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AN OCTONION ALGEBRA

ORIGINATING IN COMBINATORICS

DRAGOMIR Ž. D̄OKOVIĆ AND KAIMING ZHAO

(Communicated by Birge Huisgen-Zimmermann)

Abstract. C.H. Yang discovered a polynomial version of the classical La-
grange identity expressing the product of two sums of four squares as another
sum of four squares. He used it to give short proofs of some important theo-
rems on composition of δ-codes (now known as T -sequences). We investigate
the possible new versions of his polynomial Lagrange identity. Our main result
shows that all such identities are equivalent to each other.

1. Introduction

C.H. Yang [7, 8, 9] discovered a polynomial version (see below) of the classical
Lagrange identity on the product of two sums of four squares. He used his identity
to give short and elegant proofs of some important theorems [9] in combinatorics
of binary and ternary sequences. These results provide new methods for the con-
struction of several classes of combinatorial objects such as T -sequences, orthogonal
designs, and Hadamard matrices [5, 9]. Our motivation and the main goal was to
investigate the possible new versions of the polynomial Lagrange identity. However,
our main result shows that all such identities are equivalent to each other (for the
precise statement, see Theorem 4.1).

Let A = Z[z, z−1] be the Laurent polynomial ring over the integers Z. For
any f = f(z) =

∑
k akz

k ∈ A, ak ∈ Z, we define its conjugate as f∗ = f(z−1).
We also say that a0 is the constant term of f and write CT(f) = a0. Note that
CT(ff∗) =

∑
k a

2
k. Let A0 be the fixed subring of A under the conjugation, i.e.,

A0 = {f ∈ A | f = f∗}. It is easy to see that A0 = Z[z + z−1]. We embed the
polynomial ring Z[t] into A by sending t → z + z−1 and view A as a Z[t]-algebra.
It is easy to check that A = A0 ⊕A0z. Thus A is a free Z[t]-module of rank 2.

We are mainly interested in the free A-module E = A4. When viewed as a
Z[t]-module it is again free but now its rank is 8. For any x = (x0, x1, x2, x3) ∈ E
we define its norm as N(x) =

∑
k xkx

∗
k. Thus N : E → A0 is a quadratic form on

the A0-module E.
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Now we state the Lagrange identity for Laurent polynomials (modified Theo-
rem 1 in [9]). Let x = (xk), y = (yk) ∈ E and define (p, q, r, s) ∈ E by Yang’s
formulae:

p = x0y0 − x1y
∗
1 − x2y

∗
2 − x3y

∗
3 ,

q = x0y1 + x1y
∗
0 + x∗

2y
∗
3 − x∗

3y
∗
2 ,

r = x0y2 − x∗
1y

∗
3 + x2y

∗
0 + x∗

3y
∗
1 ,

s = x0y3 + x∗
1y

∗
2 − x∗

2y
∗
1 + x3y

∗
0 .

We can use these formulae to define an A0-bilinear multiplication “◦” on E by
x ◦ y = (p, q, r, s). It is straightforward to verify that the Lagrange identity
N(x ◦ y) = N(x)N(y) is indeed valid.

We shall see in the next section that (E, ◦) is in fact an octonion algebra over
Z[t]. In Section 3 we give an explicit description of the orthogonal group O(N)
of the pair (E,N); see Theorem 3.4. In Section 4, we show that all A0-bilinear
multiplications on E satisfying the Lagrange identity are equivalent, in the sense
defined there, to the above multiplication “◦”.

Our main result can probably be generalized by replacing Z with a more general
commutative ring. We decided not to pursue this here in order to preserve the
essentially combinatorial flavor of the original problem.

We are grateful to the referee for correcting a couple of errors in the original proof
of Lemma 4.3, for giving the stronger result in Theorem 4.3, and for other detailed
comments and suggestions. Actually most of the proofs have been improved by the
referee.

