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Abstract

Basic games, where each individual chooses between two strategies, illustrate several issues that immediately emerge from
the standard approach that applies strategic reasoning, based on rational decisions, to predict population behavior where
no rationality is assumed. These include how mutual cooperation (which corresponds to the best outcome from the
population perspective) can evolve when the only individually rational choice is to defect, illustrated by the Prisoner’s
Dilemma (PD) game, and how individuals can randomize between two strategies when neither is individually rational,
illustrated by the Battle of the Sexes (BS) game that models male-female conflict over parental investment in offspring. We
examine these questions from an evolutionary perspective where the evolutionary dynamics includes an impulsive effect
that models sudden changes in collective population behavior. For the PD game, we show analytically that cooperation can
either coexist with defection or completely take over the population, depending on the strength of the impulse. By
extending these results for the PD game, we also show that males and females each evolve to a single strategy in the BS
game when the impulsive effect is strong and that weak impulses stabilize the randomized strategies of this game.

Citation: Zhang B-Y, Cressman R, Tao Y (2010) Cooperation and Stability through Periodic Impulses. PLoS ONE 5(3): e9882. doi:10.1371/journal.pone.0009882

Editor: Wayne M. Getz, University of California, Berkeley, United States of America

Received August 31, 2009; Accepted March 4, 2010; Published March 29, 2010

Copyright: � 2010 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by The National Basic Research Program (973) (No. 2007CB109107) of the People’s Republic of China and by an Individual
Discovery Grant from the Natural Sciences and Engineering Research Council of Canada. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rcressman@wlu.ca (RC); yitao@ioz.ac.cn (YT)

Introduction

A great deal of game-theoretic research has been devoted to

explain the prevalence of cooperation in biological systems as well

as in human society. One reason for the vast literature from

members of the game theory community on this topic is that their

methods do not work for the underlying stage game, the symmetric

Prisoner’s Dilemma, which pits cooperative behavior against its

nemesis of defection. In particular, the only rational option in this

PD stage game is to Defect since this strategy strictly dominates

Cooperate (i.e. a player is better off defecting than cooperating no

matter what the opponent does).

On the other hand, cooperation can be rational when the

payoffs of the PD game are modified by assuming some relatedness

between the players [1,2], by them playing the game an uncertain

number of times [3], or by extending the model to a multi-player

(i.e. more than two) public goods game [4]. These predictions are

often based on applying either static (e.g. evolutionarily stable

strategy (ESS)) or dynamic (e.g. the replicator equation) methods

from evolutionary game theory [5] that assumes a large population

of agents paired at random to play the game. Population

interactions that are structured either spatially (e.g. through

nearest neighbors on a lattice) or socially (e.g. through adjacent

nodes in a graph) also enhance the evolution of cooperation [6–11]

as do the stochastic effects of finite populations [12].

To a lesser extent, the question of stability of mixed strategy

equilibrium solutions (and their interpretation) has also created

controversy in the game theory community [13,14]. This is

especially true of two-player non symmetric games due to the

result that, at any evolutionarily stable state of such games, players

must use pure strategies [15]. The controversy here is clearly

demonstrated through typical payoffs used in the Battle of the

Sexes game [5,16,17] introduced into biology by Dawkins [18] to

model the conflict between males and females concerning their

respective contributions to parental investment (see also the Buyer-

Seller game [19] that has the same qualitative payoff structure). In

the BS stage game, each player has two pure strategies and the

only equilibrium solution is for both players to use a mixture of

their strategies. Furthermore, the replicator equation applied to

this game yields periodic solutions around this mixed strategy

equilibrium pair even though Maynard Smith [17] (Chapter 11C)

states that ‘‘I am unable to offer illustrative examples, or evidence

that such cycles occur.’’

