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SAARI’S HOMOGRAPHIC CONJECTURE
OF THE THREE-BODY PROBLEM

FLORIN DIACU, TOSHIAKI FUJIWARA, ERNESTO PÉREZ-CHAVELA,
AND MANUELE SANTOPRETE

Abstract. Saari’s homographic conjecture, which extends a classical state-
ment proposed by Donald Saari in 1970, claims that solutions of the Newtonian
n-body problem with constant configurational measure are homographic. In
other words, if the mutual distances satisfy a certain relationship, the configu-
ration of the particle system may change size and position but not shape. We
prove this conjecture for large sets of initial conditions in three-body problems
given by homogeneous potentials, including the Newtonian one. Some of our
results are true for n ≥ 3.

1. Introduction

In 1970 Donald Saari proposed the following conjecture [21]: In the Newtonian
n-body problem, if the moment of inertia, I =

∑n
k=1 mk|qk|2, is constant, where

q1, q2, . . . , qn represent the position vectors of the bodies of masses m1, . . . , mn, then
the corresponding solution is a relative equilibrium. In other words: Newtonian
particle systems of constant moment of inertia rotate like rigid bodies.

A lot of energy has been spent to understand Saari’s conjecture, but most of this
work failed to achieve crucial results. An early attempt at a proof using variational
techniques was, unfortunately, incorrect [18, 19]. More recently, the interest in
this conjecture has grown considerably due to the discovery of the “figure eight”
solution [5], which—as numerical arguments show—has an approximately constant
moment of inertia but is not a relative equilibrium.

Still, there have been a few successes in the struggle to understand Saari’s con-
jecture. McCord proved that the conjecture is true for three bodies of equal masses
[12]. Llibre and Piña gave an alternative proof of this case, but they never published
it [11]. Moeckel obtained a computer-assisted proof for the Newtonian three-body
problem for any values of the masses [14, 15]. Diacu, Pérez-Chavela, and Santo-
prete showed that the conjecture is true for any n in the collinear case for potentials
that depend only on the mutual distances between point masses [6]. There have
also been results, such as [4, 7, 8, 20, 24, 25], which consider the conjecture in other
contexts than the Newtonian one.
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A natural extension of the original Saari conjecture, namely Saari’s homographic
conjecture, was proposed by Donald Saari during an AMS-SIAM series of CMBS
lectures he gave in June 2002 in Illinois. This extended conjecture was then em-
phasized by Donald Saari during his talk at the Saarifest2005 and in his book [23].
In this extended conjecture the role of the moment of inertia is played by the so
called configurational measure.

In the Newtonian n-body case UI1/2 defines the configurational measure of the
particle system (also called scaled potential), where U is the Newtonian potential.
Saari’s homographic conjecture claims that every solution of constant configura-
tional measure is homographic (see Section 2 for more details). In particular, if the
moment of inertia is constant, it can be shown that the potential U is constant;
therefore the configurational measure is constant and every homographic solution
with constant moment of inertia is a relative equilibrium. This reasoning shows
why Saari’s conjecture is a particular case of Saari’s homographic conjecture.

Saari’s homographic conjecture covers new territory. While in Saari’s conjecture
collisions are excluded (because they lead to an unbounded potential, therefore to
a non-constant moment of inertia) and the motion remains bounded (because the
moment of inertia is constant), both collision and unbounded orbits may occur in
Saari’s homographic conjecture.

Moreover, Saari’s homographic conjecture is important for astronomy. Homo-
graphic solutions are known to exist in the solar system. It is often said that the
Sun, Jupiter, and the Trojan cluster of asteroids move like a relative equilibrium
solution of the three-body problem, but this fact is true only in a first approxi-
mation. Jupiter orbits an ellipse around the Sun, although this ellipse is almost
a circle. Therefore the motion of the system formed by the Sun, Jupiter, and the
Trojan asteroids is better described as a homographic solution than as a relative
equilibrium of the three-body problem.

In this paper we are primarily interested in Saari’s homographic conjecture of
three-body problems given by homogeneous potentials, but some of our results are
also true for any number n ≥ 3 of bodies. The main results of this paper are
given in Theorems 1 through 8. Theorem 1 shows that, for homogeneous potentials
of order −a, with a < 2, Saari’s homographic conjecture is true for any total-
collision solution of the planar or spatial n-body problem. Theorem 2 validates
Saari’s homographic conjecture for 0 < a < 2 for any type of collision in the n-
body case. Theorem 3 shows that Saari’s homographic conjecture is correct in the
rectilinear case for 0 < a < 2. Theorem 4 shows Saari’s homographic conjecture
to always be valid in the collinear case. Theorem 5 proves that, for 0 < a < 2,
Saari’s homographic conjecture is true in the three-body problem if the solutions
stay away from the paths that make them scatter asymptotically towards rectilinear
central configurations. Theorem 6 proves that Saari’s homographic conjecture is
correct in the Newtonian three-body problem with equal masses and non-negative
energy. Theorem 7 shows that for any given initial configuration of three bodies,
Saari’s homographic conjecture is valid if the chosen angular momentum is large
enough. Finally, Theorem 8 proves that if the angular momentum is chosen first,
then Saari’s homographic conjecture is true if the initial positions are taken close
enough to an equilateral triangle of a certain size.

The key tool for obtaining these results is provided by what we call Fujiwara
coordinates, which were introduced by one of us. The motivation behind defining
them is explained in Section 5.
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The paper is structured as follows. Section 2 introduces some notations and
definitions and gives a precise statement of Saari’s homographic conjecture. Section
3 deals with the evolution of the moment of inertia, which is then used in Section 4 to
prove Theorems 1, 2, and 3. Besides introducing the Fujiwara coordinates, Section
5 proves a lemma that characterises the homographic solutions relative to the new
Fujiwara variables and proves Theorem 4. Section 6 studies the evolution of the
triangle’s shape formed by three bodies and the connection of this shape with central
configurations and homographic solutions. In Section 7 we characterise the non-
homographic solutions that would contradict Saari’s homographic conjecture. This
characterisation is used in the next sections towards showing that non-homographic
solutions are impossible. Section 8 derives a condition that must be satisfied by
the non-homographic candidate. This condition is crucial for proving the other
theorems. Sections 9 and 11, which prove Theorems 5 and 6, are separated by
Section 10, whose goal is to study the analytic behaviour of the solutions near
rectilinear central configurations. Finally, Section 12 clarifies Theorems 7 and 8.

2. Notation and definitions

In this paper we consider point-mass problems given by homogeneous potential
functions of the form

U =
1
a

∑ mjmk

ra
jk

,

where a > 0 is a constant, mk are the masses, rjk = |qj − qk| define the mutual
distances between bodies, and qk represent the coordinates of the point masses.
(The terms point mass, body, and particle denote the same concept. Similarly,
solution and orbit describe identical mathematical objects.) We are going to study
the equations of motion given by the system of differential equations

mk
dqk

dt
= pk,

dpk

dt
=

∑
j �=k

mjmk

ra+2
jk

(qj − qk) = gk(q),

where q is a generic notation for the variables qk. The kinetic energy, T , and the
total energy, H, are defined as

T =
1
2

∑ |pk|2
mk

and H = T − U, respectively.

Without loss of generality, we can fix the centre of mass of the particle system at
the origin of the frame by taking ∑

mkqk = 0.

