Characterization of Freshwater Natural Dissolved Organic Matter (DOM): Mechanistic Explanations for Protective Effects Against Metaltoxicity and Direct Effects on Organisms

Hassan A. Al-Reasi
Chris M. Wood
D. Scott Smith

Follow this and additional works at: https://scholars.wlu.ca/chem_faculty
Part of the Chemistry Commons
Characterization of freshwater natural dissolved organic matter (DOM): Mechanistic explanations for protective effects against metal toxicity and direct effects on organisms

Hassan A. Al-Reasi, Chris M. Wood, D. Scott Smith

Abstract

Dissolved organic matter (DOM) exerts direct and indirect influences on aquatic organisms. In order to better understand how DOM causes these effects, potentiometric titration was carried out for a wide range of autochthonous and terrigenous freshwater DOM isolates. The isolates were previously characterized by absorbance and fluorescence spectroscopy. Proton binding constants \((pK_a) \) were grouped into three classes: acidic \((pK_a \leq 5) \), intermediate \((5 < pK_a \leq 8.5) \) and basic \((pK_a > 8.5) \). Generally, the proton site densities \((I_T) \) showed maximum peaks at the acidic and basic ends around \(pK_a \) values of 3.5 and 10, respectively. More variably positioned peaks occurred in the intermediate \(pK_a \) range. The acid–base titrations revealed the dominance of carboxylic and phenolic ligands with a trend for more autochthonous sources to have higher total \(I_T \). A summary parameter, referred to as the Proton Binding Index \((PBI) \), was introduced to summarize chemical reactivity of DOMs based on the data of \(pK_a \) and \(I_T \). Then, the already published spectroscopic data were explored and the specific absorbance coefficient at 340 nm \((i.e. SAC_{340}) \), an index of DOM aromaticity, was found to exhibit a strong correlation with PBI. Thus, the tendencies observed in the literature that darker organic matter is more protective against metal toxicity and more effective in altering physiological processes in aquatic organisms can now be rationalized on a basis of chemical reactivity to protons.

1. Introduction

In freshwater environments, many abiotic and biotic processes are affected by water chemistry including natural organic matter (NOM). Aquatic NOM is a ubiquitous, naturally-occurring, heterogeneous mixture of organic compounds formed from the degradation of lignin-rich plant materials and the decay of dead organic biomass (Thurman, 1985). Based on filtration, the NOM fraction passing through a 0.45-μm membrane is known as dissolved organic matter (DOM) of which ≥50% by mass is carbon (Thurman, 1985). The concentration of DOM is widely variable in freshwater and commonly reported in mg C L\(^{-1}\) as dissolved organic carbon (DOC) (Thurman, 1985). The major chemical components (~50–90%) of DOM are humic substances which are operationally divided into humic and fulvic acids (MacCarthy, 1989; Thurman, 1985). In addition, carbohydrates, proteins, and amino acids make up lower proportions of most DOM samples (Thurman, 1985). DOM of allochthonous or terrigenous origin is composed mainly of humic substances, while that of autochthonous source (synthesized by biological activity within the water column) is made of humic substances with higher percentages of proteinaceous materials (McKnight et al., 2001). The heterogeneous nature of aquatic DOM is also reflected in the presence of diverse functional ligands expressing a wide range of acidity constants \((pK_a) \) (Ritchie and Perdue, 2003; Smith and Kramer, 1999; Thurman, 1985).

