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Polarization characteristics of double-clad elliptical fibers

Feng Zhang and John W. Y. Lit

A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad
elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are
presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core,
the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and
the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are
examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be
obtained within the single-mode region and that the field intensity distribution may be more confined to the
fiber center than in a single-clad elliptical fiber.

1. Introduction
Recent progress in fiber technology by using phase

or polarization modulation has given rise to new sys-
tems not only in optical communications but also in
fiber sensors and in integrated optics. The ability to
control and to maintain the polarization states is im-
portant in many systems, such as coherent communi-
cation systems and interferometric and polarimetric
fiber sensors. The key to acquire such ability is to use
high performance single-mode polarization-maintain-
ing fibers and components. A highly birefringent fi-
ber, in which the polarization state of the input light is
preserved by minimizing the coupling between the two
orthogonally polarized fundamental modes, is one of
the most popular polarization-maintaining fibers.
Such a fiber can be made by introducing transverse
geometric asymmetry to the fiber core'- 6 or by building
in transverse asymmetric stresses in the region sur-
rounding the core.7-'0 Stress-induced birefringent fi-
bers require manufacturing trade-offs between polar-
ization holding and attenuation." The most serious
problem with these fibers, however, is that the stresses
induced by different thermal expansions make polar-
ization holding sensitive to temperature variations and
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restrict their practical uses. 12 -14 In addition, accessing
the guiding region of the fiber is a complex operation
which changes the internal stresses; this adversely af-
fects the use of the fiber to make polarization-main-
taining or polarization-controlling components, such
as couplers, polarizers, etc. On the other hand, if
birefringence is caused by fiber geometry, bending and
temperature could change over wide ranges without
significantly degrading the optical performance.
Such a fiber also allows easy access to the guiding
region, which could be achieved by various methods
such as etching and polishing, without adversely af-
fecting the performance. Among fibers of this type,
single-clad elliptical (SCE) fiber has emerged as the
most practical one. It has been studied both theoreti-
callyl 215 16 and experimentally.4 The birefringence of
such a fiber can be increased by increasing the elliptic-
ity of the core or the index difference between the core
and the cladding. To produce high birefringence,
both the core ellipticity and the index difference have
to be large, resulting in the core size being very small
for a single-mode fiber.2 This does not only make
fabrication and connection more difficult, but it also
enhances the nonlinear effects in the core.

To overcome these disadvantages, depressed inner
cladding elliptical (DICE) fibers with self-locating D-
shape have been fabricated.17 The polarization-main-
taining characteristics of DICE fibers have been inves-
tigated experimentally.' 8 Theoretically they have
been analyzed by means of a double-clad rectangular
waveguide (DCRW) model.19 The results show that
DICE fibers, compared with SCE fibers, have higher
birefringence in the weakly guiding region, zero polar-
ization-mode dispersion in the single-mode region, and
larger first-higher-mode cutoff frequency, leading to a
larger core size for single-mode operation. Both the
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beat length and the cutoff wavelength can be predicted
reasonably well.18 But the model cannot give the
mode field distribution and spot size, which are essen-
tial to the proper design of experiments, connections,
and fabrication of components.

In this paper we use the Gaussian approximation to
calculate the spot size, the field distribution, the bire-
fringence, and the polarization-mode dispersion in
weakly guiding DICE fibers. We examine the effects
of a depressed inner cladding and core ellipticity on
these quantities.

11. Gaussian Approximation for DICE Fibers
We studied the structure shown in Fig. 1. A DICE

fiber has the following parameters: a and a2 are the
major axes of the core and of the inner cladding; b, and
b2 are the minor axes of the core and of the inner
cladding; no, n1, and n2 are the refractive indices of the
core, inner and outer cladding respectively. In terms
of elliptical coordinates t and a, the two boundaries of
the inner cladding may be expressed by t = 4, and t =

62-
The refractive index distribution in a DICE fiber can

be written as (see Fig. 1)
n2()= n2[1 - 2A2f)],

where

f~)=aH -1,4 < < 2,

H fO, x<0,

Al, 2 n2
51no-ni
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Fig. 1. (a) Schematic diagram of a double-clad elliptical fiber with
depressed inner cladding. (b) Refractive index distribution in the

radial direction.

