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Solution of simultaneous chemical equilibria in

heterogeneous systems: implementation in

Matlab

D. Scott Smith a

aWilfrid Laurier University, Waterloo, Ontario, Canada, N2L 3C5

23 September 2019

Abstract

A Matlab script to solve simultaneous equilibria in solution, including precipita-
tion/dissolution equilibria is described.

Key words: chemical equilibrium, matlab, Newton-Raphson, heterogeneous
equilibria

1 Chemical Speciation

Solving for the equilibrium position of a set of simultaneous reactions subject to the con-
straints of mass balance and mass action is a common problem in environmental modeling.
There exist many available computer programs to solve these types of chemical equilibrium
problems, examples include MINEQL (Allison et al., 1991) and PHREEQ (Saini-Eidukat
and Yahin, 1999). For engineering and scientific practices though these stand-alone pro-
grams are not necessarily completely useful. Often, engineers and scientists will use so-called
high-level programming languages such as Matlab or Scilab to implement their larger scale
problems. Problems such as reactive transport, or simulation of industrial scale processes
can be “coded” into Matlab in a very flexible task-specific manner.

Many processes require the solution of simultaneous equilibria and thus the speciation
code presented here was developed for Matlab. In the researcher’s lab this code is used
to fit experimental data to chemical equilibrium binding constants for metal/organic and
metal/phosphate systems but with slight modifications the code could be embedded in Mat-
lab code for other applications (such as transport modeling).

Email address: ssmith@wlu.ca (D. Scott Smith).

http://www.mathworks.com
http://www.scilab.org/
http://www.mathworks.com


The Matlab code was written based on the paper by (Carrayrou et al., 2002). The Matlab
code is available at the following link and any interested users are free to modify it as they
see fit. An example calculation for the Fe(III) system in water is presented below.

2 Iron(III) system

Mass balance and mass action for solving chemical equilibrium problems can all be repre-
sented in Tableau notation (Smith and Ferris, 2001; Morel and Hering, 1993). For a given
defined system it is desirable to determine the equilibrium concentration of all species. Us-
ing the iron (III) system as an example a list of species of interest could include H+, OH– ,
Fe3+, FeOH2+, Fe(OH) +

2 , and Fe(OH) –
4 . There are other possible species but to keep the

discussion simple these are the only ones included here. Also, for dilute solutions water can
be assumed as a fixed component. The list includes six species so it is necessary to define
six relationships in order to solve this system. The situation can be simplified if it is realized
that each of these species are not independent. We can select components from the list of
species and use those components to solve the equilibrium problem. For example, if we know
H+ (pH) and Fe3+ we can determine the concentration of all other species from their logK
values (mass action). In matrix notation we think of pH and Fe3+ as spanning the basis set.

Now we need two equations and two unknowns. First relation is mass balance of iron and
the second is proton balance (related to electroneutrality). Now we can write the tableau:

H Fe logK species

1 0 0 H+

0 1 0 Fe3+

-1 0 -14 OH–

-1 1 -2.19 FeOH2+

-2 1 -5.67 Fe(OH) +
2

-4 1 -21.6 Fe(OH) –
4

TOTH FeT
Table 1
Tableau for Fe–H system

Table 1 completely defines the equilibrium problem. The entries in the columns are the
stoichiometric coefficients required for formation of each species. For example, there is 1 H+

and 0 Fe3+ in H+. Also, Fe(OH) –
4 is formed with one iron and removing 4 protons from

water. Given the tableau, all that remains is to determine the values for [H+] and [Fe3+] for
specified TOTH and FeT.

If you multiply across rows it is possible to determine species concentration and if you sum
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down columns the total values (mass balance) are recovered. This is best understood by
writing out some entries:

[H+] = [H+]1 × [Fe3+]0 × 100 (1)

[Fe3+] = [H+]0 × [Fe3+]1 × 100 (2)

[OH−] = [H+]−1 × [Fe3+]0 × 10−14 (3)

[FeOH2+] = [H+]−1 × [Fe3+]1 × 10−2.19 (4)

.... (5)

It is necessary to always write the formation reactions for each species from the components.
For example to understand equation (3) consider that Kw corresponds to the following
reaction:

H2O ⇀↽ H+ + OH− Kw = [H+][OH−] (6)

If equation (6) is rearranged to solve for [OH−] then equation (3) is obtained. As another
example, to understand equation (4) consider that KH1 for the first hydrolysis of iron (III)
corresponds to the following reaction:

Fe3+ + H2O ⇀↽ FeOH2+ + H+ KH1 =
[FeOH2+][H+]

[Fe3+]
(7)

if equation (7) is rearranged to solve for [FeOH2+] then equation (4) is obtained. To explain
how the summation down the columns is the mass balance. Consider total iron ....