As a global regulator in freshwater ecosystems, DOM has been investigated intensively for several indirect actions on organisms; these abiotic functions including attenuation of solar radiation, influences on carbon cycling and nutrient availability, and alteration of contaminant toxicity (Williamson et al., 1999). For example, protection against copper toxicity in the presence of aquatic DOM was correlated to the aromatic carbon content of DOM, estimated as specific absorbance at 254 or 340 nm (Al-Reasi et al., 2012; De Schamphelaere et al., 2004; Schwartz et al., 2004). In addition, humic fractions of 9 Norwegian DOMs showed strong correlation with the protective effect against copper toxicity (Ryan et al., 2004). Most recently, several absorbance and fluorescence characteristics were reviewed as quality indices of aquatic DOMs, and found to account for considerable variability in the protective effects against metal toxicity (Al-Reasi et al., 2011). Many direct interactions of DOM with aquatic organisms have also been demonstrated. For example, DOM molecules may accumulate on biological surfaces, influence membrane permeability, affect basic physiological functions, and induce toxic actions (Campbell et al., 1997; Galvez et al., 2009; Glover et al., 2005; Matsuo et al., 2006;
McKnight et al., 2001). It also offers detailed qualitative molecular information about the major fluorophores of DOMs (i.e. light emitting moieties). For instance, excitation–emission matrices (EEMs) comprise simultaneous collections of numerous emission wavelengths over a range of excitation wavelengths (DePalma et al., 2011; McKnight et al., 2001). The EEMs can be depicted as three dimensional contour plots and as a result, the fluorophores or fluorescent components can be visualized as a function of excitation–emission pairs of wavelengths. Recent advances in handling of the EEMs by parallel factor analysis (PARAFAC) have improved identification of the components, and estimation of their abundance and the contribution of each one to the total fluorescence (Ishii and Boyer, 2012; Sedin and Bro, 2008).

The long term objective of our research is to find simple-to-measure quality parameters to facilitate source-dependence corrections to DOC inputs for metal bioavailability and toxicity modeling, and to predict direct physiological effects on organisms. To this end, acid–base titrations have been utilized as an integrated measure of overall chemical reactivity for the DOM isolates. Then, the already published spectroscopic data for the same organic matters studied (Al-Reasi et al., 2012) have been discussed thoroughly and explored for the association with titration parameters.

2. Materials and methods

2.1. Collection, absorbance and fluorescence measurements of DOMs

The sampling was described in Al-Reasi et al. (2012). In brief, terrigenous and autochthonous DOM samples were collected by a portable reverse-osmosis unit from various natural freshwater bodies ranging widely in color and DOC concentrations (the clear water of Lake Ontario with ambient DOC of only 2 mg C L\(^{-1}\) to the brownish water of Luther Marsh of approximately 50 mg C L\(^{-1}\)). In addition, two commercially available humic substances, namely Aldrich humic acid (AHA, Sigma-Aldrich Chemical, St. Louis, MO, USA) and Nordic Reservoir NOM (NR, International Humic Substances Society, St. Paul, MN, USA) were included in chemical characterization. Most of the absorbance and fluorescence measurements of the different DOM sources have been detailed elsewhere (Al-Reasi et al., 2012). In the current study, normalized absorptions at the ultraviolet wavelength of 254 nm (SUVA\(_{254} = \text{Abs}_{254}/\text{DOC}\)) and at 436 nm (SCOA\(_{436} = \text{Abs}_{436}/\text{DOC}\)) were determined to estimate the presence of UV-absorbing and colored moieties of the samples, respectively (Abbt-Braun and Frimmel, 1999).

The fluorescence index (FI) was used as an indicator of DOM origin (McKnight et al., 2001) to evaluate its ability to distinguish sources of our samples. For fluorescence scans, EEMs of the DOMs were obtained after re-zeroing the fluorescence spectrophotometer (i.e. subtracting EEMs of the blank, ultrapure water) to minimize the influence of Raman scattering. The absorbance at 254 nm of the terrigenous isolates exceeded 0.3 absorbance units and therefore the EEMs of these samples were corrected using the absorbance in the range of 200–600 nm as suggested by Ohno (2002) as follows:

\[
I_0 = 1 \times 10^{(\text{Abs}_{254} + \text{Abs}_{436})/2}
\]

where \(I_0\) is the corrected fluorescence intensity (i.e. in absence of self-absorption), \(I\) is the detected fluorescence intensity and \(\text{Abs}_{254}\) and \(\text{Abs}_{436}\) are the absorbances at excitation and emission wavelengths, respectively. For each sample, the three-dimensional EEMs were processed to remove Rayleigh scattering, and then the processed EEMs were utilized to construct contour plots, a detailed fingerprint of the fluorescent components of each DOM source.