(3)

Parameter T(x,y) is the scalar wave equation solution
which has the scalar propagation constant ,B, i.e.,

(4) [V2 + k2n2(x,y) - 02]T(x,y) = 0, (9)

where k is the wave number in vacuum and V, is the
transverse gradient operator. Parameters bfx and 6fly
are the polarization corrections resulting from the
waveguide structure, which are given by20

If A, = O or = A2 and Rx = Ry = 1, a double-clad
elliptical fiber becomes a single-clad circular fiber.
The normalized frequencies can be defined as

Vx = kalno(2A2) 2, (5)

VY = kbln,(2A2)
12. (6)

The fundamental modes of a weakly guiding ellipti-
cal fiber are plane polarized parallel to the major and
minor axes of the ellipse. The transverse fields have
the forms

E = T(xy) exp[i(3 + bf3x)z], (7)

Ey = (x,y) exp[i(3 + 63y)zI. (8)

- pp(2A2 )3/
2 f f (V, e,)e - Vf(xy)dxdy

1P 917 raw r-J-| J e2dxdy
L X _O

, p = xy, (10)

with Px = a,, py = bi, and et = Exi + Eyj. As in the case
of a SCE fiber, we approximate the fundamental mode
of a DICE fiber by a 2-D Gaussian function16 20:

1 X
2

Y2\1
'T~x,y) = exp[- - (11)

where X = x/a, and Y = y/b, and WxWy are the
normalized spot sizes,21 which are the variational pa-
rameters to be determined along the major and minor
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axes. The variational expression for the propagation
constant a given by Eq. (9) can be written as20

J 2 = F : [ ( x-) (ay (12)

AQ) = IY B,) = 2

AQ2) = WXRy +2 'xW22 

, _ i, p2dXdY

The extremum equations,
-g =0, '0 =0

aw., ' awy

lead to the spot size equations,20

xX O f e 2 

-W j I j X Xexp- - - dXdY,

iJ W ay kf xp X2 y dXdY.

(13)

After solving Eqs. (20) and (21) for Wx and Wy, the
polarization corrections ,bx and bay may be obtained
by substituting Eqs. (7), (8) and (11) into Eq. (10).

(2A2)
3
/
2

x 2aVxWX (22)

(14) bf = 2b V3 W -

(15)

Changing the coordinates X and Y in Eqs. (14) and
(15) to elliptical coordinates t and ,

X = Qx cosht cos17,

Y = QY sinh sing,

Then the normalized birefringence is given by

B = x 6y = 2n0,A 1 /b1
k VT4 m ald per iobn i)4sW Xg v

The modal dispersion is given by

(23)

(24)

(16) A. 1 d(a,3x - 'y) = 2n 0A d (au/b 1 WJ

(17) c dk c dV, VY WY4

with Qx = qia, and Qy = qibl, we may obtain the spot
size equations in the elliptical coordinates,

WY WxO
V: + = 2 J Qx coshtQy sinht expj-AQ)]I0[BQ)jdt

(18)

WV W = 2 J Qx cosh(Qy sinht df exp[-AQ)]Ij[BQ)]dt,

(19)

where Io(x)and Ij(x) are modified Bessel functions of
the first kind and of orders 0 and 1, respectively, and

W2Q2 sinh24 + WyQ2 cosh20

B(Q) =
W2Qy sinh24 - W2Qx cosh24

2V1 

These equations can be used for a weakly guiding
elliptical fiber with any refractive index profile. For a
double-clad elliptical step-index fiber, f is given by Eq.
(2), so that substituting

Of =ab a(-(l + (1 -a)W( - 02

into Eqs. (18) and (19) the spot size equations of DICE
fibers can be finally obtained

W W"
W + X = 21a exp[-A(Q,)]I[B(Q,)]
W"V2 WV 2

+ (1 - a)R,,Ry exp[-A(Q2)]I 0[B(Q2)Ij, (20)

W, X = 21a exp[-A(Z,)]I, [B(Q,)]
WxV~ WYVY

+ (1-a)RRy exp[-A(4 2 )]I,[B(Z2 )1, (21)

where

(25)

The normalized intensity is given by

J : J 2

Ei E| 2dXdY

1 X2

exp -_- -.

S = A~.,eS = Wy2

with Acore = rralb, being the elliptical core area.

Ill. Results and Discussion

A. Spot Size and Intensity Distribution
Figures 2(a)and (b) show the spot sizes W. and Wy as

functions of Vy for single-clad and double-clad fibers
with a,/b, = 1.5 and 3.0. The results for the single-
clad fibers are the same as the theoretical results ob-
tained previously,' 6 and agree well with experimental
results.2 2 When the fiber is given a second cladding,
the spot size becomes smaller. This means that the
intensity distribution is more confined to the fiber
center when a depressed inner cladding is introduced
(see Fig. 3). Consequently, losses in the claddings may
be decreased. This also loosens the angular alignment
requirement during splicing.