We define the moment of inertia, I, and the angular momentum, C, as

I =
∑

mk|qk|2 = M−1
∑

mjmk|qj − qk|2 and C =
∑

qk ∧ pk,

where M =
∑

mk is the total mass and a ∧ b represents the outer product of the
vectors a and b. We use a · b for the inner product.
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Notice that the moment of inertia, I, and the potential, U , are homogeneous
functions of degree 2 and −a, respectively, so both functions are inversely propor-
tional in the sense that one increases while the other one decreases. This observa-
tion leads to the notion of configurational measure, UIa/2, which is a homogeneous
function of degree zero.

A solution of our problem is called homographic if the configuration of the par-
ticles remains similar with itself for all times. In other words, there exists a scalar
R = R(t) > 0 and an orthogonal matrix Ω = Ω(t) such that, for all t,

qk(t) = R(t)Ω(t)qk(t0),

where t0 is some fixed moment in time.
In particular, a solution is called homothetic if dilation/contraction occurs with-

out rotation. This situation happens when Ω is the unit matrix. Similarly, a solution
is called a relative equilibrium if rotation takes place without dilation/contraction.
This scenario appears when R = 1.

Our goal here is to shed light on the following conjecture. Most of our results
will be restricted to the three-body case.

Conjecture 1 (Saari’s homographic). If in the n-body problem given by a homo-
geneous potential of degree −a, with a > 0, the configurational measure is constant,
then the corresponding solution is homographic.

3. Evolution of the moment of inertia

In this section, we consider the evolution of the moment of inertia for constant
configurational measure in the general planar, R2, or spatial, R3, n-body problem.

So, unless otherwise specified, we assume the configurational measure constant,
and write

µ = UIa/2.

The Lagrange-Jacobi identity yields

d2I

dt2
= 2

∑ |pk|2
mk

− 2aU = 4H + 2(2 − a)U = 4H + 2(2 − a)µI−a/2,

where H is the total energy. In the derivation of this identity we used the fact that
U =

(
UIa/2

)
I−a/2 = µI−a/2. Integrating the Lagrange-Jacobi identity for a �= 2,

we obtain
1
2

(
dI

dt

)2

+
(
−4HI − 4µI(2−a)/2

)
= −2B,

where B is an integration constant. Let us write

(1) Φ(I) = −4HI − 4µI(2−a)/2.

Then the evolution of the moment of inertia for µ = constant is described by the
equation

(2)
d2I

dt2
= −∂Φ(I)

∂I
,

which leads to the first integral

(3)
1
2

(
dI

dt

)2

+ Φ(I) = −2B.
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Notice that the physical region of Φ(I) is Φ(I) ≤ 0 because

(4) Φ(I) = −4HI − 4UI = −4I(H + U) = −4IT.

Moreover, the constant B must be positive or zero. To see this, combine equations
(3) and (4) to obtain

(5) 4IT − 2B =
1
2

(
dI

dt

)2

= 2
(∑√

mk qk · pk√
mk

)2

.

The application of the Cauchy-Schwartz inequality,

(6)
(∑√

mk qk · pk√
mk

)2

≤
(∑

mk|qk|2
) (∑ |pk|2

mk

)
= 2IT,

to the right hand side of equation (5) leads to

4IT − 2B ≤ 4IT,

therefore B ≥ 0. Notice that the equality in the Cauchy-Schwartz inequality (6),
and therefore the value B = 0, take place if and only if there exists a scalar λ, which
may depend on time, such that pk/

√
mk = λ

√
mk qk, a relationship equivalent to

(7) pk = λmkqk.

We can now prove the following result.

Lemma 1. For any solution of constant configurational measure of the planar, R2,
or spatial, R3, n-body problem, B = 0 if and only if the motion is homothetic.

Proof. As shown above, if B = 0, relation (7) takes place. Integrating equation (7),
we obtain

(8) qi(t) = exp
(∫ t

0

λdt

)
qi(0),

which means that the motion is homothetic. Conversely, if the motion is homo-
thetic, relation (7) takes place, so B = 0. �

For the Newtonian case, a = 1, we have Φ(I) = −4HI − 4µ
√

I with µ > 0 (see
Figure 1).

Figure 1. The graph of Φ(I) in the Newtonian case with H < 0
(left) and H ≥ 0 (right). The qualitative behaviour of Φ(I) is
similar for all values of a with 0 < a < 2 but very different for
a = 2 or a > 2.
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Note that the mutual distances, rjk, of orbits with µ = constant and a > 0
satisfy the inequality

(9)
(

mjmk

aµ

)2/a

I ≤ r2
jk ≤ M

mjmk
I,

which is derived from the relationships mjmkr2
jk ≤ MI and aµI−a/2 = aU ≥

mjmk/ra
jk.

We can now prove the following lemma.

Lemma 2. If µ = constant and a > 0, then every collision is a total collision.

Proof. At any collision, at least one of the mutual distances, rjk, must tend to zero.
Then, according to inequality (9), the moment of inertia must tend to zero (I → 0),
a fact that implies total collision. �

Similarly, if one of the mutual distances, rjk, tends to infinity, inequality (9)
implies that I and all mutual distances tend to infinity.

We can now categorize the orbits with µ = constant and 0 < a < 2 as follows:
(a) B = 0: The forward orbit or the backward orbit has a total collision, so

I → 0. We will treat this case in Section 4.
(b) B > 0 and H ≥ 0: There is a solution, Imin, of Φ(I) = −2B for which

dI/dt = 0. According to (9), r2
jk ≥

(
mjmk

aµ

)2/a

Imin. For t → ∞, I → ∞
and rjk → ∞. We will treat this case in Sections 9 and 11.

(c) B > 0 and H < 0: There are two solutions, Imin and Imax, of Φ(I) = −2B.
The moment of inertia, I, oscillates between these two values. By (9), the

mutual distances are bounded from above and below,
(

mjmk

aµ

)2/a

Imin ≤
r2
jk ≤ M

mjmk
Imax. This case will be treated in Section 12.

4. Collision orbits

In this section, we will show that Saari’s homographic conjecture is true for orbits
that encounter collisions in the future or in the past.

Theorem 1. For the n-body problem given by a potential with a < 2, every total
collision solution of constant configurational measure is homothetic.

Proof. For a < 2, consider a solution that experiences a total collision forwards or
backwards in time and for which µ = constant. Since

1
2

(
dI

dt

)2

+
(
−4HI + 4µI(2−a)/2

)
= −2B

and
lim
I→0

(
−4HI + 4µI(2−a)/2

)
= 0 for a < 2,

the total collision, which occurs when I → 0, can take place only if −2B ≥ 0. But
we already know that B ≥ 0. Thus, for a < 2, the total collision can take place if
and only if B = 0. By Lemma 1, the orbit is homothetic. �

An obvious consequence of Theorem 1 and Lemma 2 is the following result,
which shows that, for appropriate homogeneous potentials, Saari’s homographic
conjecture is true for collision orbits in general.
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Theorem 2. For 0 < a < 2, any collision orbit with µ =constant is homothetic.

We can now also show that the extended conjecture is true in the rectilinear
(one-dimensional) case.

Theorem 3. For 0 < a < 2, every rectilinear solution of the n-body problem that
has constant configurational measure is homothetic.

Proof. We can easily show (see e.g. [6]) that every n-body rectilinear orbit with
attractive force performs a collision in the future or in the past. Then Theorem 2
provides the proof. �

5. Fujiwara coordinates

In this section, we introduce some new coordinates, which were proposed by one
of us. They will help us describe the shape of the planar configuration formed by
the point masses.

We employ complex variables to express our dynamical variables in R2. For
(ax, ay), (bx, by) ∈ R

2, we write a = ax + iay, b = bx + iby ∈ C. We use the
following notation: a† = ax − iay for the complex conjugate, a · b = axbx + ayby for
the inner product, and a ∧ b = axby − aybx for the outer product. Then we have

a†b = a · b + ia ∧ b.