2. Yang formulae define an octonion algebra

We make A = Z[z, z−1] into a Z[t]-algebra via the homomorphism Z[t] → A
sending t → z + z−1. We shall often identify Z[t] with its image A0 under this
homomorphism. According to the definition in [1, Chapter III, §2], A is a quadratic
Z[t]-algebra. By using the basis {1, z}, we see that its type is (−1, t). Indeed we
have z2 = −1 + tz. Moreover, (A, ∗) is an example of a Cayley algebra (see [1]).

Let H = A × A, a free A-module of rank 2. We shall also view it as a free
Z[t]-module of rank 4 with basis (1, 0), (z, 0), (0, 1), (0, z). We make H into an
associative noncommutative algebra by using the Cayley–Dickson process; i.e., we
define the multiplication in H by

(a, b)(c, d) = (ac− d∗b, bc∗ + da), a, b, c, d ∈ A.

The involution “∗” on A extends to an involutory anti-automorphism of H by
setting

(a, b)∗ = (a∗,−b), a, b ∈ A.

Thus H is an example of a quaternion algebra over Z[t]; see [1], No. 5, Example 2.
As such, it has type (−1, t,−1).

Let E = H × H, a free A-module of rank 4. We shall also view it as a free
Z[t]-module of rank 8 with basis

e0 = (1, 0, 0, 0), e′0 = ze0 = (z, 0, 0, 0),

e1 = (0, 1, 0, 0), e′1 = ze1 = (0, z, 0, 0),

e2 = (0, 0, 1, 0), e′2 = ze2 = (0, 0, z, 0),

e3 = (0, 0, 0, 1), e′3 = ze3 = (0, 0, 0, z).
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We make E into a nonassociative algebra by using the Cayley–Dickson process once
more. Thus, we define the multiplication in E by

(u, v)(x, y) = (ux− y∗v, vx∗ + yu), u, v, x, y ∈ H.

The involution “∗” on H extends to one on E by setting

(u, v)∗ = (u∗,−v), u, v ∈ H.

Thus E is an example of an octonion algebra over Z[t]; see [1, Chapter III, Appen-
dix]. By using the above basis, we find that the type of this octonion algebra is
(−1, t,−1,−1).

Let us write the above octonion multiplication in terms of the A-basis {e0, e1,
e2, e3}. For x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3), we find that

xy = (x0y0 − x1y
∗
1 − x2y

∗
2 − x∗

3y3,

x0y1 + x1y
∗
0 + x∗

2y3 − x3y
∗
2 ,

x0y2 − x∗
1y3 + x2y

∗
0 + x3y

∗
1 ,

x∗
0y3 + x1y2 − x2y1 + x3y0).

Hence, the map sending (x0, x1, x2, x3) → (x0, x1, x2, x
∗
3) is an isomorphism of this

octonion algebra with the algebra (E, ◦) defined by the Yang formulae.

3. Orthogonal group

It is obvious that U1 = {x ∈ A | xx∗ = 1} is the group of invertible elements of
A. It consists of the elements ±zk, k ∈ Z. In our proofs below we shall often use
the following obvious fact: The subset U1 generates A as an additive group.

The ring homomorphisms ϕ : A → C are parametrized by nonzero complex
numbers w. By definition, the homomorphism ϕw corresponding to w sends the
indeterminate z to w. The homomorphism ϕw is compatible with the involutions
(conjugation on A and complex conjugation on C); i.e., ϕw(x

∗) = ϕw(x) for all
x ∈ A if and only if |w| = 1.

The following lemma will be used in the next section.

Lemma 3.1. If m ∈ Z is not a square, then the equation xx∗ = m has no solution
in A.