In this article, we re-examine the PD and BS stage games from

the dynamic perspective where, in addition to the continuous

trajectories of evolutionary game theory, there are periodic jumps

in the population size. In biological systems, these latter impulsive

perturbations may be due to sudden changes in the physical

environment (e.g. the effects of climate change or natural disaster)

or to intrinsic diurnal/nocturnal and seasonal life history effects in

the physiological and reproductive mechanisms of individuals in

the population. Impulsive perturbations have also been used to

model the effect on human behavior of sudden market corrections

or of sudden shifts in the business cycle [20]. We assume that the

impulsive ‘‘coefficient’’ for an individual depends only on its

strategy and analyze the resultant dynamics. In particular, we give

analytic conditions for the coefficients in the PD game for the

successful initial invasion of Cooperators into a population of

Defectors as well as conditions based on stronger impulsive effects

for Cooperators to completely take over the system. We also show
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that these latter conditions applied to the BS game imply global

convergence to a monomorphic system where all males use one

pure strategy as well as all females. Moreover, when impulsive

effects are weak in the BS game, a globally attracting polymorphic

state emerges near the mixed equilibrium pair.

Analysis

Prisoner’s Dilemma
The PD stage game is ubiquitous in the game theory literature

and so needs no introduction. We follow the standard notation by

taking its payoff matrix as

D C

D

C

P T

S R

� � ð1Þ

where TwRwPwS. The entries in this matrix give the payoff to

the row player in a two-player interaction with the column player

(e.g. if a player Defects against an opponent who Cooperates, his

payoff is T ). Since TwR and PwS, Defect strictly dominates

Cooperate and so it is the only rational outcome of this one shot

game.

To illustrate how periodic impulses can be combined with an

evolutionary dynamics, suppose that the replicator equation (see

Eq.4a below) models behavioral evolution. From a biological

perspective, these dynamics result from a direct correspondence

between expected payoff and reproductive success [21]. Specifi-

cally, if n1 and n2 are the numbers of Defectors and Cooperators

respectively in the population at time t, then

dn1

dt
~

n1

N
Pn1zTn2ð Þ,

dn2

dt
~

n2

N
Sn1zRn2ð Þ,

ð2Þ

where N~n1zn2 is the total population size. Here

Pn1=NzTn2=N is the expected payoff to a Defector in a single

interaction with a randomly chosen opponent assuming that

population size is large. From Taylor and Jonker [21], the

population dynamics (Eq.2) implies the frequency p(t) of

Defectors in the population (i.e. p~n1=N) evolves according to

the replicator equation (Eq.4a).

Now suppose that individuals die at periodic intervals t~kt for

k~1,2,3:::. That is, reproductive success (i.e. fitness) in Eq.2
refers only to births. Deaths cause a jump in the solution

trajectories of Eq.2 of the form Dni ktð Þ~ni ktzð Þ{ni kt{ð Þ
where n1 ktzð Þ (respectively, n1 kt{ð Þ) is the number of Defectors

immediately after (respectively before) the jump. If the death rate

of each strategy type is independent of population size, then

Dni ktð Þ~{cini kt{ð Þ ð3Þ

for some 0ƒciƒ1. The parameter {ci is called the ‘‘impulsive

coefficient’’ for the i-th strategy. The dynamical system with

periodic impulsive effects combines Eq.2 when t=kt with Eq.3
when t~kt. In particular, for every nonnegative initial condition

n1(0),n2(0)ð Þ, this impulsive dynamical system has a unique

nonnegative solution for all t§0.

Evolutionary game theory is more concerned with the evolution

of strategy frequencies than with how the absolute numbers of

strategy users evolve over time. It is shown in File S1 (see also [22])

that

dp

dt
~p(1{p) (P{S)pz(T{R)(1{p)ð Þ for t=kt ð4aÞ

Dp~p(1{p)
c2{c1

1{pc1{(1{p)c2

for t~kt, k~1,2,3::: ð4bÞ

where Dp ktð Þ~p ktzð Þ{p kt{ð Þ denotes the jump in p at

moment t~kt. That is, p ktzð Þ (respectively, p kt{ð Þ) is the

frequency of Defector immediately after (respectively before) the

jump. For the analysis of this dynamical system, it is important to

notice that the frequency dynamics Eq.4 is independent of

population size N. When there are no impulsive effects, we have

the standard replicator equation Eq.4a [21]. For this reason, we

call Eq.4 the replicator equation with periodic impulses.