Valid in the planar n-body problem for any n ≥ 3, the Fujiwara coordinates, Qk,
are defined by

(10) Qk = exp
(
−iC

∫ t

0

dt

I

)
qk√
I
.

The scaling factor, 1/
√

I(q), makes the Fujiwara coordinates independent of size,
and the phase factor exp(−iC

∫
dt/I) also makes them independent of the angular

momentum. Indeed, we can easily check that

(11)
∑

mk|Qk|2 = 1

and

(12)
∑

mkQk · dQk

dt
+ i

∑
mkQk ∧ dQk

dt
=

∑
mkQ†

k

dQk

dt
= 0.

So in terms of Fujiwara coordinates, the moment of inertia and the angular mo-
mentum become I(Q) = 1 and C(Q) = 0.

Notice that relative to the coordinates qk, the particle system is rotating as a
whole with angular velocity C/I(q). In Fujiwara coordinates, the phase factor is
chosen such that an observer placed in those coordinates rotates with the system at
the same angular velocity C/I(q). So for the observer, the angular velocity appears
to be zero.

All the above facts make us expect that the evolution of the particle system
expressed in Qk(t) coordinates describes the change in shape of the configuration
given by the original variables qk(t). Indeed, we have the following result.

Lemma 3. A planar solution expressed in coordinates qk(t) is homographic if and
only if dQk(t)/dt = 0 for all k and t.
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Proof. We can rewrite the definition of a homographic solution given in Section 2
as

qk(t) = R(t)eiθ(t)qk(0),
where R ≥ 0 describes the evolution of the particle system in size and θ ∈ R

describes its rotation. Without loss of generality, we can take as initial conditions
R(0) = 1 and θ(0) = 0. Then

I(t) =
∑

mk|qk|2 = R(t)2I(0)

and
C = R(t)2

dθ

dt
I(0) = I(t)

dθ

dt
.

Thus, the Fujiwara variables take the form

Qk(t) = exp
(
−iC

∫ t

0

dt

I

)
qk(t)√

I
= e−iθ(t) qk(t)

R(t)
√

I(0)
=

qk(0)√
I(0)

,

which is constant. Therefore, for any homographic orbit, dQk/dt = 0.
Conversely, if dQk/dt = 0, then Qk(t) = Qk(0). So the variables qk(t) satisfy

the relation

qk(t) =
√

I(t) exp
(

iC

∫
dt

I

)
Qk(0).

This implies that the solution is homographic. �

Using the fact that

dQk

dt
=

1√
I

exp
(
−iC

∫
dt

I

)(
dqk

dt
+

(
− 1

2I

dI

dt
− i

C

I

)
qk

)
,

we get the decomposition of the velocity and the kinetic energy in terms of Fujiwara
coordinates,

dqk

dt
=

(
i
C

I
+

1
2I

dI

dt

)
qk +

√
I exp

(
iC

∫
dt

I

)
dQk

dt
(13)

=
√

I exp
(

iC

∫
dt

I

) {(
i
C

I
+

1
2I

dI

dt

)
Qk +

dQk

dt

}
,

T (q) =
C2

2I
+

1
8I

(
dI

dt

)2

+
I

2

∑
mk

∣∣∣∣dQk

dt

∣∣∣∣
2

.(14)

To obtain equation (14) from equation (13), we have used the following “orthogo-
nality” relationships between the basis vectors iQk, Qk, and dQk/dt, k = 1, . . . , n,∑

mkQk ∧ Qk = 0,
∑

mkQk · dQk

dt
= 0,

∑
mkQk ∧ dQk

dt
= 0

and the “normalisation” ∑
mk|Qk|2 = 1.

Fujiwara coordinates are strictly related to Saari’s decomposition of velocities [22,
23] for the n-body problem. Using such decomposition one can express the velocity
as a sum of three orthogonal (at least in the coplanar case) components, namely v =
w1 +w2 +w3, where w1 describes changes in orientation for the system of particles,
w2 changes in size, and w3 changes in shape. Equations (13) and (14) are very
important because they give the explicit expression of the velocity’s decomposition
and provide explicit values of the vector’s magnitudes.
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The geometrical meaning of the coordinates we use here can be expressed in
terms of the so called shape sphere [13, 16]. If one reduces the configuration space
by rotations and translations, the three-body problem in the plane has a reduced
configuration space isomorphic to R3. This reduced space is endowed with a metric,
induced from the mass metric on the configuration space, which makes it a cone over
a sphere of radius 1

2 . This sphere is called the shape sphere and is to be thought
of as the space of oriented similarity classes of triangles [16]. The coordinates
we introduce below are coordinates on the fiber bundle obtained by the following
operations: projecting the motion on the shape sphere and then lifting uniquely
(starting from qk(0)/I1/2(0)) the result horizontally, for the connection defined by
Saari’s decomposition of velocities, on the fiber bundle whose total space is R

4 \{0}
(i.e. the configuration space modulo translations), base the shape sphere, fiber
C \ {0} and projection the quotient by the non-trivial similitudes.

The equations of motion expressed in Fujiwara variables are

mk
d2Qk

dt2
=

gk(Q)
I(a+2)/2

−
(

1
I

dI

dt
+ i

2C

I

)
mk

dQk

dt

−
(

1
2I

d2I

dt2
− 1

4I2

(
dI

dt

)2

− C2

I2

)
mkQk,

(15)

where gk(Q) =
∑

j �=k mjmk(Qj − Qk)/ra+2
jk (Q) and I = I(q).

Before closing this section, let us give a proof of Saari’s homographic conjecture
in the collinear n-body case.

Theorem 4. Any collinear n-body orbit with non-vanishing angular momentum is
homographic.

The proof of this theorem has been given by three of this paper’s authors in [6]
for any potential that depends only on the mutual distances. Alternatively, Saari
also proved this theorem in [23]. In the context of Fujiwara coordinates, the proof
goes as follows.

Proof. For collinear motion, we can write that

qk(t) = eiφ(t)rk(t),

with φ, rk ∈ R and φ(0) = 0. Then,

I =
∑

mk|qk|2 =
∑

mkr2
k,

C = 	
(∑

mkq†k
dqk

dt

)
= I

dφ

dt
,

where 	(z) is the imaginary part of the complex number z. Therefore

Qk(t) = exp
(
−iC

∫ t

0

dt

I

)
eiφ rk√

I
=

rk√
I
∈ R.

So, dQk/dt, d2Qk/dt2, and gk(Q) are real. Then, in equation (15) with C �= 0, only
one term,

−i
2C

I
mk

dQk

dt
,

is purely imaginary and all the other terms are real. Thus dQk/dt = 0. By Lemma
3, the motion is homographic.
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To prove this theorem for any potential that depends only on the mutual dis-
tances, as was shown in [6], it is enough to replace the term gk/I(a+2)/2 in equation
(15) with a suitable function that is real for real values of Qk. �

6. Shape evolution for constant configurational measure solutions

In this section, we prove two lemmas that characterise the solutions with µ =
constant. Then we provide a simple expression of the kinetic energy and obtain the
equations of motion that describe shape evolution.

Substituting equations (3) and (4) into equation (14), we obtain

(16)
∑

mk

∣∣∣∣dQk

dt

∣∣∣∣
2

=
B − C2

I2(q)
.

Since the left hand side must be non-negative, B is non-negative and

(17) B ≥ C2 ≥ 0.

Note that the fact that B − C2 ≥ 0 is nothing, but the well known Sundman
inequality (see [1, 23]) and the cases of equality are known to be homographic
motions whose configuration is central [1, 23]. We thus have the following result.