Proof. Assume that ff∗ = m for some f ∈ A. By applying the homomorphism ϕ1

we obtain f(1)f∗(1) = m. As f∗(1) = f(1) ∈ Z, we have a contradiction. �
We also remark that, for x ∈ A, CT(xx∗) = 0 implies x = 0, and CT(xx∗) = 1

implies xx∗ = 1.
Denote the general linear group of the A0-module E by GL(A0, E). We introduce

the orthogonal groups

O(N) = {ϕ ∈ GL(A0, E) |N(ϕ(u)) = N(u), ∀u ∈ E},
O4(Z) = {ϕ ∈ GL4(Z) |N(ϕ(u)) = N(u), ∀u ∈ Z4},

where Z4 is considered as an additive subgroup of E = A4.
Let Q : E × E → A0 be the polar form of N , i.e.,

Q(x, y) = N(x+ y)−N(x)−N(y)

=
3∑

k=0

(x∗
kyk + xky

∗
k) .
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Note that Q is a symmetric A0-bilinear O(N)-invariant form and that Q is nonde-
generate; i.e., its kernel is 0.

Let us begin with a useful remark.

Remark 3.2. An A0-linear map ϕ : E → E preserving N is automatically bijective,
and so ϕ ∈ O(N). Indeed, as Q is nondegenerate, the injectivity is obvious. If
S is the matrix of Q with respect to some A0-basis of E, then det(ϕ)2 det(S) =
det(S) �= 0, forcing det(ϕ) = ±1, and ϕ is bijective.

The following result is crucial to this paper.

Theorem 3.3. (a) The group O4(Z) consists of entry permutations on Z4 with
arbitrary sign changes.

(b) The set U ′
1 = {x ∈ A | xx∗ = −(z − z−1)2} is equal to (z − z−1)U1.

(c) The unit sphere U4 = {x ∈ E | N(x) = 1} is equal to
⋃3

k=0 U1ek.
(d) The sphere U ′

4 = {x ∈ E | N(x) = −(z − z−1)2} is equal to (z − z−1)U4.

Proof. (a) Fix α ∈ O4(Z). Let α(ei) =
∑

j aijej , where aij ∈ Z. From 1 =

N(α(ei)) =
∑

j a
2
ij we see that, for each i, exactly one of aij is ±1 and the other

ones vanish. The rest follows easily.
(b) By applying the homomorphisms ϕ±1 to xx∗ = −(z − z−1)2, we conclude

that x is divisible by z−1 and z+1, and so we have x = (z−z−1)y for some y ∈ A.
As xx∗ = −(z − z−1)2yy∗, we deduce that yy∗ = 1, i.e., y ∈ U1.

(c) Suppose x = (x0, x1, x2, x3) ∈ U4. Then
∑3

k=0 xkx
∗
k = 1. By comparing the

constant terms, we conclude that exactly one of the xk belongs to U1 while the
others vanish.

(d) Suppose x = (xk) ∈ U ′
4. Then

∑
k xkx

∗
k = 2− z2− z−2. Hence

∑
k CT(xkx

∗
k)

= 2, which by the above remark implies that exactly one of the xks is nonzero.
This nonzero component belongs to (z − z−1)U1 by (b). �

Note that O4(Z) = E16Σ4 is the semidirect product of the elementary abelian
group E16 of order 16 which acts on Z4 by multiplying the coordinates with ±1
and the symmetric group Σ4 of degree 4 which permutes the coordinates.

For u = (u0, u1, u2, u3) ∈ U4
1 we define σu ∈ O(N) by σu(x) = (ukxk), where

x = (xk) ∈ E. Then

(3.1) T = {σu | u ∈ U4
1 }

is an abelian subgroup of O(N).
Any α ∈ O4(Z) extends uniquely to an A-linear element of O(N), still denoted

by α. Thus we consider O4(Z) as a subgroup of O(N). Define τ0 ∈ O(N) by
τ0(x0, x1, x2, x3) = (x∗

0, x1, x2, x3), and define similarly τk for k = 1, 2, 3. Let Γ
denote the group of order 16 generated by the τks. The group O(N) admits the
following factorization.

Theorem 3.4. O(N) = TΣ4Γ.