Remark. The replicator equation with periodic impulses

developed above is based on continuous births throughout the

season and deaths only at the end. One consequence of our

assumptions is that birth and death rates are independent of

population size. It can be shown [22] that dynamics Eq.4 also

emerges when birth rates are altered by any strategy-independent

background fitness (which is usually assumed to decrease as

population size increases). This background fitness can be used to

investigate the dynamics of total population size and not only the

frequency dynamics as in the standard approach to evolutionary

game theory [21]. The dynamics Eq.4 also models other periodic

impulses in biological systems such as regular perturbations in the

physical environment. It is well-documented [23–25] that humans

(and other biological species) exhibit more cooperation in the face

of natural disasters (also called the disaster syndrome). Such

shifting of aggregate population behavior through individuals

changing their strategy becomes a positive jump in the proportion

of Cooperators. In fact, any impulsive coefficients in Eq.3
satisfying ciƒ1 are suitable since ni(t)§0 for all t in this case.

The interpretation of civ0 is that the impulse is then beneficial to

the i-th strategy.

From Eq.4a, p strictly increases during the season (i.e.

dp=dtw0) if 0vpv1 since PwS and TwR. Thus, if the

Defector death rate is no higher than the Cooperator (i.e. c1ƒc2),

the population must evolve to all Defect since p also increases at

the end of each season. However, if the death rates benefit

Cooperators (i.e. if c1wc2), the effect of Defector deaths may offset

their higher birth rates and so it is unclear which effect dominates

(see Figure 1). In the extreme case where c1~1, all Defectors die

at the end of the first season and the population is all Cooperate

thereafter.

For these reasons, we will assume that 1wc1wc2 for the

remainder of this section. The key to understanding the outcome

in this scenario is to determine the stability of the boundary

equilibria p~0 and p~1 of Eq.4. Heuristically, when p is near 0,

the trajectory p(t) during the first season is approximated by

p(t)~p(0)e(T{R)t since, from Eq.4a, dp=dt&(T{R)p. Also,

from Eq.4b, the jump at the end of this season is

Dp&p t{ð Þ c2{c1ð Þ= 1{c2ð Þ. For (asymptotic) stability of all

Cooperate (i.e. for p(t) to converge to 0 if it is initially close to

0), we expect that p tzð Þ~p(0)e T{Rð Þt 1z c2{c1ð Þ= 1{c2ð Þð Þ
vp(0). This is true if and only if

(T{R)tv ln
1{c2

1{c1

: ð5Þ

Cooperation through Impulses
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Notice that ln 1{c2ð Þ= 1{c1ð Þð Þw0 when 1wc1wc2 and so there

are payoff matrices with TwR for which all Cooperate is stable.

It is proved analytically in File S1 (see also [22]) that p~0 is

stable if inequality Eq.5 is true and unstable (i.e. p tð Þ diverges

from 0 if it is initially close) if this inequality is reversed (i.e.

T{Rð Þtw ln 1{c2ð Þ= 1{c1ð Þð Þ). It is also shown there that all

Defect is stable if

(P{S)tw ln
1{c2

1{c1

ð6Þ

and unstable if the inequality is reversed. In fact, the dynamic

stability of the boundary equilibria for threshold parameters when

Eq.5 or Eq.6 is an equality is also characterized there. Besides

one exceptional case discussed in the final paragraph of this section

when both Eq.5 and Eq.6 are equalities, there is a unique interior

t-periodic trajectory (i.e. a p�(t) with 0vp�(t)v1 for all t§0 and

p� ktzð Þ~p�(0) for all k~1,2,3,:::) if and only if either both

boundary equilibria are unstable or both are stable. In the first

(respectively, second) case, p�(t) is globally stable (respectively,

unstable). Finally, if exactly one boundary equilibrium is stable,

then it is globally stable in that it attracts all interior trajectories.