B. Birefringence
The case of a single-clad elliptical fiber was analyzed

by matching the boundary conditions and by solving
the eigenvalue problem with the help of Mathieu func-
tions.2 Figure 4 compares the results obtained by such
a method with those obtained by our Gaussian approx-
imation. Between 1.3 < Vy S5 3, which is the
region of greatest interest when single-mode fibers are

5338 APPLIED OPTICS / Vol. 29, No. 36 / 20 December 1990

BQ2 ) = W2~~W~W2RX -
2WW

-t -



2.0

1. 7 --- s 1nAe-I A l U e

X AI=0. 027
2=0. 01

Rx-1.2

IN 1. 4_
.0

0 . 1.52.0bl

.0

El

1.7 1.-5ngecci ie

\ 1. 0LO 
0

0.5
.0 1.5 2.0 2.5

Normalized frequency (Vy)

(a)

2.0
(b)

double-clad fiber
1t7 double-cla - single-clad fiber

AI=0.027

01 ~~~~~~~~A2=0. 01

N 1 4 \Rx=1.2
-4

0

a.

05

0.2

1.0 1. 5 2.0 2.5

Normalized frequency (Vy)

(b)

Fig. 2. (a) Spot size W vs V for a,/b = 1.5 and 3.0. (b) Spot-size
Wvs V, for al/b1 = 1.5 and 3.0. Solid and dashed lines correspond

to double-clad and single-clad elliptical fibers, respectively.

normalized x-axis (X)
(a)

Normalized y-axis (Y)

(b)
Fig. 3. (a) Intensity distributions along the minor axis. (b) Inten-
sity distributions along the major axis. Solid and dashed lines
correspond to double-clad and single-clad elliptical fibers,

respectively.
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and 3.0. Fig. 10. Modal dispersion as afunction of Rxfor al/b = 1.5,2.0,2.5,
and 3.0.

used for information transmission, the two results
agree well, with differences <8%.

4 Figure 5 shows the normalized birefringence B of
2 al/b 1 = 3. 0 DICE fibers as a function of VY for ail/b = 1.5, 2.0, 2.5,
_ // and 3.0. The maximum value of B for al/b, = 3 for ax // DICE fiber is -6X as large as that for a SCE fiber.

Figure 6 shows B vs A1 for al/b, = 1.5, 2.0, 2.5, and
x 3 - 3.0. When Al = A2 = 0.01, the fiber becomes a SCE

/ 2. 5 fiber. The birefringence obviously increases with the
refractive index difference Al. This allows us to ob-

o tain high birefringence in weakly guiding DICE fibers
(a 2 2.0 by selecting Al; such flexibility is not provided by SCE

a/ fibers.a'no // / Figure 7 shows B as a function of R, the ratio of the

" / major axis of the core to that of the inner cladding for
- 1 .5 a/b1= 1.5,2.0,2.5,and3.0. WhenRx = 1,thefiberisa

SCE fiber; B increases sharply with Rx for RX < 1.3, but
0 ,// / / changes little beyond R, = 1.4.

0 0 2 = 0.0i C. Dispersion

Rx = 1. 2 Figure 8 shows the modal dispersion cAr as a func-
Vy = 1. 5 tion of VY for ailbi = 1.5, 2.0, 2.5, and 3.0. The zero

l1 dispersion points of DICE fibers occur at values of Vy
0. 01 0. 02 0. 03 0.04 . smaller than those of SCE fibers. The more important

fact is that all the cases shown in the figure fall within
Ratio of index difference (A&i ) the single-mode operation range.1 9

Fig. 9. Modal dispersion as a function of A for al/bl = 1.5, 2.0, 2.5, Figures 9 and 10 give cAr as a function of Al and of
and 3.0. R, respectively, for al/bi = 1.5, 2.0, 2.5, and 3.0. Fig-
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ures 8-10 show that the point at which a DICE fiber
will have zero dispersion can be significantly shifted by
adjusting the ratio al/bl, index difference Al, and ratio
of axes R. This allows more flexibility in the design of
high birefringence and dispersion free fibers.

IV. Conclusion
By using a scalar variational analysis based on

Gaussian approximation of the fundamental mode, we
have solved numerically the modal spot size equations
for weakly guiding DICE fibers. We have presented
the graphic results for the spot size, birefringence, and
modal dispersion as functions of various important
parameters, such as the normalized frequency Vy, the
difference Al of the refractive index of the core and
that of the inner cladding, and the ratio Rx of the inner
cladding major axis to the core major axis. The field
intensity distributions are also given. Moreover, fi-
bers with different ellipticities a/bi are considered.
We have shown that, when compared with a SCE fiber,
a DICE fiber can give a smaller spot size, narrower field
distribution, higher birefringence, and dispersion-free
operation with smaller normalized frequencies.

This research was supported by the Ontario Laser &
Lightwave Research Center and by the National Sci-
ence & Engineering Research Council of Canada.

John Lit also works in the Department of Physics &
Computing of Wilfrid Laurier University.
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