FeT = 0[H+] + 1[Fe3+] + 0[OH−] + 1[FeOH2+] + 1[Fe(OH) +
2 ] + 1[Fe(OH) −4 ] (8)

notice that the coefficients are the entries down the iron column in the tableau.

The problem can easily be expressed in matrix notation. We’ll define the 1 × 2 vector of
unknown component concentrations as X so we can write X =

(
log [H+] log [Fe3+]

)
. There is a
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6× 1 vector of species concentrations as well

C =



[H+]

[Fe3+]

[OH−]

[FeOH2+]

[Fe(OH) +
2 ]

[Fe(OH)4−]


(9)

Total concentrations are in a 2× 1 vector T =
(
TOTH
FeT

)
. The logK values are summarized in

the 6× 1 vector

K =



0

0

logKw

logKH1

logKH2

logKH4


(10)

Finally, we need a 6× 2 matrix of stoichiometric coefficients

A =



1 0

0 1

−1 0

−1 1

−2 1

−4 1


(11)

Now the minimization problem is to determine X that minimizes the residuals in the mass
balance. This calculation is performed as follows:

minimize R as a function of X where R = A′ × (10C)−T (12)

and C = 10(K+A×X′) (13)

Minimization can be performed using all element of R using Newton-Raphson method for
example or using other nonlinear optimization methods on some summation of R such as
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sum of squares or sum of absolute values of residuals (Brassard and Bodurtha, 2000). In this
case R would be a 2× 1 vector of mass balance residuals.

The Fe system versus pH can be solved according to the method outlined above and the
results are shown in the Figure below.
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Fig. 1. Total iron of 10 µ M speciation versus pH not allowing precipitation

For supersaturated systems the criteria must be changed to allow for precipitation of mineral
phases. The solid phases must be taken account in the mass balance expression and the new
Ksp value must be satisfied. Usually speciation codes change the set of components by taking
the precipitated species as a new component. Here I use the approach of Carrayrou et al.
(2002) and simply add a new unknown and a new relationship for each solid phase that is
precipitated.

For the Fe(III) system the solid phase I’ll consider here is amorphous ferric hydroxide
Fe(OH)3(s). We need to write the reaction as a precipitation reaction:

Fe3+ + 3H2O ⇀↽ Fe(OH)3(s) + 3H+ (14)

This relationship can be added to the existing tableau

Table 2 defines the chemical equilibrium problem. The speciation versus pH was calculated
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H Fe logK species

1 0 0 H+

0 1 0 Fe3+

-1 0 -14 OH–

-1 1 -2.19 FeOH2+

-2 1 -5.67 Fe(OH) +
2

-4 1 -21.6 Fe(OH) –
4

-3 1 -6 Fe(OH)3(s)

TOTH FeT
Table 2
Tableau for Fe–H system including one possible solid phase.

for this system using the Matlab program developed here. For FeT = 10µM and pH in the
range 2 to 12.5 the results are shown in Figure 2. Note, by specifying the pH we do not need
to input TOTH. At fixed pH this system only has one variable to solve for, [Fe3+]
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Fig. 2. Total iron of 10 µ M speciation versus pH. (a) soluble species versus pH (b) solid species
(amorphous Fe(OH)3(s)) (c) mass balance error as the absolute value of the sum of all values in R
(d) plot of the saturation index versus pH.

The corresponding matlab code used to generate Figure 2 is given as Appendix 1. The
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function call to this code is given as follows:

chem_equilib_Fe_fixedpH(2:0.1:12.5,[1e-5])

where the script is saved in a file name

chem_equilb_Fe_fixedpH.m

and takes a pH vector and total Fe as input parameters.