These analytic results from File S1, that are summarized in the

preceding paragraph, are illustrated in Figures 1 and 2 for non

threshold cases. In Figure 1, trajectories of Eq.4 are given for fixed

payoff parameters and four different values of

C:
1

t
ln 1{c2ð Þ= 1{c1ð Þð Þ: ð7Þ

In Figure 2, Cw0 is fixed and the stability of boundary equilibria

and interior t-periodic trajectories is characterized in different

regions of the space with parameters T{R and P{S.

For small values of C, the population evolves to all Defect

(Figs. 1a and 1b). An initial small population of Cooperators can

successfully invade a population of Defectors once P{Sð ÞvC.

Cooperators then completely take over the population if inequality

T{Rð ÞvC also holds (Fig. 1d and quadrant III in Fig. 2);

otherwise the system approaches a globally stable t-periodic state

consisting of a mixture of Cooperators and Defectors (Fig. 1c and

quadrant IV in Fig. 2). If P{Sð ÞwC as in quadrants I and II of

Figure 2, either all Defect completely takes over or we have a

bistable situation where all Cooperate can persist if their initial

frequency is sufficiently high.

It is instructive to consider the case of small impulsive effects (i.e.

when the impulsive coefficients c1wc2 are both close to 0). By

Taylor’s expansion, ln 1{c2ð Þ= 1{c1ð Þð Þ is approximately equal

to c1{c2. Then Eq.7 becomes

C% c1{c2ð Þ=t,

which represents the average impulsive effect over one season in

Figure 1. Trajectories for the replicator equation with periodic impulses (4) when payoffs T, R, P, S of the PD game are fixed
at 10, 5, 3, 0 respectively and the initial frequency of Defect is p(0)~0:5. Here t~0:1 and the values taken for C are (a) 0; (b) 2; (c) 4; and (d)
6.
doi:10.1371/journal.pone.0009882.g001

Cooperation through Impulses
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favor of Cooperate. By inequalities Eq.5 and Eq.6, if the positive

payoff advantage during the season to Defect over Cooperate is

always less than this average impulsive effect (i.e. if T{R and

P{S are both less than C), Cooperators invade and take over the

population. This intuitive result can be generalized to all situations

where impulsive effects are nearly equal (i.e. c1 is close to c2 but

they are not necessarily close to 0) (see also File S1). The central

message here is that a small difference in the death rates of

Cooperators and Defectors can have a major impact on the

evolution of cooperation.

In fact, if we call C defined in Eq.7 the average impulsive effect

over one season in favor of Cooperate for any choice of c1wc2, the

intuitive result of the previous paragraph remains true.

In the exceptional case where T{R~C~P{S, the boundary

equilibria are neutrally stable and every trajectory p(t) for any

initial condition 0vp(0)v1 is t-periodic. Interestingly, the special

payoffs for the PD game that satisfy T{R~P{S have attained

prominence recently since this class includes the simplified PD

games [1,26] with payoff matrix

D C

D

C

0 b

{c b{c

� � ð8Þ

Here b is the payoff benefit a player interacting with a Cooperator

gains and c is the cost paid by Cooperators. Under the usual

assumption that bwcw0, the entries in this simplified payoff

matrix have the same ordering as in Eq.1. From Eq.5 and Eq.6,

if cvC (respectively, cwC), then all Cooperate (respectively, all

Defect) is the final outcome. Unlike other studies on the simplified

PD game [26] where the emergence of Cooperative behavior often

depends on the cost-benefit ratio b=c, here it depends only on the

cost of Cooperation. The size of the payoff benefit has no impact

on our results since neither the replicator equation Eq.4a nor the

impulse Eq.4b depends on b. In our model, it is the impulsive

benefit C that replaces the payoff benefit b. In particular,

Cooperation emerges if and only if the impulsive benefit to

Cooperators is greater than the cost paid by Cooperators. That is,

periodic impulses that favor cooperation provide a mechanism

that promotes the evolution of cooperation.

Battle of the Sexes
In the BS stage game, male strategies are either ‘‘faithful’’ or

‘‘philandering’’ and females are ‘‘coy’’ or ‘‘fast’’ [18]. In the

following two paragraphs, we briefly summarize well-known facts

about this game [5,16,17].