For PARAFAC analysis, the spectral EEMs were modeled using the PLS Toolbox from Eigenvector Research Inc. (Wenatchee, WA, USA) as implemented on the MathlabTM platform (The Mathworks Inc., Natick, MA, USA) as described elsewhere (Al-Reasi et al., 2012; DePalma et al., 2011). The PARAFAC modeling was carried out based on an a priori assumption of the presence of four fluorophores or components contained in the underlying fluorescence signal. Mathematically, the choice of the right number of the components to describe the fluorescence signal is difficult but it should be sufficient to describe the variation within the data set (Stedmon and Bro, 2008). In the present study, the selection of the four components was justified according to the fact that humic substances of aquatic DOMs are operationally defined into two fractions: fulvic and humic acids (Thurman, 1985), representing the two humic materials to be resolved by PARAFAC as humic-like and fulvic-like fluorophores. The heterogeneous DOM molecules can be separated into two chromatographic peaks; one with smaller molecular sizes and shorter fluorescence wavelengths (i.e. fulvic acids) and the other with bigger molecular sizes and longer fluorescence wavelengths (i.e. humic acids) (Wu et al., 2003, 2007).

The other two fluorophores were proteinaceous materials and labeled as tryptophan-like and tyrosine-like. The model decomposed and quantified the underlying fluorophores mathematically (93.9% of the variability was explained and residual analysis showed no systematic trends), resulting in scores that were relative estimates of the abundances for each DOM sample.

2.2. Potentiometric acid–base titrations

Acid–base titrations were performed on diluted solutions (30 mg C L\(^{-1}\) of BL, PE, NR, LM and AHA) and the concentrated DOM isolates of LO and DC (Table 1). Eight to 16 titration replicates were carried out for each DOM sample. Theionic strength of each DOM solution was adjusted to 0.01 M with addition of 5 M potassium nitrate (KNO\(_3\), Sigma Aldrich) and then the sample was transferred to the titration vessel. The sample was initially acidified with concentrated hydrochloric acid (HCl, Sigma Aldrich) to bring the pH down to ~2.0 and titrated at ~0.1 pH intervals by addition of 0.1 N sodium hydroxide (NaOH, made from standardized 1.005 N NaOH, Sigma Aldrich) to pH 12. At room temperature, all titrations were conducted in a CO\(_2\)-free atmosphere (i.e. under purge of ultrapure N\(_2\) gas) using an automated titrator (848 Titroplus Plus attached to 801 magnetic stirrer with support rod, Metrohm Canada) with a pH electrode (Orion 8101BNNWP ROSS Half-Cell Electrode, Thermo Scientific) and a double junction Ag/AgCl reference electrode (Orion 900200 Sure-Flow Reference Half Cell Electrode, Thermo Scientific). To estimate proton binding constants (\(K_p\)) and their site densities (\(I_n\), µmol mg\(^{-1}\)), the experimental titration data were fitted to a fully optimized continuous...
of Abs254/365 were recorded for the autochthonous DOMs (LO, BL) and SUVA254 has been frequently used to assess the abundance of UV-absorbing functional groups to the colored ones (Abbt-Braun and Frimmel, 1999). The correlation between different DOM quality measures was then performed by the Pearson product moment correlation coefficient using SigmaStat for Windows (Version 3.5, Systat Software, Inc., Point Richmond, CA, USA). Significant correlation was established when $p < 0.05$.

3. Results and discussion

3.1. Absorbance and fluorescence indices

Absorbance and fluorescence indices have been summarized in Al-Reasi et al. (2012). Data assessing the aromatic composition (SAC340) and the presence of the UV-absorbing molecules (SUVA254 and SAC340) indicated highly variable aromatic content of organic matter of the samples. Autochthonous DOMs (LO and BL) and PE (from a sewage treatment plant) had lower SAC340 values than those of terrigenous DOMs (NR and LM) and AHA. Usually, the terrigenous organic matter is composed of high amount of aromatic carbon and phenols whereas the former is optically darker than the latter. Both the SUVA254 and SAC340 indexed the molecular weight of a Suwannee River fulvic acid sample using chemical equations (SAC340 and SUVA254) or to the presence of colored moieties of aromatic and colored DOM molecules may not be directly look into molecular weights, determination of actual molecular weights has been challenging given their ill-defined molecular structures and existence of countless iso-
composition of the isolates (SAC340, \(r = -0.81 \), and SUVA254, \(r = -0.86 \)), it was positively associated with the octanol solubility index (Abs-octanol254/Abs-water254, \(r = 0.84 \)). Consequently and in contrast to terrigenous isolates, autochthonous DOMs would have higher amounts of dissolved organic molecules characterized by smaller sizes and higher octanol solubility.