Anyone interested in utilizing this approach to solving simultaneous (and heterogeneous)
equilibria can modify the program as necessary. All that is required is to change the matrix
definitions to reflect the appropriate tableau and to change the initial guesses.

3 Numerical Method

In describing the numerical method used to solve simultaneous equilibria it is helpful to
break up the Tableau into smaller matrices. For Ncp solid phases, NC solution species and
NX components we can define the following matrices:

name dimension description

Asolution NC ×NX stoichiometry matrix for solution species

Asolid Ncp ×NX stoichiometry matrix for solid species

Ksolution NX × 1 logK values for solution species

Ksolid Ncp × 1 logK values for solid species

T NX × 1 total of each component

Xsolution NX × 1 component concentrations

Xcp Ncp × 1 solid phase concentrations

C NC × 1 species concentrations

Rmass NX × 1 mass balance residuals

RSI Ncp × 1 saturation index criteria

The Newton-Raphson method is an iterative gradient method. Starting with an initial guess
the residual vector and the gradient matrix, the Jacobian, is calculated. The Jacobian is used
to refine the guess and the process is repeated until a convergence criteria is satisfied.

The mass balance residual vector (Rmass) is calculated as follows:
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logC = Ksolution + Asolution× log10(Xsolution) (15)

C = 10.logC (16)

Rmass = AsolutionT ×C + Asolid×Xsolid−T (17)

(18)

The residual for the saturation index criteria is calculated as follows:

Q = AsolidT × log10(Xsolution) (19)

SI = 10.(Q+Ksolid) (20)

RSI = 1− SI (21)

(22)

Notice the residual function for the saturation index is expressed as one minus the saturation
index. This criteria forces the solution towards a saturation index (SI) of 1, which is the
criteria for equilibria with a solid phase.

The overall objective function, R is obtained by “stacking” Rmass and RSI

R =

Rmass

RSI

 (23)

In the same way the overall optimization parameter vector X is defined as“stacking” Xsolution
and Xcp

X =

Xsolution

Xcp

 (24)

Consider the elements of Asolution being ai,j and for Asolid the corresponding elements
are api,j. Similarly the elements of the saturation index vector are sii and for the solution
component vector xsi. The gradient matrix (Z) for each iteration can be calculated as follows:

8



Zj,k |j=1,Nx
k=1,Nx =

Nc∑
i=1

ai,j · ai,k
(

[Ci]

xsk

)
(25)

Zj,k |j=1,Nx
k=Nx+1,Nx+Ncp = apj,k−Nx (26)

Zj,k |j=Nx+1,Nx+Ncp
k=1,Nx = −apk,j−Nx ×

(
sij−Nx

xsk

)
(27)

Zj,k |j=Nx+1,Nx+Ncp
k=Nx+1,Nx+Ncp = 0 (28)

(29)

Note that in Equation 28 there was a typo on the original Carrayrou et al. (2002) paper in
that the negative sign was missing.

At each iteration the jacobian (Z) and the residual vector R are calculated. The next guess
for X is determined as follows:

deltaX = −Z−1 ·R (30)

one over del = max[1,−1× deltaXT ./(0.5×XT )] (31)

del =
1

one over del
(32)

X = X + del × deltaX (33)

Note, the del term is introduced so that the iterations will not go into negative concentration
values. This procedure is presented by (Bethke, 1996).
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Appendix 1: fixed pH Fe-H speciation matlab script with embedded Newton-
Raphson functions

% Carrayrou et al AIChE journal 2002, 48, 894-904.

% implement their method using thier notation

% try HFO ppte as an example calc and at fixed pH

function II=chem equilib Fe fixedpH(pH,T);

warning(’off’); figure(1); clf

[KSOLUTION,KSOLID,ASOLUTION,ASOLID,SOLUTIONNAMES,SOLIDNAMES]=get equilib defn;

% initial guess

Fe guess=[-5.5];

guess=[10.^Fe guess];

numpts=size(pH,2);

Ncp=size(ASOLID,1);

iterations=1000; criteria=1e-16;

for i=1:size(SOLIDNAMES,1)

txt=[SOLIDNAMES(i,:),’=zeros(numpts,1);’]; eval(txt)

end

for i=1:size(pH,2)