If parental investment costs C, the benefit gained from an

offspring is G and the cost of a long engagement is E, then the

payoffs to males and females are given in the following bimatrix

(e.g. a philanderer receives the benefit G against a fast female

whose net payoff is then G{C).

coy fast

philander

faithful

0, 0 G, G{C

G{
C

2
{E, G{

C

2
{E G{

C

2
, G{

C

2

0
@

1
A ð9Þ

With the usual assumptions that these payoffs satisfy

0vEvGvCv2 G{Eð Þ, the characteristic feature of the BS

game is the cyclical character of male and female best responses. If

females are coy, it pays males to be faithful; if males are faithful, it

pays females to be fast; if females are fast, it pays males to philander;

and if males philander, it pays females to be coy. This characteristic

also leads to cycling in the standard evolutionary dynamics that is

concerned with the evolution of strategy frequencies.

Let p be the frequency of philanders in the male population and

q be the frequency of coy females in their population. The

bimatrix replicator equation is then

dp

dt
~p 1{pð Þ C=2{q G{Eð Þð Þ ð10aÞ

dq

dt
~q 1{qð Þ {p G{E{Cð Þ{Eð Þ: ð10bÞ

This two-dimensional dynamics on the unit square has the unique

interior equilibrium p�,q�ð Þ~ E= C{GzEð Þ, C=2 G{Eð Þð Þ and

all trajectories are periodic orbits surrounding p�,q�ð Þ [5,16,17].

Figure 3a-b illustrates a typical trajectory of Eq.10 for the payoffs.

coy fast

philander

faithful

0, 0 15, {5

2, 2 5,5

� �

considered by Dawkins [18] that has p�,q�ð Þ~(3=8,5=6).

We again assume that trajectories of the replicator equation are

based on male and female births throughout the season and that

there are jumps at t~kt for k~1,2,3,::: due to deaths at the end

of the season. If the male (respectively, female) death rate is ci

(respectively, yi) for their i-th strategy, these latter periodic

impulses are

Dp~p 1{pð ÞU pð Þ ð11aÞ

Dq~q 1{qð ÞV qð Þ ð11bÞ

Figure 2. Regions of payoff parameter space determined by a
fixed positive value of C in Eq.7. In region I, T{R§C and
P{S§C, and all Defect is globally stable; in region II, T{RvC and
P{SwC, both all Cooperate and all Defect are (locally) stable, and
there exists an unstable t-periodic solution; in region III, T{RƒC and
P{SƒC, and all Cooperate is globally stable; and in region IV,
T{RwC and P{SvC, both all Cooperate and all Defect are unstable,
and there exists a globally stable t-periodic solution corresponding to a
mixture of Cooperators and Defectors.
doi:10.1371/journal.pone.0009882.g002

Cooperation through Impulses
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Figure 3. Trajectories for the bimatrix replicator equation with periodic impulses for the BS game in the p-q phase plane, where p(t)
and q(t) are represented by blue and red curves, respectively. The parameters are taken as E~3,G~15,C~20,c2~y2~0 and t~0:1, i.e.,
the payoff matrix is

coy fast

philander

faithful

0, 0 15, {5

2, 2 5,5

� �

and the neutral interior equilibrium is p�,q�ð Þ~(3=8,5=6). The minimum period Tmin is about 4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G{Eð Þ C{GzEð Þ

EC C{Gð Þ 2 G{Eð Þ{Cð Þ

s
&3:55. In Figure 3a–b,

c1~y1~0 (no impulses) and the time step is from 1 to 15. All the interior trajectories are periodic orbits surrounding p�,q�ð Þ. In Figure 3c, c1~0:1 and

y1~{0:5 (strong impulses) and the time step is from 1 to 3. Since G{
C

2
{Ew{Cm and Ev{Cf , from Table 1, boundary equilibrium 0,1ð Þ is

stable and all the interior trajectories converge to 0,1ð Þ. In Figure 3d, c1~y1~0:005 (weak impulses) and the time steps are respectively 1 to 10,
1z105 to 10z105 and 1z106 to 10z106 . All the interior trajectories converge to an attracting set within 0.015 of the interior equilibrium p�,q�ð Þ. In
Figure 3e–f, c1~y1~0:3 (intermediate impulses) and the time step is from 1 to 15. Clearly, interior trajectories do not always evolve to either a
boundary equilibrium or to a set close to p�,q�ð Þ.
doi:10.1371/journal.pone.0009882.g003