The excitation–emission spectral contour plots for the 4 fluorophores (humic-like, fulvic-like, tryptophan-like and tyrosine-like) and their concentrations (normalized to DOC) resolved by PARAFAC were earlier presented in Al-Reasi et al. (2012). Other studies have reported similar fluorophores with characteristic fluorescence wavelengths for DOMs in different natural waters (Baker, 2001; DePalma et al., 2011; Fellman et al., 2008; Ishii and Boyer, 2012; Stedmon and Bro, 2008). The abundance of humic-like and fulvic-like components varied widely among the different DOM isolates, likely reflecting variable sources of organic matter. The humic-like component was the dominant fluorescent component in LM, NR and AHA accounting for >80% of their underlying fluorescence signal. In LO, BL and PE, between 16 and 50% of the fluorescence was accounted for as humic-like fluorophore (Al-Reasi et al., 2012). On the contrary, the abundance of the fulvic-like component was more prominent than humic-like for the autochthonous isolates (LO and PE) and DC (Al-Reasi et al., 2012). It is reasonable that more autochthonous sources include a greater proportion of lower molecular weight macromolecules. The contribution of tryptophan- and tyrosine-like fluorophores to the total fluorescence was much lower than that of the humic- and fulvic-like ones. In terrigenous isolates (LM and NR) and AHA, the fluorescence of proteinaceous materials was either negligible (tryptophan-like accounted for <5% of the total fluorescence) or completely absent (tyrosine-like fluorophore) (Al-Reasi et al., 2012). On the other hand, up to 20% of total fluorescence of DC, LO and BL were composed of tryptophan-like fluorophores, and there were variable contents of tyrosine-like fluorophores in autochthonous isolates (LO and PE), DC and PE (Al-Reasi et al., 2012).

Highly significant relationships were revealed for fluorescent components, in particular for the humic-like constituents. For example, the humic-like component appeared to govern the aromaticity of DOMs as this component was strongly and positively \(r > 0.90 \) associated with SAC340, SUVA254 and SCOA436. Opposite significant correlations were found between the fulvic-like fluorophore and SAC340 (\(r = -0.78 \)), SUVA254 (\(r = -0.82 \)) and SCOA436 (\(r = -0.80 \)). Similarly, negative relationships were recorded for the humic-like component with octanol solubility index (\(r = -0.84 \)), Abs254/365 (\(r = -0.89 \)) and FI (\(r = -0.86 \)), implying that the molecules making up this fluorophore tend to be a less lipophilic nature with higher molecular sizes. Models suggest that DOM can exist as macromolecules either as random-coil shapes or aggregation of small molecules (Leenheer, 2007). In both cases, formation of macromolecules would mean keeping the lipophilic parts away from contact with water and consequently lower octanol solubility indices would be expected. No significant correlations were observed for the fulvic-like fluorophore with octanol solubility index, Abs254/365 and FI. For protein-like materials, the tryptophan-like component did not show any significant association with the other spectroscopic quality measures. On the other hand, the tyrosine-like component was positively related to octanol solubility (\(r = 0.90 \)) and FI (\(r = 0.89 \)) and negatively correlated to humic-like fluorophore (\(r = -0.81 \)). This is an indication of the tendency of the autochthonous DOMs to have a relatively higher proportion of protein-like substances.