% adjust for fixed pH

[Ksolution,Ksolid,Asolution,Asolid]=get equilib fixed pH(KSOLUTION,KSOLID,ASOLUTION,ASOLID,pH(i));

Asolid SI check=Asolid; Ksolid SI check=Ksolid;

% number of different species

Nx=size(Asolution,2); Ncp=size(Asolid,1); Nc=size(Asolution,1);

% calculate species using NR

solids=zeros(1,Ncp);

if i==1; [species,err,SI]=NR method solution(Asolution,Asolid,Ksolid,Ksolution,T’,[guess(1:Nx)]’,iterations,criteria); end

if i>1;

[species,err,SI]=NR method solution(Asolution,Asolid,Ksolid,Ksolution,T’,[species(2:Nx+1)],iterations,criteria);

end

for qq=1:Ncp

[Y,I]=max(SI);

if Y>1.000000001

Iindex(qq)=I;

Asolidtemp(qq,:)=Asolid SI check(I,:);

Ksolidtemp(qq,:)=Ksolid SI check(I,:);

solidguess(qq)=T(I)*0.5;

if i>1; txt=[’solidguess(qq)=’,SOLIDNAMES(I,:),’(i-1);’]; eval(txt); end

guess=[species(2:Nx+1)’ solidguess];

[species,err,SItst,solids]=NR method(Asolution,Asolidtemp’,Ksolidtemp,Ksolution,T’,guess’,iterations,criteria);

for q=1:size(solids,1);

txt=[SOLIDNAMES(Iindex(q),:),’(i)=solids(q);’]; eval(txt)

end

end

Q=Asolid*log10(species(2:Nx+1)); SI=10.^(Q+Ksolid); Ifirst=I;

end

Q=Asolid*log10(species(2:Nx+1)); SI=10.^(Q+Ksolid);

SI summary(i,:)=SI;

species summary(i,:)=species;

mass err summary(i,:)=(err(1));

Asolidtemp=[]; Ksolidtemp=[];

end

for i=1:size(species summary,2)

txt=[SOLUTIONNAMES(i,:),’=species summary(:,i);’]; eval(txt)

end

figure(1)

subplot(221);

h=plot(pH,Fe/T,pH,FeOH/T,pH,FeOH2/T,pH,FeOH4/T,pH,Fe2OH2/T,pH,Fe3OH4/T);

set(gca,’fontsize’,12); set(h,’linewidth’,2); set(gca,’linewidth’,2)

h=xlabel(’pH’); set(h,’fontsize’,12); h=ylabel(’fraction of total Fe’); set(h,’fontsize’,12)

title(’(a)’); %legend(’Fe’,’FeOH’,’FeOH2’,’FeOH4’,’Fe2OH2’,’Fe3OH4’,’Location’,’Best’,’Orientation’,’vertical’)

axis([min(pH) max(pH) 0 1])

subplot(222); h=plot(pH,HFO/T);

set(gca,’fontsize’,12); set(h,’linewidth’,2); set(gca,’linewidth’,2)
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h=xlabel(’pH’); set(h,’fontsize’,12); h=ylabel(’fraction of total Fe’); set(h,’fontsize’,12)

title(’(b)’)

axis([min(pH) max(pH) 0 1])

subplot(223); h=plot(pH,(mass err summary(:,1)));

set(gca,’fontsize’,12); set(h,’linewidth’,2); set(gca,’linewidth’,2)

h=xlabel(’pH’); set(h,’fontsize’,12); h=ylabel(’mass balance error (M)’); set(h,’fontsize’,12)

title(’(c)’)

axis([min(pH) max(pH) min(mass err summary(:,1)) max(mass err summary(:,1))])

subplot(224); h=plot(pH,SI summary); title(’SI summary’)

set(gca,’fontsize’,12); set(h,’linewidth’,2); set(gca,’linewidth’,2)

h=xlabel(’pH’); set(h,’fontsize’,12); h=ylabel(’SI’); set(h,’fontsize’,12)

axis([min(pH) max(pH) 0 1])

figure(1)

II=species summary;

end

% -------------------- NR method solids present

function [species,err,SI,solids]=NR method(Asolution,Asolid,Ksolid,Ksolution,T,guess,iterations,criteria)