Cooperation through Impulses
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at t~kt where U pð Þ: c2{c1ð Þ= 1{c1p{c2 1{pð Þð Þ and

V qð Þ: y2{y1ð Þ= 1{y1q{y2 1{qð Þð Þ. The bimatrix replicator

equation with periodic impulses combines Eq.10 at t=kt with

Eq.11 at t~kt.

The analysis of this impulsive dynamical system is more difficult

than the replicator equation with periodic impulses for the PD

game. We will assume that civ1 and yiv1 for i~1,2. Each edge

of the unit square is then invariant (as is the interior of the square).

For example, on the edge where q~0, we have

dp

dt
~

p 1{pð ÞC
2

Dp~p 1{pð ÞU pð Þ:

This impulsive dynamics is the same as that for the PD game with

simplified payoffs Eq.8 given by bwc~C=2.

That is, on the edge where all females are fast, the game is one

where males are playing a simplified PD game among themselves.

Thus, all males will eventually be faithful if they have a lower

death rate than philanderers (i.e., c2vc1) that satisfies C=2vCm

where Cm:ln 1{c2ð Þ= 1{c1ð Þð Þ=t is the impulsive benefit for

faithful males (cf. the discussion in the PD section about Eq.7). If

Cmv0, it is an impulsive benefit for philandering males. On the

other hand, philanderers will take over if their death rate is lower

or if C=2wCm. In this section, we will not consider threshold

parameter values where all trajectories on an edge are t-periodic.

Similarly, on the edge where all males are faithful, there is a

simplified PD game among females (where c is now identified with

{E). Let Cf be the impulsive benefit for fast females (i.e.,

Cf :ln 1{y2ð Þ= 1{y1ð Þð Þ=t). Thus, all females will eventually be

fast (respectively, coy) if the cost of a long engagement is greater

than (respectively, less than) the impulsive benefit for coy females,

i.e. Ew{Cf ) (respectively, Ev{Cf ).

In fact, p,qð Þ~ 0,0ð Þ will be stable for the bimatrix replicator

equation with periodic impulses (Eq.10 and Eq.11) on the unit

square if males are eventually faithful on the first edge and females

are eventually fast on the second edge. This result is indicated in

the first row of Table 1 that summaries the stability of all four

vertices of the unit square. The proof is in File S1 where it is also

shown that, if one vertex is stable, then it is globally stable (i.e. all

trajectories in the interior of the unit square converge to it). In

particular, at most one vertex can be stable.

From Table 1, if impulsive effects are strong enough on any

edge to reverse the flow of the replicator equation Eq.10 there

(i.e., if any of the inequalities CmwC=2, Cf wC{G,

Cmv{ G{C=2{Eð Þ, or Cf v{E are true), then there is a

globally stable pure strategy pair for males and females. In

particular, these periodic impulses have removed the characteristic

interior cycles of the BS game and replaced them with global

stability at a vertex. Figure 3c illustrates a typical trajectory of

Eq.10, Eq.11 when one of the stability conditions for the vertex

(1,0) in Table 1 are satisfied.