Lemma 4. Every planar solution of constant configurational measure is homo-
graphic if and only if B = C2.

Proof. The statement is obvious by equation (16) and Lemma 3. �

Equation (16) shows that if the configurational measure is constant, then
I2(q)

∑
mk|dQk/dt|2 = B −C2 = constant. Saari showed that the converse is also

true. He proved that I2(q)
∑

mk|dQk/dt|2 = constant if and only if µ =constant
[23]. Indeed, he derived a nice relation between I2(q)

∑
mk|dQk/dt|2 and µ =

U(q)Ia/2(q) = U(Q). In our notation, this relation is

d

dt

(
I2(q)

∑
mk

∣∣∣∣dQk

dt

∣∣∣∣
2
)

= 2I1−a/2(q)
dµ

dt
.

To prove this relation, let us take the innner product with dQk/dt and equation
(15), and obtain

∑
mk

dQk

dt
· d2Qk

dt2
=

1
I(a+2)/2

∑
gk(Q) · dQk

dt
− 1

I

∑
mk

∣∣∣∣dQk

dt

∣∣∣∣
2

.

Therefore

d

dt

(
I2

∑
mk

∣∣∣∣dQk

dt

∣∣∣∣
2
)

= 2I1−a/2
∑

gk(Q) · dQk

dt

= 2I1−a/2 dU(Q)
dt

.

The equations of motion in Fujiwara coordinates for constant configurational
measure solutions are given by substituting equations (1), (2), and (3) into (15).
We thus obtain

(18) mk
d2Qk

dt2
=

(
−1

I

dI

dt
− 2i

C

I

)
mk

dQk

dt
+

Gk(Q)
I(a+2)/2

− B − C2

I2
mkQk,
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where

(19) Gk(Q) = gk(Q) + aµmkQk,

I = I(q), and gk(q) =
∑

j �=k
mjmk

ra+2
jk

(qj − qk) = mk
d2qk

dt2 (see the equations of motion

in Section 2).
The configurations of the particle system for which Gk(Q) = 0 are called central

configurations. It is well known that for the planar three-body problem there are
five classes of central configurations (up to rotations and dilations/contractions):
two equilateral (one for each orientation the triangle that has the point masses at
its vertexes) and three rectilinear (one for each ordering of the bodies on a line) in
which the ratio of the distances between particles is given by a complicated formula
(obtained by Euler) that involves the values of the masses.

We can now prove the following lemma

Lemma 5. In the planar n-body problem, if the orbit is homographic, then the
bodies maintain the shape of the same central configuration for all times.

Proof. From Lemmas 3 and 4, dQ/dt = 0, d2Q/dt2 = 0, and B = C2 for every
homographic motion. Thus by equation (18), Gk = 0. This implies that the bodies
maintain the shape of the same central configuration for all time. �

The number of central configurations is known to be finite for arbitrary masses
only in the three- and four-body problem. In the planar three-body problem, the
number of central configurations is five. This fact was proved by Moulton [17]
for a > −1 and by Albouy [2] for a > −2. Hampton and Moeckel [10] recently
showed that the number of central configurations in the Newtonian planar four-
body problem is finite. For these cases, if the motion satisfies Gk = 0 for all time,
the bodies maintain the shape of the same central configuration, since there is
only a finite number of central configurations, and because once a solution forms
a central configuration, it cannot switch to another one due to continuity reasons.
Therefore, the motion is homographic. Thus, we obtained the following result.

Lemma 6. In the planar three-body problem for potentials with a > −2 and in the
planar four-body problem given by the Newtonian potential, if Gk = 0 for all time,
then the solution is homographic and the bodies maintain the shape of the same
central configuration.

Let us further define the quantity

ρ =

√
m1m2m3

M

∑ |G�(Q)|2
m�

,

which in a certain sense measures the magnitude of the mathematical object formed
by all functions Gk.

Relative to the possible values of B − C2 and ρ, there are four cases to discuss:
(i) B − C2 = 0, ρ = 0,
(ii) B − C2 = 0, ρ �= 0,
(iii) B − C2 > 0, ρ = 0,
(iv) B − C2 > 0, ρ �= 0.

Lemmas 3, 4, and 5 state that if B − C2 = 0, then ρ = 0. Therefore (i) is
possible, whereas (ii) is impossible. According to Lemmas 3, 4, and 6, if ρ = 0,
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then B − C2 = 0 for the problems stated in Lemma 6. Therefore, (i) is possible,
whereas (iii) is impossible in these cases.

Saari’s homographic conjecture states that the only possible solutions with µ =
constant occur in case (i), and that cases (ii), (iii), and (iv) are not realised. There-
fore, Lemmas 3, 4, 5, and 6 allow us to state Saari’s homographic conjecture of the
planar three-body problem as follows.

Conjecture 2 (Saari’s homographic). There are no solutions of the planar three-
body problem with µ = constant, B − C2 > 0, and ρ �= 0.

As shown above, Conjecture 1 and Conjecture 2 are equivalent in the planar
three-body problem for homogeneous potentials with a > −2 and in the planar
four-body problem for the Newtonian potential. In the following sections, we will
investigate the properties of the planar three-body motion with µ = constant,
B − C2 > 0, and ρ �= 0.

Before closing this section, let us simplify our equations. For this we consider a
fictitious (scaled) time variable, τ , defined as

(20) dτ =
dt

I(q)
,

and introduce what we call Fujiwara momenta by taking

(21) Pk = mk
dQk

dτ
= I(q)mk

dQk

dt
.

These simplifications are suggested by equations (10) and (16). Indeed, for solutions
with µ = constant, the corresponding Fujiwara kinetic energy becomes

(22)
∑ |Pk|2

mk
= B − C2 = constant,

and the equations of motion take the form

(23)
dPk

dτ
= −2iCPk + I(q)(2−a)/2Gk(Q) − (B − C2)mkQk.

7. Candidates for non-homographic solutions

Since our goal is to show that constant configurational measure solutions of the
planar three-body problem are homographic, we will seek candidates for constant
configurational measure non-homographic solutions, aiming to prove that they don’t
exist. Some simple algebra will show that for each such candidate in Fujiwara
coordinates, Qk, there are only two possible Fujiawara momenta, Pk and −Pk. We
start with the following result.

Lemma 7. If six given complex quantities, ξk and ηk, k = 1, 2, 3, satisfy the prop-
erties

∑
ξ†kηk = 0,

∑
ηk = 0, and

∑
mjmk|ξj − ξk|2 > 0, then there is a complex

number ζ, such that η� = ζ(ξ†j − ξ†k).

Proof. Since
∑

mjmk|ξj − ξk|2 > 0, at least two of the quantities ξj − ξk are not
zero, say ξ2 − ξ3 �= 0 and ξ3 − ξ1 �= 0. From η3 = −η1 − η2, it follows that
0 =

∑
ξ†kηk = (ξ†1 − ξ†3)η1 + (ξ†2 − ξ†3)η2. Therefore,

η1

ξ†2 − ξ†3
=

η2

ξ†3 − ξ†1
.
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Then the value of this ratio is the number ζ that we are seeking. Indeed, we have
η1 = ζ(ξ†2 − ξ†3) and η2 = ζ(ξ†3 − ξ†1), so η3 = −(η1 + η2) yields η3 = ζ(ξ†1 − ξ†2). �

A geometrical interpretation of this lemma is as follows [9]. For the three-body
problem, in coordinates having the origin at the centre of mass of the particle system
(which implies that

∑
pk = 0), if the moment of inertia is constant and the angular

momentum is zero (i.e.
∑

q†kpk = 0) and no triple-collision occurs (i.e. I > 0),
then the triangle whose vertices are q1, q2, q3 and the triangle whose perimeters are
p1, p2, p3 are inversely similar (i.e. there exists a ζ such that p� = ζ(q†j − q†k)).