Nx=size(Asolution,2); Ncp=size(Asolid,2); Nc=size(Asolution,1); X=guess;

for II=1:iterations

Xsolution=X(1:Nx); Xsolid=X(Nx+1:Nx+Ncp);

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species

Rmass=Asolution’*C+Asolid*Xsolid-T;

Q=Asolid’*log10(Xsolution); SI=10.^(Q+Ksolid);

RSI=ones(size(SI))-SI;

% calc the jacobian

z=zeros(Nx+Ncp,Nx+Ncp);

for j=1:Nx;

for k=1:Nx;

for i=1:Nc; z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/Xsolution(k); end

end

end

for j=1:Nx;

for k=Nx+1:Nx+Ncp;

%t=Asolid’;

% z(j,k)=t(k-Nx,j);

z(j,k)=Asolid(j,k-Nx);

end

end

for j=Nx+1:Nx+Ncp;

for k=1:Nx

z(j,k)=-1*Asolid(k,j-Nx)*(SI(j-Nx)/Xsolution(k));

end

end

for j=Nx+1:Nx+Ncp

for k=Nx+1:Nx+Ncp

z(j,k)=0;

end

end

R=[Rmass; RSI]; X=[Xsolution; Xsolid];

deltaX=z\(-1*R);
one over del=max([1, -1*deltaX’./(0.5*X’)]);

del=1/one over del;

X=X+del*deltaX;

tst=sum(abs(R));

if tst<=criteria; break; end

end

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species

RSI=ones(size(SI))-SI;

Rmass=Asolution’*C+Asolid*Xsolid-T;

err=[Rmass];

species=[C];

solids=Xsolid;
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end

% ----------- NR method just solution species

function [species,err,SI]=NR method solution(Asolution,Asolid,Ksolid,Ksolution,T,guess,iterations,criteria)

Nx=size(Asolution,2); Ncp=size(Asolid,1); Nc=size(Asolution,1); X=guess;

for II=1:iterations

Xsolution=X(1:Nx);

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species

Rmass=Asolution’*C-T;

Q=Asolid*log10(Xsolution); SI=10.^(Q+Ksolid);

RSI=ones(size(SI))-SI;

% calc the jacobian

z=zeros(Nx,Nx);

for j=1:Nx;

for k=1:Nx;

for i=1:Nc; z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/Xsolution(k); end

end

end

R=[Rmass]; X=[Xsolution];

deltaX=z\(-1*R);
one over del=max([1, -1*deltaX’./(0.5*X’)]);

del=1/one over del;

X=X+del*deltaX;

tst=sum(abs(R));

if tst<=criteria; break; end

end

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species

RSI=ones(size(SI))-SI;

Rmass=Asolution’*C-T;

err=[Rmass];

species=[C];

end

% ----- equilib definition ----------------

function [KSOLUTION,KSOLID,ASOLUTION,ASOLID,SOLUTIONNAMES,SOLIDNAMES]=get equilib defn;

KSOLUTION=[...

0

0

-1.404333360950650e+01

-2.773333609506498e+00

-6.286667219012998e+00

-2.177333443802598e+01

25.14+2*-14

49.7+4*-14];

ASOLUTION=[...

%H Fe

1 0

0 1

-1 0

-1 1

-2 1

-4 1

-2 2

-4 3 ];

SOLUTIONNAMES=strvcat(’H’,’Fe’,’OH’,’FeOH’,’FeOH2’,’FeOH4’,’Fe2OH2’,’Fe3OH4’);

% -------------- solid values

KSOLID=[...

-6.00000000000000e+00];

ASOLID=[...

-3 1 ];

SOLIDNAMES=strvcat(’HFO’);

end
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% ----------- for fixed pH ----------------

function [Ksolution,Ksolid,Asolution,Asolid]=get equilib fixed pH(KSOLUTION,KSOLID,ASOLUTION,ASOLID,pH)

[N,M]=size(ASOLUTION);

Ksolution=KSOLUTION-ASOLUTION(:,1)*pH;

Asolution=[ASOLUTION(:,2:M)];

[N,M]=size(ASOLID);

Ksolid=KSOLID-ASOLID(:,1)*pH;

Asolid=[ASOLID(:,2:M)];

end

4 LICENSE

Copyright 2019 Donald Scott Smith All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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