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A SIMPLE PROOF OF A CURIOUS CONGRUENCE BY SUN

ZUN SHAN AND EDWARD T. H. WANG

(Communicated by David Rohrlich)

Abstract. In this note, we give a simple and elementary proof of the following
curious congruence which was established by Zhi-Wei Sun:
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In [4], the following curious congruence for odd prime p was established by Zhi-
Wei Sun:
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The author’s proof, using Pell sequences, is fairly complicated. In fact, a recent
article [3] on congruence modulo p ends in the remark that “It seems unlikely that
(1) can be proved with the simple approach that we have used here.” In the present
note, we give a simple and elementary proof of (1). Throughout, p denotes an odd
prime.

First of all, it is well known (e.g. [1], [2]) that for k = 0, 1, 2, . . . , p− 1,
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From (2) we get
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Let ε = eπi/4. Then
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∑
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where
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Since ε = ε−1, taking modulus of both sides of (4) yields
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From (5) and (3) we obtain, since 2p−1 ≡ 1 (mod p),
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and (1) is proved.
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