Proof. Let ϕ ∈ O(N). Since ϕ(U4) = U4, for any index i there exist ui ∈ U1 and
an index i′ such that ϕ(ei) = uiei′ . Since the form Q is ϕ-invariant, the map i → i′

must be a permutation of {0, 1, 2, 3}.
For any a ∈ A we have a+ a∗ ∈ A0 and so

ϕ((a+ a∗)ei) = (a+ a∗)uiei′ .
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Now let a ∈ U1, a �= ±1. Then each of the terms ϕ(aei), ϕ(a
∗ei), auiei′ and a∗uiei′

belongs to U4, and the sum of the first two terms is not 0. It follows that ϕ(aei) is
equal to auiei′ or a

∗uiei′ .
Assume that there exist a, b ∈ U1 different from ±1 such that ϕ(aei) = auiei′

while ϕ(bei) = b∗uiei′ . Then ϕ((a + b)ei) = (a + b∗)uiei′ , and by taking the
norms we obtain the contradiction (a − a∗)(b − b∗) = 0. Consequently, one of
the two identities, ϕ(aei) = auiei′ or ϕ(aei) = a∗uiei′ , must hold for all a ∈ A.
Equivalently, there exists εi ∈ {0, 1} such that ϕτ εii (aei) = auiei′ for all a ∈ A. Let

u = (ui) ∈ U4
1 and τ =

3∏

i=0

τ εii ∈ Γ.

The composite β = σ−1
u ϕτ is A-linear, and we have σ−1

u ϕτ (ei) = ei′ for all i. Hence,
ϕ = σuβτ with σu ∈ T , β ∈ Σ4 and τ ∈ Γ. �

4. Composition algebra structures on E

In this section we determine all A0-bilinear multiplications “·” on E which satisfy
the (polynomial) Lagrange identity

(4.1) N(x · y) = N(x)N(y).

Since E is a free A0-module of rank 8 and the form Q is nondegenerate, such an
algebra (E, ·) will be a composition algebra in the sense of the definition in [3,
p. 305] provided that it has an identity element.

We say that two A0-bilinear multiplications � and 	 are equivalent if there exist
σ1, σ2, τ ∈ O(N) such that x 	 y = τ (σ1(x) � σ2(y)) for all x, y ∈ E.

The following theorem is our main result.

Theorem 4.1. Any A0-bilinear multiplication “·” on E satisfying the Lagrange
identity (4.1) is equivalent to the multiplication “◦” defined by Yang’s formulae.

Proof. We shall reduce the proof to the special case where e0 is the identity element
of the A0-algebra (E, ·). Then the assertion of the theorem follows from the next
theorem.

Define A0-linear maps L,R : E → E by L(u) = e0 · u and R(u) = u · e0. The
Lagrange identity implies that L and R preserve N . By Remark 3.2, L,R ∈ O(N).

Next we use a well known argument due to, at least, Kaplansky [2]. We have
N(R−1(x) · L−1(y)) = N(x)N(y) for x, y ∈ E. With x � y = R−1(x) · L−1(y), we
have

(e0 · e0) � x = R−1(e0 · e0) · L−1(x) = e0 · L−1(x) = x,

x � (e0 · e0) = R−1(x) · L−1(e0 · e0) = R−1(x) · e0 = x.

Thus e0 · e0 is the identity element of the algebra (E, �). As e0 · e0 ∈ U4, we have
e0 · e0 = aei for some a ∈ U1 and some index i. Hence, there exists σ ∈ O(N) such
that σ(e0) = e0 · e0. If x 	 y = σ−1(σ(x) � σ(y)), then e0 is the identity element of
the algebra (A, 	). �

We assume now that e0 is the identity element of (E, ·). Consequently, this is a
composition algebra in which the alternative laws

(4.2) x · (x · y) = (x · x) · y, (x · y) · y = x · (y · y)
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are valid [3, p. 306]. The reader should consult this book for additional properties
of composition algebras. We state only a few properties that we need.

Define the A0-linear map trace T : E → A0 by T (x) = Q(e0, x). Then for any
x ∈ E we have x · x− T (x)x+N(x)e0 = 0. Linearizing gives

(4.3) x · y + y · x = T (x)y + T (y)x−Q(x, y)e0, ∀x, y ∈ E.