3.2. Proton binding site densities and \(pK_a \)

The acid–base properties (acidity constants (\(pK_a \)) and their densities (\(L_r, \mu\text{mol mg}^{-1} \)) of the aquatic DOM samples are summarized in Fig. 1 as \(pK_a \) spectra, where site concentrations were assigned to each \(pK_a \) value in the range 2.6 to 11.2. The FOCUS method was based on the \(pK_a \) prior assumption that the \(pK_a \) spectra will vary smoothly. Table 2 summarizes proton binding capacities in the range \(pK_a < 5 \) (acidic), \(5 < pK_a < 8.5 \) (intermediate) and \(pK_a > 8.5 \) (basic). In general, the proton affinity spectra showed peaks at the acidic end with \(pK_a \) maximum values around 3.5 and similar sized peaks at the basic end centered around a \(pK_a \) of 10. More variably positioned peaks occurred in the intermediate \(pK_a \) range. The most acidic peaks were generally interpreted as carboxylic sites, and the highest \(pK_a \) peaks as hydroxyl and more specifically phenolic sites (Smith and Kramer, 1999). The oxygen-containing functional groups, in particular the carboxylates and phenols, are the most abundant in DOM solutions (Chen et al., 2006; Duda and Gerard, 2004; Lopez et al., 2001). In fact, they are the most important in the determination of organic matter affinities for proton binding and metal complexation (Duda and Gerard, 2004). In addition, metal binding occurs within the diffuse layer by means of electrostatic interactions due to effect of ionic strength of the solutions on charging behavior of DOM molecules (Duda and Gerard, 2004; Lopez et al., 2001). In the present study, the effect was ruled out since titrations of all isolates were conducted at constant ionic strength (0.01 M KNO3). However, it should be noted that the titrations were carried out at DOC concentrations between 20 and 30 mg L\(^{-1}\). Lopez et al. (2001) performed titrations of fulvic acids at a concentration range of 25–90 mg L\(^{-1}\) and demonstrated that distribution of acid sites at each concentration may not be affected by the concentration of the electrolyte. Concerning optical properties of the same isolates (Al-Reasi et al., 2012). On the other hand, up to 20% of total fluorescence of DC, LO and BL were composed of tryptophan-like fluorophores, and there were variable contents of tyrosine-like fluorophores in autochthonous isolates (LO and PE), DC and PE (Al-Reasi et al., 2012).

Fig. 1. \(pK_a \) spectra for each organic matter sample. The specific sample is indicated to the right of each plot. The y-axis labels for each solid line correspond to the maximum binding capacity of the \(pK_a \) spectrum below the line. Solid lines correspond to the mean spectrum (\(n \) in the range 5 to 15) and the dashed lines correspond to standard errors. The samples are stacked from highest SAC340 for the top spectra to the lowest SAC140 value at the bottom.

<table>
<thead>
<tr>
<th>Code</th>
<th>Binding capacities ((L_r, \mu\text{mol mg}^{-1}))</th>
<th>Acidic</th>
<th>Intermediate</th>
<th>Basic</th>
<th>PBI</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>2.56 ± 0.99</td>
<td>0.36 ± 0.13</td>
<td>2.86 ± 0.96</td>
<td>0.13 ± 0.05</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>LO</td>
<td>1.32 ± 0.32</td>
<td>0.50 ± 0.09</td>
<td>3.75 ± 0.66</td>
<td>0.20 ± 0.04</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td>4.26 ± 0.68</td>
<td>0.89 ± 0.24</td>
<td>1.79 ± 0.55</td>
<td>0.30 ± 0.08</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>2.67 ± 0.86</td>
<td>0.38 ± 0.09</td>
<td>4.08 ± 0.60</td>
<td>0.11 ± 0.03</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td>1.58 ± 0.27</td>
<td>0.31 ± 0.04</td>
<td>0.79 ± 0.20</td>
<td>0.26 ± 0.03</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>LM</td>
<td>1.74 ± 0.53</td>
<td>0.70 ± 0.08</td>
<td>1.45 ± 0.29</td>
<td>0.44 ± 0.05</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>AHA</td>
<td>1.89 ± 0.23</td>
<td>0.49 ± 0.05</td>
<td>1.17 ± 0.31</td>
<td>0.32 ± 0.04</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
et al., 2012), basic proton binding capacities (and pK_a > 8.5) demonstrated significant correlations with octanol solubility index (r = 0.82), FI (r = 0.88) and humic-like fluorophore (r = 0.77). The sum of binding capacities was significantly related to fulvic-like fluorophore (r = 0.79). All other relationships turned out to be insignificant.