Since
∑

Q†
kPk = 0,

∑
Pk = 0, and I(Q) = 1, Lemma 7 applies to the variables

Qk and Pk. Therefore there exist a non-negative variable κ and a real variable φ
such that

(24) P� = κeiφ(Q†
j − Q†

k),

with (j, k, �) = (1, 2, 3), (2, 3, 1), (3, 1, 2). From the fact that∑ |P�|2
m�

=
κ2

m1m2m3

∑
mjmk|Qj − Qk|2 =

Mκ2

m1m2m3
,

we can obtain the value for κ, which turns out to be constant. Indeed,

(25) κ =

√
m1m2m3

M

∑ |P�|2
m�

=

√
m1m2m3(B − C2)

M
.

It is easy to check that Qk and Gk also satisfy∑
Q†

kGk(Q) = 0.

Thus, by Lemma 7, there exist a positive value ρ and a real variable ψ such that

(26) G�(Q) = ρeiψ(Q†
j − Q†

k),

with

(27) ρ =

√
m1m2m3

M

∑ |G�|2
m�

.

Combining (24) and (26), and assuming ρ �= 0, we obtain the following relation-
ship between Pk and Gk:

(28) Pk =
κ

ρ
ei(φ−ψ)Gk.

It is important to note that the scale factor κ/ρ and the phase factor exp i(φ − ψ)
are the same for all k = 1, 2, 3.

Now consider the condition

µ = U(q)I(q)a/2 = U(Q) = constant.

Differentiation with respect to τ yields

0 = −dU(Q)
dτ

=
∑ 1

mk
Pk · gk(Q) =

∑ 1
mk

Pk · Gk(Q)

=
κ

ρ

∑ |Gk(Q)|2
mk

cos(φ − ψ)

=

√
(B − C2)

∑ |Gk(Q)|2
mk

cos(φ − ψ).
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If the orbit is not homographic, then B �= C2 and Gk �= 0; therefore, cos(φ−ψ) = 0.
From (28) we can then conclude that

(29) Pk = iε
κ

ρ
Gk, with ε = ±1, κ �= 0, Gk �= 0.

We have thus proved the following result.

Lemma 8. Consider a solution qk, k = 1, 2, 3, of the planar three-body problem
that is non-homographic and has constant configurational measure, and let Qk, k =
1, 2, 3, be its corresponding Fujiwara coordinates. Then the corresponding Fujiwara
momenta must be of the form (29), with k = 1, 2, 3.

By Lemma 8, our goal can be redefined as aiming to show that no Fujiwara
momenta of the form (29) can satisfy the equations of motion (23).

8. A condition for the non-homographic candidate

In this section, we derive a condition for the non-homographic candidate (29) to
satisfy the equation of motion (23). This condition, see (33), will later be useful
for proving our theorems about Saari’s homographic conjecture.

By differentiating equation (24) with respect to τ , we have

dP�

dτ
= κeiφ

{
i
dφ

dτ
(Q†

j − Q†
k) +

(
P †

j

mj
− P †

k

mk

)}

= i
dφ

dτ
P� − (B − C2)m�Q�.

(30)

Comparing this equation with (23), we obtain the condition

Gk

(
ε
dφ

dτ
+ 2εC +

ρ

κ
I(2−a)/2

)
κ

ρ
= 0.

Since we are analysing the motion with Gk �= 0 and κ �= 0, the necessary and
sufficient condition for the candidate (29) to satisfy the equation of motion (23) is

(31) ε
dφ

dτ
+ 2εC +

ρ

κ
I(2−a)/2 = 0.

To have an explicit expression for eiφ, we consider the quantities

γjk = mjQjPk − mkQkPj .

Since
∑

Pk = 0 and
∑

mkQk = 0, we have γ12 = γ23 = γ31. With the help of
equation (24), we obtain

γ12 = m1Q1P2 − m2Q2P1 = −κeiφ.

Using equation (29), it follows that

γ12 = iε
κ

ρ
(m1Q1G2 − m2Q2G1) = −iε

κ

ρ
m1m2m3

∑ 1
ra+2
jk

(Qj − Qk)Q�.

Thus,

eiφ = iε
m1m2m3

ρ

∑ 1
ra+2
jk

(Qj − Qk)Q�

and

ε
dφ

dτ
= m1m2m3e

−iφ d

dτ

(
1
ρ

∑ 1
ra+2
jk

(Qj − Qk)Q�

)
.(32)
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A straightforward computation, which uses the equality mkdQk/dτ = iεκGk/ρ and
equation (51) for drjk/dτ , yields

ε
dφ

dτ
= (a + 2)

m2
1m

2
2m

2
3∆

2

M

κ

ρ3

∑ m�

ra+4
jk

(
1

ra+2
k�

− 1
ra+2
�j

)2

+
κ

ρ

(
2aµ −

∑ mj + mk

ra+2
jk

)
,

where ∆ is twice the oriented area of the triangle Q1Q2Q3,

∆ = Q1 ∧ Q2 + Q2 ∧ Q3 + Q3 ∧ Q1.

Therefore condition (31) becomes

(33) −I(2−a)/2(q) =
m2

1m
2
2m

2
3

M2
(B−C2)

(
f1

ρ4
+

f2

ρ2

)
+2εC

√
m1m2m3

M
(B − C2)

1
ρ
,

with

f1 = (a + 2)m1m2m3∆2
∑ m�

ra+4
jk

(
1

ra+2
k�

− 1
ra+2
�j

)2

and

f2 =
M

m1m2m3

(
2aµ −

∑ mj + mk

ra+2
jk

)
.

Note that the variables rjk and ρ on the right hand side of equation (33) are
functions of Q, while the moment of inertia, I, on the left hand side depends on q.

It is important to remark that condition (33) will be crucial in our further un-
derstanding of Saari’s homographic conjecture. We will refer to it throughout the
rest of this paper.

9. Saari’s homographic conjecture for non-negative energy, I

In this section we will prove that Saari’s homographic conjecture of the three-
body problem is true for 0 < a < 2 in the non-negative energy case if the solutions
do not scatter to infinity in a particular way, namely by tending towards one of
the three possible rectilinear central configurations. We do not claim that the
conjecture is false and such motions occur, but at this point we cannot overcome
the technical difficulties required to prove the result in general. (In Section 11, we
will prove that such motions do not occur in the Newtonian case when all masses
are equal.)

Recall from Section 6 that there are three rectilinear central configurations in
the three-body problem. We will call them the rectilinear central configurations 1,
2, and 3, in agreement with the index of the middle mass, namely (m3, m1, m2),
(m1, m2, m3), and (m2, m3, m1), respectively. Each case corresponds to a certain
value of the configurational measure; we call them the critical values of µ and denote
them by µ

(1)
c , µ

(2)
c , and µ

(3)
c .

For each k = 1, 2, 3, µ(Q) = µ
(k)
c defines solutions that pass through the recti-

linear central configuration k. We call such solutions “critical paths,” see Figure 2,
where we have taken q1 = (−1, 0), q2 = (1, 0) and q3 = (x, y). This can be done
without loss of generality because µ(Q) is invariant under translation, rotation, and
scaling of the original variables qk.
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Figure 2. The critical paths for a = 1, q1 = (−1, 0), q2 = (1, 0)
and q3 = (x, y). The left: m1 = 4, m2 = 2, m3 = 1. The right:
m1 = 1000, m2 = 100, m3 = 1.