Clearly Ae0 ⊥ A3 with respect to Q, where A3 = Ae1 +Ae2 +Ae3.
Recall that we have extended the conjugation ∗ from A to E in Section 2. More-

over, note that

(ae0 + v)∗ = a∗e0 − v, a ∈ A, v ∈ A3.

It is easy to verify that

(4.4) Q(x, z · y∗) = Q(x · y, z) = Q(y, x∗ · z), ∀x, y, z ∈ E.

The fact that in the next theorem one can assert that the two algebras are
actually isomorphic is due to the referee.

Theorem 4.2. Every A0-algebra (E, ·) satisfying the Lagrange identity (4.1) and
having e0 as the identity element is isomorphic to the Yang algebra (E, ◦).

We shall break the proof into several lemmas.

Lemma 4.3. By replacing “·” with an isomorphic multiplication, we may also
assume that

(4.5) (ae0) · y = ay

for all a ∈ A and y ∈ E.

Proof. Let us fix an index i and b ∈ U1. Then the right multiplication by bei
belongs to O(N), and Theorem 3.4 yields an index j as well as uj ∈ U1 such that
(ae0) · (bei) = ujaej for all a ∈ A or (ae0) · (bei) = uja

∗ej for all a ∈ A. Specializing
a to 1 implies that j = i and uj = b; hence (ae0) · (bei) = abei for all a ∈ A or
(ae0) · (bei) = a∗bei for all a ∈ A.

Assume that (ae0) · (b1ei) = ab1ei holds for all a ∈ U1 and (ae0) · (b2ei) =
a∗b2ei holds for all a ∈ U1, for some units b1, b2 different from ±1. Then (ae0)·
((b1 + b2)ei) = (ab1 + a∗b2)ei holds for all a ∈ U1. By taking norms on both sides,
we obtain that

(1− a2)b1b
∗
2 + (1− (a∗)2)b∗1b2 = 0

for all a ∈ U1. This is clearly a contradiction.
Since U1 generates A as an abelian group, we conclude that either (ae0) · (bei) =

abei for all a, b ∈ A or (ae0) · (bei) = a∗bei for all a, b ∈ A. In particular, (ae0) · (bei)
is A-linear in b.

If (ae0) · (be0) = a∗be0 for all a, b ∈ A, then setting b = 1 gives the contradiction:
ae0 = a∗e0 for all a ∈ A. Thus we have (ae0) · (be0) = abe0 for all a, b ∈ A. For
i �= 0, there is an εi ∈ {0, 1} such that τ εii (τ εii (ae0) · τ εii (bei)) = abei for all a, b ∈ A.

If τ is the product of the τ εii with i �= 0, then τ2 = 1 and the multiplication “�”
defined by x � y = τ (τ (x) · τ (y)) satisfies all the requirements.

Moreover, the map τ : (E, �) → (E, ·) is an isomorphism of unital A0-algebras.
�
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We assume from now on that the identity (4.5) holds. This property will be
shared by the modified multiplication, which will be introduced in Lemma 4.6.

Lemma 4.4. For a ∈ A and x ∈ Ae1 +Ae2 +Ae3, we have x · (ae0) = a∗x.

Proof. Recall that Ae1+Ae2+Ae3 is the kernel of the trace T and is perpendicular
to Ae0 relative to Q. By using (4.3), we obtain that

x · (ae0) = x · (ae0) + (ae0) · x− (ae0) · x
= T (ae0)x+ T (x)ae0 −Q(x, ae0)e0 − ax

= (a+ a∗ − a)x = a∗x. �

Lemma 4.5. For a, b ∈ A and i �= 0 we have (aei) · (bei) = −ab∗e0.

Proof. Since N is anisotropic, it suffices to show that N((aei) · (bei) + ab∗e0) = 0.
Expanding the LHS and applying (4.4) gives

N((aei) · (bei) + ab∗e0) = 2N(a)N(b) +Q((aei) · (bei), ab∗e0)
= 2N(a)N(b) +Q(aei, (ab

∗e0) · (bei)∗)
= 2N(a)N(b)−Q(aei, (ab

∗e0) · (bei))
= 2N(a)N(b)−N(b)Q(aei, aei)

= 2N(a)N(b)− 2N(a)N(b) = 0. �

Lemma 4.6. By replacing “·” with an isomorphic multiplication, we may assume
that

(4.6) ei · ej = ek = −ej · ei

for any cyclic permutation (i, j, k) of (1, 2, 3).