Inspection of Fig. 1 illustrated that the darker organic matters tend towards less total capacity; the maximum SAC_40 values tend towards smaller values as the SAC_340 values increase. To better visualize the relationship between color and proton reactivity, a contour plot is presented in Fig. 2 with the scans presented in the same order as in Fig. 1. There seemed to be little trend in the acidic pK_a values, but overall the intensity decreased as the DOM became darker in color. The most basic peaks were more variable in location but with the same overall trend of decreasing intensity as the samples became darker in color. Based on SAC_40–350, overall darker organic matter has been observed to be more protective metal toxicity (e.g. Al-Reasi et al., 2012; De Schamphelaere et al., 2004; Ryan et al., 2004; Schwartz et al., 2004). Protons react at the same types of functional groups as metals; thus, at first appearance the decreased capacity with darker color appeared counterintuitive. However, carboxylic and phenolic sites are not strong metal binding centers in and of themselves, and capacity alone is not sufficient to predict potential impacts on metal bioavailability. For example, high capacity weak sites would not tend to be very protective if binding sites on the organism have higher affinity (log K). However, what determines the competition between complexation in solution and binding to the organism’s surface is not the affinity constant alone (log K), but rather the product (LT × K) (see preface in SETAC, 2009).

3.3. Relationship between spectroscopic properties and acidic functional group analysis

Several different approaches were tested to link chemical reactivity, as defined by proton pK_a and L_T to optical properties. Individual acid, base and intermediate binding sites did not link to spectroscopy in any clear way, statistically or conceptually. Thus, a mathematical combination of proton binding sites is required to link reactivity and spectroscopy. The logic of the new proposed proton binding metric is as follows. In metal speciation modeling, tridentate sites represent very strong metal binding sites; monodentate sites tend to be weaker and exhibit binding at high loadings of metal (i.e., for Fe(III) in Xiao et al., 2013) whereas a tridentate site would be significant at low levels of total metal. The concept of strong tridentate binding is typified by the representation of the strongest binding sites as tridentate sites in the geochemical complexation model, Windermere Humic Aqueous Model (WHAM) (Tipping, 1998). There are three main proton binding classes of ligands identified here and a model tridentate ligand would have three pK_a values (for example, consider citric acid, phosphoric acid or diethylamintetramine). If these three sites are in 1:1:1 proportions, DOM could be represented as a single tripotric ligand. Similarly, DOM can form additional bonds with metal resulting in more stable tetradentate, pentadentate and hexadentate complexes (Chen et al., 2006) but if such strong sites exist they will occur at very low concentrations and in terms of metal binding would be saturated at levels of total metal where toxicity is observed in natural systems.

Here a Proton Binding Index (PBI) is used to measure the difference between actual measurements and the model tridentate ligand hypothesis. To estimate the potential of the organic matters in this study to show strong tridentate binding, a PBI was calculated as:

\[
PBI = \frac{\text{int}}{(\text{acid} + \text{base})/2}
\]

where, PBI is a function of the measured acid, base and intermediate (int) proton binding capacities. The idea of this calculation was that the numerator represents the average capacity for bidentate complex formation (i.e. salicylic acid-like with a phenolic group ortho to a carboxylic group). The average value was selected because both acid and base sites have error associated with them and there is no way to know which would be stoichiometrically limiting. The third proton binding site that could be involved in a tridentate complex was represented by the sum of intermediate proton binding capacity. A value of PBI = 1 would correspond to a stoichiometric amount of intermediate proton binding sites to match the hypothetical bidentate site. In general PBI should be less than one and high values would represent stronger potential for binding. Results of PBI calculations are presented in Table 2 and plotted versus SAC_340 in Fig. 3(a).