We can now prove the main result of this section.

Theorem 5. In the planar three-body problem with non-negative energy for a poten-
tial satisfying 0 < a < 2, Saari’s homographic conjecture is true if the configuration
is not on any of the critical paths given by µ = µ

(k)
c .

Proof. From equations (1), (2), and (3) for 0 < a < 2 and H ≥ 0, it follows that
I → ∞ when t → ∞. Then, from the left hand side of equation (33), we conclude
that I(2−a)/2 → ∞.

We can now omit from our consideration all collision solutions. Indeed, we
already proved that Saari’s homographic conjecture is true for collision orbits for
homogeneous potentials with 0 < a < 2; see Theorem 2. Therefore, we can restrict
our analysis to collision-free solutions.

By (9), the mutual distances in Fujiwara coordinates are bounded from below
and from above by constants,

(34)
(

mjmk

aµ

)2/a

≤ r2
jk(Q) = |Qj − Qk|2 ≤ M

mjmk
.

Then f1 and f2 are finite in the right hand side of equation (33). To make the
right hand side of this equation infinite, let ρ → 0 (namely, Gk → 0) for t → ∞.
Consequently every solution must asymptotically approach a central configuration.
Since the equilateral central configurations are isolated minima of the configura-
tional measure (see e.g. [26]), the orbit cannot tend to an equilateral triangle.
Therefore, the only possibility is that the particle system tends to one of the rec-
tilinear central configurations along a critical path. Thus the configuration must
belong to one of the critical paths defined by a configurational measure that takes
the value µ

(k)
c , k = 1, 2, 3. This completes the proof. �

An alternative proof of the theorem above was proposed by Alain Albouy and
Alain Chenciner after they read an earlier version of this paper. The main advantage
of their proof is that it holds for any number of bodies. Their proof is a direct
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consequence of Chazy’s expansion [3]. We hope that Chenciner and Albouy will
publish their proof in the future.

10. Analytic behaviour near the rectilinear central configurations

In this section, we consider the behaviour of the functions f1, f2, and ρ near the
rectilinear central configurations along the critical path in the Newtonian
(a = 1) three-body equal-mass case. Without loss of generality, we can take
m1 = m2 = m3 = 1. Then the three critical paths are identical and have the
same configurational measure, µ(Q) = 5/

√
2 (see Figure 3).

-4 -2 2 4

-4

-2

2

4

Figure 3. The critical path for m1 = m2 = m3 = 1, a = 1,
q1 = (−1, 0), q2 = (1, 0), and q3 = (x, y).

Let us observe that f1(Q), f2(Q), and ρ(Q) are functions of rjk(Q) = |Qj−Qk| =
|qj − qk|/

√
I(q), that depend on the shape of the triangle q1q2q3, where the shape

is a similarity class of the triangle. We say that two triangles belong to the same
similarity class if they have the same shape. Therefore without loss of generality we
can fix the shape of the triangle by taking q1 = (−1, 0), q2 = (1, 0) and q3 = (x, y).

Then

Qk = qk

√
3

6 + 2(x2 + y2)

and

µ(Q) =

√
3 + x2 + y2

6

(
1 +

2√
(x − 1)2 + y2

+
2√

(x + 1)2 + y2

)
.

The three rectilinear central configurations are given by (x, y) = (−3, 0), (0, 0), and
(3, 0). These configurations are mutually equivalent, so the behaviour near (0, 0) is
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the same as near (±3, 0). Therefore we will further investigate only the behaviour
near the origin.

Notice that in the neighbourhood of (0, 0), µ(Q) is of the form

µ(Q) =
5√
2

+
29x2 − 7y2

6
√

2
+

331x4 − 850x2y2 + 79y4

72
√

2
+ higher order terms.

Therefore the critical path µ(Q) = 5/
√

2 near the origin behaves like

(35) y2 =
29
7

x2 − 7491
343

x4 + O(x6).

Observe that the function ρ2 along the critical path is of the form

ρ2(Q) =
841x2 + 49y2

18
+

11281x4 − 7570x2y2 − 455y4

54
+ . . .

= 58x2 − 8063
14

x4 + O(x6),
(36)

where for the last line we have used the series corresponding to the critical path
(35). Notice further that

f1(Q) = 147
√

2y2 +
(2377x2 − 1400y2)y2

√
2

+ higher order terms

= 609
√

2x2 − 144213
7
√

2
x4 + O(x6).

(37)

Here we have again used the series corresponding to the critical path (35).
Consequently

(38)
f1

ρ2
=

21√
2
− 4107

28
√

2
x2 + O(x4),

and similarly,

(39) f2(Q) = − 21√
2
− 423

√
2

7
x2 + O(x4).

Therefore we obtain that

(40)
f1

ρ2
+ f2 → − 7491

28
√

2
x2 + O(x4)

and

(41)
f1

ρ4
+

f2

ρ2
= − 7491

1624
√

2
+ O(x2) = − 7491

1624
√

2
+ O(ρ2).

This analysis shows that in the equal mass case, when the orbit approaches the
rectilinear central configuration along the critical path, the limit of f1/ρ4 + f2/ρ2

is finite.

11. Saari’s homographic conjecture for non-negative energy, II

The main goal of this section is to prove the following result.

Theorem 6. In the Newtonian equal-mass case of the three-body problem, Saari’s
homographic conjecture is true for all non-negative values of the energy.

Recall that by equations (1), (2), and (3), I → ∞ when t → ∞. We will
distinguish several cases. Let us start with a simple one.
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Proposition 1. In the Newtonian equal-mass case of the three-body problem,
Saari’s homographic conjecture is true for non-negative values of the energy and
zero angular momentum.

Proof. Since the angular momentum vanishes, i.e. C = 0, condition (33) becomes

(42) −
√

I =
B

9

(
f1

ρ4
+

f2

ρ2

)
.

By (41), the right hand side of (42) tends to a finite value when the motion ap-
proaches the origin, while the left hand side goes to infinity. This completes the
proof. �

In the non-zero angular momentum case, C �= 0, the key term in (33) is

2εC

√
B − C2

3
1
ρ
.

Since the left hand side of (33) is negative, the sign factor ε must be chosen such
that

εC = −|C|.
Then condition (33) becomes

(43) −ρ
√

I =
(

B − C2

9

) (
f1

ρ4
+

f2

ρ2

)
ρ − 2|C|

√
B − C2

3
.

To prove Theorem 6 for C �= 0, we have to analyse the behaviour of ρ(Q)
√

I(q)
with respect to the fictitious time variable τ . We will start by analysing ρ(Q) and
then continue with I(q).

In Appendix B, we show that ρ(Q) is given by

ρ2 = −(E1E2 + E2E3 + E3E1),

where E� are defined by

(44) E�(Q) = Ejk(Q) = mjmk

(
1

ra+2
jk (Q)

− aµ

M

)
.

Therefore
d

dτ
ρ2 = −dE1

dτ
(E2 + E3) −

dE2

dτ
(E3 + E1) −

dE3

dτ
(E1 + E2).

Then, using equations (44) and (51), we obtain

ρ2 dρ

dτ
= −a + 2

2
m1m2m3εκ∆

∑ 1
ra+4
jk

(
1

ra+2
k�

− 1
ra+2
�j

)

×
[
mkm�

(
1

ra+2
k�

− aµ

M

)
+ m�mj

(
1

ra+2
�j

− aµ

M

)]
.