When impulses are not strong (i.e. when

{(G{C=2{E)vCmvC=2 and {EvCf vC{G), the limiting

behavior of each trajectory on the boundary of the unit square is

the same whether or not periodic impulses Eq.11 are combined

with the bimatrix replicator dynamics; namely, all these

trajectories evolve to the first vertex encountered in a counter-

clockwise direction. On the other hand, no interior trajectory

evolves to a point on the boundary. Figure 3e–f illustrates a typical

trajectory when impulses are of intermediate strength. Notice that

this trajectory does not surround (p�,q�) since the impulses occur

before it has enough time to do so. In fact, through simulations (see

File S1), it is apparent that the properties of such trajectories are

quite complex with multiple t-periodic solutions possible. The

number N of these solutions appears to depend linearly on the

ratio of t to the minimum period Tmin of interior periodic cycles of

the bimatrix replicator dynamics Eq.10 in that it is approximated

by N~2 t=Tmin½ �z1 where [ ] is the integer part of a positive real

number. Proofs of these conjectures suggested by simulations are

beyond the current techniques available to analyze these impulsive

systems. We are hopeful that game-theoretic intuition will extend

these techniques in future research and, in the process, improve

our understanding of how arbitrary periodic impulses affect the

evolutionary dynamics, especially for non symmetric two-player

games (such as the BS game) with a unique equilibrium in the

interior of the strategy space.

Finally, for weak impulses (i.e. for Cm and Cf both close to 0 and at

least one nonzero) with tvvTmin, simulations show that all interior

trajectories evolve to a small neighborhood of (p�,q�) (see Figure 3d).

Specifically, although the limiting behavior is not exactly the interior

equilibrium, the large periodic cycles of the bimatrix replicator

dynamics are replaced by orbits that become arbitrarily close to this

equilibrium as the impulsive effect weakens. In fact, except for the one

t-periodic solution, it appears that all trajectories approach the single

orbit in Figure 3d (which is not t-periodic).

In summary, both strong and weak impulsive effects promote

stability in BS games. Strong impulses imply the system has a

globally stable outcome where all males adopt the same strategy as

do all females (i.e. both sexes exhibit monomorphic behavior). On

the other hand, weak impulses eliminate the wild fluctuations

typical of the periodic cycles of the bimatrix replicator dynamics

Eq.10 and replace them with an attracting set near its interior

equilibrium that consists of a stable polymorphic population of

males and females.

Results and Discussion

Our model combining periodic impulses with an evolutionary

dynamics is based on several simplifying assumptions. First,

population sizes are assumed to be sufficiently large that stochastic

effects due to finite populations are ignored in the deterministic

dynamics and fitness is given by expected payoff as in the original

development of the replicator equation [21]. Our assumption that

death rates depend only on strategy type then implies total

population size does not influence the evolution of strategy

frequencies given by our replicator equation with periodic

impulses. Moreover, in the BS game, we have adopted the

unstated common assumption of evolutionary game theory applied

to asymmetric games with a bimatrix payoff matrix [5] that

Table 1. Stability of Boundary Equilibria p,qð Þ (p is the
frequency of males who philander and q is the frequency of
coy females).

Boundary Equilibrium p,qð Þ
Conditions for Stability of
Boundary Equilibrium

0,0ð Þ C

2
vCm and Ew{Cf

1,0ð Þ C

2
wCm and C{GvCf

0,1ð Þ
G{

C

2
{Ew{Cm and Ev{Cf

1,1ð Þ
G{

C

2
{Ev{Cm and C{GwCf

doi:10.1371/journal.pone.0009882.t001
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individual fitness is based on one random interaction per unit time

between different types of individuals.

The analysis of the effects of periodic impulses becomes more

complex when finite populations and/or unequal population sizes

of different types in asymmetric games are included. In particular,

the dynamics of total population size must then be taken into

account. From this perspective, our analysis of the frequency

effects of periodic impulses can be viewed as a base model against

which these more complex systems can be compared, in much the

same way that the replicator equation of evolutionary game theory

has served as a means to gain an intuitive understanding of

behavioral evolution. Our analytic results, that characterize when

periodic impulses favoring cooperation in the PD game can

overcome the selective advantage of defection and when both

strong and weak impulses have a stabilizing effect in the BS game,

can then be tested (perhaps numerically) to see if they continue to

hold in more complicated models that do not satisfy our

simplifying assumptions.

Supporting Information

File S1 Supporting information for ‘‘Stability and Cooperation

through Periodic Impulses’’.

Found at: doi:10.1371/journal.pone.0009882.s001 (1.03 MB

DOC)
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