Overall, darker organic matter had a higher PBI value and is expected to be more protective against metal toxicity. The seven samples used in this study were plotted versus SAC_340 (Fig. 3a), as well as DOM samples from the NOM-Typing project as titrated in Smith and Kramer (1999). The NOM-Typing samples were not used in determination of the regression line in Fig. 3 and without calibration these samples fall within the 95% confidence interval of the new data presented here. For comparison, the PBI value calculated from the data of Smith and Kramer (1999) for titration of Suwannee River Fulvic Acid has also been included. Thus, except for the “unnatural” AHA, all the samples considered follow the general trend of darker organic matter having higher PBI. This interpretation is consistent with the observation that darker organic matter is more protective (Al-Reasi et al., 2012; De Schamphelaere et al., 2004; Ryan et al., 2004; Schwartz et al., 2004). From a detailed consideration of acid–base titration data, it seems that darker organic matter has a greater potential to form strong binding with metals as demonstrated by the PBI calculation. The PBI calculation involves a large assumption; that three ionizable sites are involved in tridentate metal complexation. Nevertheless, it does produce excellent correlations with color and thus tendencies for metal reactivity.

To assess PBI as a potential toxicity indicator variable, Fig. 3(b) demonstrates a strong linear relationship (r^2 = 0.779, p = 0.008) between PBI and Cu LC_50 for Daphnia magna in the same DOM samples. The LC_50 values are taken from Al-Reasi et al. (2012). Interestingly, the Aldrich humic acid sample now falls on the trend line; thus, PBI may in fact be a better “quality indicator” than SAC_340. In Al-Reasi et al. (2012), AHA did not correlate with the linear SAC_340 toxicity prediction relationship followed by the other samples. This is a reasonable possibility given that PBI is directly determined for each DOM by reactivity whereas SAC_340 is not directly related to...
reactivity. Aldrich humic acid is known to have high ash content, according to Chiou et al. (1987), the ash content of Aldrich humic acid may reach up to 31%. Any reactivity of this ash content will be reflected in the PBI but not for SAC$_{340}$ which is related to aromatic groups in the DOM.

Addressing the quality issue of DOM is of environmental significance not just for the direct and indirect effects on aquatic organisms but also for other processes in natural waters. For example, simple optical properties of DOM can help to improve predictions of nitrate removal (Barnes et al., 2012) and can be employed to allocate the seasonal and spatial variations in the formation of the harmful disinfection byproducts associated with the chlorination of raw water (Herzspun et al., 2012). In future, it will be of interest to evaluate the PBI approach in this regard.

The quality indices, explored above, provide easy-to-measure parameters obtained using simple absorbance, fluorescence, and titration measurements to probe molecular and structural chemistry of distinct aquatic DOM sources. These indices, as quality measures, will help researchers to evaluate the abiotic and biotic roles of DOM in the natural freshwaters. Concerning the protective effect against metal toxicity in particular, the spectroscopic parameters can be related to chemistry of metal binding through the PBI parameter. Our overall conclusion is that darker organic matter is more protective against metal toxicity, and more effective at interacting with physiological processes, because darker organic matter has a greater proton binding ratio as determined by PBI. The specific structural reasons for this correlation will require further investigation.

Acknowledgments

This work was supported by Discovery grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to CMW and DSS. CMW is supported by the Canada Research Chair Program. The authors wish to thank Prof. Peter Campbell and the two anonymous reviewers for their useful comments and suggestions on the original manuscript. Special appreciation goes to the Government of Oman for providing a doctoral scholarship for HAA.

References

Fig. 3. (a) Proton Binding Index (PBI) versus SAC$_{340}$ and (b) LC50 versus PBI. The error bars correspond to 95% confidence intervals about the measured data. Suwannee River Fulvic Acid (SRFA) and Aldrich Humic acid (AHA) are indicated by text adjacent to corresponding data points. + symbols correspond to DOM samples from the NOM-Typing project e.g. Abb–Braun and Frimmel, 1999; Gjesing et al., 1999). LC50 values are taken from Al-Reasi et al., 2012. Dashed lines indicate 95% confidence interval about the solid regression lines.