Note that the right hand side is a function of Q.
To determine the behaviour of ρ near the origin, we take q1 = (−1, 0), q2 = (1, 0),

and q3 = (x, y). Then we have

ρ2 dρ

dτ
=

√
2εκ

3
xy(1218 + 7769x2 − 6022y2 + higher order terms).
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Now consider the orbit x → +0 and y → +0. Then, using the expression (35)
for the critical path, we are led to

ρ2 dρ

dτ
= εκ

(
58
√

406x2 +
47576

7

√
58
7

x4 + O(x6)

)
.

The sign factor ε must be negative because we are considering the limit ρ → 0.
Then, using the expression (36) for ρ2 near the origin along the critical path, we
obtain

dρ

dτ
= −κ

√
406

(
1 − 38711

812 × 406
ρ2 + O(ρ4)

)
.

Thus, the asymptotic behaviour of ρ is given by

ρ =
√

406κ(τ∞ − τ )
(
1 + O(ρ2)

)
=

√
406κ(τ∞ − τ )

(
1 + O

(
(τ∞ − τ )2

))
.

(45)

We can now analyze the asymptotic behaviour of I(q). From equations (1), (2),
and (3), solutions with H ≥ 0 have the property that I → ∞ when t → ∞. Also,

dI

dt
=

√
8HI + 8µI1/2 − 4B.

Since dτ = dt/I, we obtain

dτ =
dI

I
√

8HI + 8µI1/2 − 4B
.

Integrating this equality, we are led to the function τ (I). Then I → ∞ corresponds
to τ → τ (∞), which turns out to be finite. We write τ (I) = τ and τ (∞) = τ∞.
Then

τ∞ − τ =
∫ τ∞

τ

dτ =
∫ ∞

I

dI

I
√

8HI + 8µI1/2 − 4B
.

We further split our discussion into two cases: H = 0 and H > 0.
For H = 0,

τ∞ − τ =
1√
8µ

∫ ∞

I

dI

I1+1/4

(
1 + O

(
1√
I

))
=

1√
8µ

4
I1/4

(
1 + O

(
1√
I

))
.

Thus, we obtain

(46)
√

I =
2
µ

1
(τ∞ − τ )2

(
1 + O(τ∞ − τ )2

)
.

Combining equations (45) and (46), we have

ρ(Q)
√

I(q) =
2
√

406κ

µ

1
(τ∞ − τ )

(
1 + O(τ∞ − τ )2

)
→ ∞.

Therefore condition (43) is not satisfied near the origin. We have thus proved the
following result.

Proposition 2. In the Newtonian equal-mass case of the three-body problem,
Saari’s homographic conjecture is true for zero energy and all non-zero angular
momenta.
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For H > 0,

τ∞ − τ =
1√
8H

∫ ∞

I

dI

I1+1/2

(
1 − µ

2H

1√
I

+ O

(
1
I

))

=
1√
8H

(
2

I1/2
− µ

2H

1
I

+ O

(
1

I3/2

))
.

We thus obtain

1√
I

=
√

2H(τ∞ − τ ) +
µ

4H

1
I

+ O

(
1

I3/2

)

=
√

2H(τ∞ − τ ) +
µ

2
(τ∞ − τ )2 + O

(
(τ∞ − τ )3

)
=

√
2H(τ∞ − τ )

(
1 +

µ

2
√

2H
(τ∞ − τ ) + O

(
(τ∞ − τ )2

))
.

Therefore

(47)
√

I =
1√
2H

1
(τ∞ − τ )

(
1 − µ

2
√

2H
(τ∞ − τ ) + O

(
(τ∞ − τ )2

))
.

Then, for the left hand side of condition (43), we have

−ρ
√

I = −
√

406√
2H

κ

(
1 − µ

2
√

2H
(τ∞ − τ ) + O(τ∞ − τ )2

)

= −
√

406
2H

κ +
µ

4H
ρ + O(ρ2).

Note that the coefficient of the linear term in ρ is µ/4H, which is positive. Using
equation (41), the right hand side of condition (43) becomes

B − C2

9

(
− 7491

1624
√

2
+ O(ρ2)

)
ρ − 2|C|

√
B − C2

3
,

which means that the corresponding coefficient of the ρ term is negative. This
implies that condition (43) cannot be satisfied. Thus, we have proved the following
result.

Proposition 3. In the Newtonian equal-mass case of the three-body problem,
Saari’s homographic conjecture is true for positive energy and all non-zero angular
momenta.

The proof of Theorem 6 now follows from Propositions 1, 2, and 3.
We will end this section with the following result, inspired by the behaviour

observed in equation (41).

Proposition 4. In the Newtonian equal-mass case of the three-body problem of
constant configurational measure and non-zero angular momentum, if the particle
system forms a central configuration at some initial time instant, then it maintains
the same central configuration for all times.

Proof. This property is obvious for the equilateral central configurations because
the equilateral shape is an isolated minimum of the configurational measure µ(Q).
For the rectilinear central configurations, if a solution escapes from a rectilinear
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central configuration after having reached it at some time instant, then the time-
reversed orbit approaches this rectilinear configuration along the critical path with
finite I(q). Then, in condition (33), the left hand side is finite, while the right hand
side diverges as 1/ρ → ∞. This completes the proof. �

In principle, this result could be extended to the case C = 0 by estimating the
time dependence near the critical points on both sides of the equation,

(48) −
√

I =
B

9

(
f1

ρ4
+

f2

ρ2

)
.

12. General results

In this final section, we will prove a few general results that clarify Saari’s ho-
mographic conjecture for a large class of initial conditions. As shown in Section
6, to prove Saari’s homographic conjecture for the planar three-body problem suf-
fices to show that there are no solutions in case (iv), namely when µ = constant,
B − C2 > 0, and ρ �= 0. In Sections 9 and 11, we investigated the orbit in case
(iv) for non-negative energy. In Section 9, we pointed out that we can prove Saari’s
homographic conjecture for non-negative energy by showing that condition (33) is
violated near the rectilinear central configurations along the critical path. Then, in
Section 11, we applied this idea for the Newtonian equal-mass case. For negative
energy, we will further prove some additional properties.

Notice that, by equation (3), the moment of inertia oscillates for H < 0 between
Imin and Imax, which are the two solutions of the equation Φ(I) = −2B. Then the
fictitious time defined by equation (20),

τ (t) =
∫ τ(t)

0

dτ =
∫ t

0

dt

I(q)
,

is such that τ → ∞ when t → ∞.
We can now prove the following lemmas.

Lemma 9. For any solution of the planar three-body problem, there is a fictitious
time instant, τ0, such that drjk(Q(τ0))/dτ = 0 for some j, k, where rjk(Q) =
|Qj − Qk| = |qj − qk|/

√
I(q).

Proof. If the motion is homographic, then rjk(Q) = constant, therefore drjk(Q)/dτ
= 0 for all τ . Therefore consider a non-homographic solution. Since I(Q) = 1,
the only case in which drjk/dτ �= 0 for all j, k, and τ is the one in which rjk

tends to a constant when τ → ∞. This happens when the coordinates Qk have
a limiting shape: a triangle or a line. Since the angular momentum is zero in
Fujiwara coordinates, the variables Qk approach limiting positions, so Pk → 0.
Since

∑
|Pk|2/mk = B −C2 (constant), it follows that

∑
|Pk|2/mk = 0. Therefore

Pk = 0, k = 1, 2, 3. Consequently the solution is homographic, a contradiction that
proves the result. �

Lemma 10. Every solution of the planar three-body problem with constant config-
urational measure passes through at least one rectilinear or one isosceles configura-
tion.