Proof. Let (i, j, k) be a cyclic permutation of (1, 2, 3). Since (e0 + ei) · (e0 + ej) =
e0+ei+ej+ei·ej andN(e0+ej) = N(e0+ej) = 2, we have N(e0+ei+ej+ei·ej) = 4.
As ei · ej ∈ U4, Lemma 3.1 implies that ei · ej ∈ U1ek. A similar argument shows
that ej · ei ∈ U1ek.

In particular we have e1 · e2 = ue3 for some u ∈ U1. The multiplication “�”
defined by x�y = σ−1

a (σa(x)·σa(y)), where a = (1, 1, 1, u), has the previously stated
property and sends (e1, e2) → e3. By replacing “·” with this new multiplication,
we may assume that e1 · e2 = e3.

Since (ei+ej) ·(ei+ej) = ei ·ej+ej ·ei−2e0, we have N(ei ·ej+ej ·ei−2e0) = 4.
Since ei · ej + ej · ei ∈ Aek, it follows that this sum is 0, i.e., ej · ei = −ei · ej . In
particular, we have e2 · e1 = −e3. Thus the assertion of the lemma is valid if
(i, j, k) = (1, 2, 3).

The remaining equalities (4.6) follow easily by using the alternative laws (4.2).
For instance, we have e1 · e3 = e1 · (e1 · e2) = (e1 · e1) · e2 = (−e0) · e2 = −e2.

To finish the proof, we point out that the map σa : (E, �) → (E, ·) is an isomor-
phism of unital A0-algebras. �

In view of the last lemma, we may assume now (and we do) that the identities
(4.6) are valid for any cyclic permutation (i, j, k) of (1, 2, 3).
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Lemma 4.7. For any cyclic permutation (i, j, k) of (1, 2, 3) we have

(4.7) (aei) · (bej) = a∗b∗ek = −(bej) · (aei)

for all a, b ∈ A. Consequently, the multiplications “·” and “◦” coincide.

Proof. In view of (4.3), it suffices to prove the first equality. We first treat the case
a = 1. By applying the linearized left alternative law, we find that

ei · (bej) = ei · ((be0) · ej)
= (ei · (be0) + (be0) · ei) · ej − (be0) · (ei · ej)
= (b+ b∗)ek − bek = b∗ek.

For arbitrary a, by using this special case, the linearized right alternative law and
Lemma 4.4, we obtain that

(aei) · (bej) = (ei · (a∗e0)) · (bej)
= ei · ((a∗e0) · (bej) + (bej) · (a∗e0))− (ei · (bej)) · (a∗e0)
= ei · ((a+ a∗)bej)− (b∗ek) · (a∗e0)
= ((a+ a∗)b∗ − ab∗)ek = a∗b∗ek. �

This concludes the proof of Theorem 4.2 and also of Theorem 4.1.
The referee supplied an alternative proof of Theorem 4.2. His proof proceeds

first by changing scalars from the base ring Z[t] to its quotient field Q(t), and then
applying a theorem of Thakur [6] (see also [4, Chapter VIII, Exercise 6]) which
establishes a connection between octonion algebras and ternary Hermitian forms.
In the case of a Yang algebra, let us write E = Ae0⊕A3, where A3 is the column A-
space. Extending the conjugation of A componentwise to A3, we have a Hermitian
form h : A3 × A3 → A given by h(v, w) = vtw∗. With this notation, the Yang
multiplication is given by

(ae0 ⊕ v) ◦ (be0 ⊕ w) = (ab− h(v, w))e0 ⊕ (aw + b∗v + v∗ × w∗),

where a, b ∈ A and v, w ∈ A3. The sign × stands for the ordinary cross product in
3-space.
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