν)T |(q,α,b0) is bijective.

First of all, we note that

D(w,ν)T |(q,α,b0) (u,Γ) = (u̇(t) + (α+ µ)u(t) + b0(t)e−αru(t− r)

+ Γ(q(t)− b0(t)e−αrrq(t − r)), 1
ω

∫ ω

0

u(t)dt) .

We claim that KerD(w,ν)T |(q,α,b0)= (0, 0). To verify this claim, we suppose there
exists (u,Γ) such that

D(w,ν)T |(q,α,b0) (u,Γ) = (0, 0) .(12)

Then

u̇(t) + (α+ µ)u(t) + b0(t)e−αru(t− r) + Γ[q(t)− b0(t)e−αrrq(t− r)] = 0

and
1
ω

∫ ω

0

u(t)dt = 0 .

If Γ 6= 0, then u 6= 0 and eαtq(t) and eαt[tq(t) + Γ−1u(t)] are both solutions of
equation (4) with b = −b0, a contradiction to the simplicity of the eigenvalue
λ = eωα of M−b0 . If Γ = 0, then

u̇(t) + (µ+ α)u(t) + b0(t)e−αru(t− r) = 0 .

Since λ as an eigenvalue of M−b0 is simple, we have that u = cq for some constant
c. But 1

ω

∫ ω
0 u(t)dt = 0 and

∫ ω
0 q(t)dt > 0. Therefore, c = 0 which gives u = 0.

Next, we show that D(w,ν)T |(q,α,b0) is surjective. Since λ as an eigenvalue of
M−b0 is simple, the space {w ∈ H1

ω; T1(w,α, b0) = 0} is one-dimensional. So

dimKer(DwT1) = codim (RangeDwT1) = 1 .

If D(w,ν)T1 |(q,α,b0) is not surjective, then

Range(DwT1) + Range(DνT1) 6= H0
ω .

Therefore,

Range(DνT1) ⊂ Range(DwT1) .
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Thus, there exists a function u ∈ H1
ω such that u̇(t)+(µ+α)u(t)+b0(t)e−αru(t−r) =

−[q(t) − b0(t)e−αrrq(t − r)], which implies that equation (4) has a characteristic
solution of form eαt[tq(t) + u(t)], and thus the multiplicity of λ as an eigenvalue of
M−b0 is at least two, a contradiction.

Given any number m ∈ R and γ ∈ H0
ω, from the above discussion there exists

(u,Γ) ∈ H0
ω × R such that

D(w,ν)T1 |(q,α,b0) (u,Γ) = γ .

Since for any constant k, (u + kq,Γ) is also a solution of the above equation, we
can select k such that 1

ω

∫ ω
0

(u(t) + kq(t))dt = m. This shows the surjectivity of
D(w,ν)T |(q,α,b0).

Then we can use the implicit function theorem to solve equation

T (w, ν, b) = 0 .(13)

In particular, for any ε > 0, there exists an open neighborhood Ub0,ε in H0
ω of

b0 such that for every b ∈ Ub0,ε the operator equation (13) has a unique solution
(qb, αb) ∈ H1

ω × R. One can see that when ε is small enough, αb > 0 and qb(t) > 0
for all t ∈ R. This completes the proof.

We can now prove the main result:

Proof of the Main Theorem. For k = [n2 ],

lim
n→∞

cos
2πk
n

= −1 .

Therefore, b[n2 ](t) → −b0(t) as n → ∞, uniformly for t ∈ R. Thus the theorem
follows from Lemma 3.

Remark. The above argument applies to systems with arbitrary even n. So synchro-
nous periodic solutions of network (1) arising from the slowly oscillatory periodic
solutions of (2) are always unstable for the network (1) with either large n or ar-
bitrary even n. However, these synchronous periodic solutions can be stable under
possible perturbations if n is odd and small. Examples of this type will be given in
the case study of Wu, Faria and Huang [15].
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