Proof. By Lemma 9, there is a time instant τ0 such that drjk/dτ = 0. From
equation (51) in Appendix A, the equation drjk/dτ = 0 implies that ∆ = 0 (i.e.
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the area of the triangle vanishes) or that r�j = rk�. Therefore the corresponding
configuration is either collinear or isosceles. �

According to Lemma 10, we can prove the conjecture for H < 0 by showing that
condition (33) is violated only near rectilinear and isosceles configurations.

We can now add the following two results in case (iv) with no restrictions on the
values of the energy constant.

Theorem 7. For a given configuration q that is not a central configuration, there is
no constant configurational-measure solution of the planar three-body problem whose
initial configuration is the given q and for which B − C2 > 0 is small enough.

Proof. Since the configuration q is not central, necessarily ρ �= 0. Consider condition
(33) for a given configuration q. Then I(q), f1(Q), f2(Q), and ρ(Q) are given. If we
take B−C2 small enough to depend on the given q, then the right hand side becomes
very small while the left hand side is a given number. Under these circumstances,
condition (33) is not satisfied. This proves the result. �

Theorem 8. For given values of I(q), C, and B − C2 > 0, there are no constant
configurational-measure solutions of the planar three-body problem whose initial con-
figurations are close enough to an equilateral triangle.

Proof. We will show that the right hand side in condition (33) goes to infinity when
Q tends to an equilateral central configuration. Condition (33) will not be satisfied
for this limit, a fact that will prove the result.

To calculate the behaviour of f1(Q), f2(Q), and ρ(Q) near the equilateral con-
figurations, let us take q1 = (−1, 0), q2 = (1, 0), and q3 = (x,

√
3 + y). Then we

have

f1(Q) =
3(a + 2)3m1m2m3

64

(∑
mjmk

M

)2 (∑
mjmk

M

)3a/2

×
(

m1(x +
√

3y)2 + m2(x −
√

3y)2 + 4m3x
2

)
+ . . .

and

ρ2(Q) =
(

(a + 2)m1m2m3

4M

)2 (∑
mjmk

M

)a

×
(

m2
1(x +

√
3y)2 + m2

2(x −
√

3y)2 + 4m2
3x

2

− m1m2(x2 − 3y2) + 2m2m3x(x −
√

3y) + 2m3m1x(x +
√

3y)

)

+ higher order terms.

It is easy to show that f2(Q) → 0 for (x, y) → (0, 0). Therefore

f1(Q)
ρ2(Q)

+ f2(Q) → finite limit for (x, y) → (0, 0).

Let us prove that in the general-mass case, the value of this limit is positive and
depends on the direction of the path along which (x, y) → (0, 0). Note that the



6470 F. DIACU, T. FUJIWARA, E. PÉREZ-CHAVELA, AND M. SANTOPRETE

dominant term in ρ2,

m2
1(x +

√
3y)2 + m2

2(x −
√

3y)2 + 4m2
3x

2

− m1m2(x2 − 3y2) + 2m2m3x(x −
√

3y) + 2m3m1x(x +
√

3y),

is positive definite for (x, y) �= (0, 0). To see this, it is convenient to write ξ =
x +

√
3y and η = x −

√
3y. Then the term appears as

m2
1ξ

2 + m2
2η

2 + m2
3(ξ + η)2

− m1m2ξη + m2m3(ξ + η)η + m3m1(ξ + η)ξ

=(m2
1 + m2

3 + m3m1)ξ2 + (m2
2 + m2

3 + m2m3)η2

+ (2m2
3 − m1m2 + m2m3 + m3m1)ξη.

The discriminant is negative, as follows:

(2m2
3 − m1m2 + m2m3 + m3m1)2 − 4(m2

1 + m2
3 + m3m1)(m2

2 + m2
3 + m2m3)

= −3
(∑

mjmk

)2

< 0.

Therefore, the dominant term in the expansion of ρ is positive definite in the second
order for x and y. It is obvious that f1 is also positive definite in the same order
for x and y. Thus, f1/ρ2 tends to a positive finite value for (x, y) → (0, 0). But,
for general masses, the limiting value depends on the direction of the approach.
For example, if we approach the equilateral configuration vertically, for x = 0 and
y → 0, then

f1

ρ2
→ 3(a + 2)(m1 + m2) (

∑
mjmk)2

4m1m2m3(m2
1 + m1m2 + m2

2)

(∑
mjmk

M

)a/2

.

On the other hand, for the limit y = 0 and x → 0, we get

f1

ρ2
→

3(a + 2)(m1 + m2 + 4m3)
( ∑

mjmk

)2

4m1m2m3(m2
1 + m2

2 + 4m2
3 − m1m2 + 2m2m3 + 2m3m1)

(∑
mjmk

M

)a/2

.

For equal masses, the finite value does not depend on this direction, and f1/ρ2 +
f2 → 9(a + 2)/2. In any case,

f1(Q)
ρ4(Q)

+
f2(Q)
ρ2(Q)

∼ positive constant
ρ2(Q)

for (x, y) → (0, 0).

Therefore the right hand side of condition (33) goes to infinity at the limit for any
given value of B − C2 > 0. This completes the proof. �

It is interesting to remark that, in a certain sense, Theorems 7 and 8 complement
each other. While Theorem 7 shows that Saari’s homographic conjecture is true
for any initial positions if the initial velocities behave sufficiently well, Theorem 8
allows any initial velocities if the initial positions belong to some suitable region.

In light of Lemma 10, a complete proof of Saari’s homographic conjecture can be
given if condition (33) is shown impossible when solutions come close to rectilinear
and isosceles configurations. Only some technical aspects prevent us at this point
from obtaining such a proof of this result. Nevertheless, our numerical evidence
suggests that this approach is feasible.
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Appendix A. Derivative of the mutual distances

In this appendix, we will provide a formula for the derivative of the mutual
distances. Since

∑
m�Q� = 0, we have the identity

Mm�|Q�|2 + mjmkr2
jk(Q) = mj + mk.

Differentiating it, we obtain

(49) mjmkrjk
drjk

dτ
= −MQ� · P� =

εκM

ρ
Q� ∧ G�.

A straightforward computation of Q� ∧ G� yields

(50) Q� ∧ G� =
m1m2m3∆

M

(
1

ra+2
�j

− 1
ra+2
k�

)

with (j, k, �) = (1, 2, 3), (2, 3, 1) or (3, 1, 2), where ∆ is twice the oriented area for
the triangle Q1Q2Q3, ∆(Q) = Q1 ∧ Q2 + Q2 ∧ Q3 + Q3 ∧ Q1. Note that

m1m2Q1 ∧ Q2 = m2m3Q2 ∧ Q3 = m3m1Q3 ∧ Q1 =
m1m2m3

M
∆.

Equations (49) and (50) lead us to the desired formula,

(51) mjmkrjk
drjk

dτ
= m1m2m3

εκ∆
ρ

(
1

ra+2
�j

− 1
ra+2
k�

)
.

Appendix B. Expression for ρ

In this appendix, we derive a useful expression for ρ. The function E�(Q) = Ejk

is defined by equation (44). Using the identity
∑

j �=k mjmk(Qj −Qk) = −MmkQk,
we have

Gk(Q) = gk(Q) + aµmkQk =
∑
j �=k

(Qj − Qk)Ejk(Q).

Note that ∑
r2
jk(Q)E�(Q) = 0.

A straightforward computation yields the expression

|G�|2 = −
(∑

s<m

EsEm

)
r2
jk.

Comparing this expression with equation (26), namely |G�|2 = ρ2r2
jk, we obtain the

desired formula

(52) ρ2 = −
∑
s<m

EsEm.
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