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(Communicated by Abba Gumel)

Abstract. An SIR model with distributed delay and a general incidence func-
tion is studied. Conditions are given under which the system exhibits thresh-
old behaviour: the disease-free equilibrium is globally asymptotically stable if

R0 < 1 and globally attracting if R0 = 1; if R0 > 1, then the unique endemic
equilibrium is globally asymptotically stable. The global stability proofs use
a Lyapunov functional and do not require uniform persistence to be shown a

priori. It is shown that the given conditions are satisfied by several common
forms of the incidence function.

1. Introduction. The prevalence of disease in a population is often described by
an SIR model where the population is subdivided into three classes: susceptibles,
infecteds and recovereds (or removeds). The simplest forms of these models are
ordinary differential equations (ODEs) [10, 11]. In [4], a discrete delay model is
given to account for transmission by vectors (e.g. mosquitoes), where the delay τ
is used to account for a latent period in the vector. Allowing the vectors’ latency
periods to vary according to some distribution gives a model with a distributed
delay [23].

The delay appears in the incidence term which is typically the only nonlinearity,
and is therefore the “cause” of all “interesting behaviour”. Various forms have been
used for the incidence term, both for ODEs and for delay equations. Common
forms include mass action βSI [2, 18, 23], saturating incidence βS I

1+cI
[3, 24], and

standard (or proportional) incidence β SI
N

[10]. Changing the form of the incidence
function can potentially change the behaviour of the system.

In [14] a system of ODEs with a general incidence term f(S, I) is studied. Con-
ditions are found on f under which the standard threshold behaviour occurs: the
disease-free equilibrium is globally asymptotically stable forR0 < 1 and the endemic
equilibrium is globally asymptotically stable for R0 > 1.

The goal of this paper is to present a similar analysis for equations with a bounded
distributed delay and a general nonlinear incidence function. The conditions given
here are equivalent to those given in [14] for the ODE case. In Section 7, the
conditions are shown to apply to mass action, saturating incidence and, for an SI
model, standard incidence.
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The case of separable incidence, where f(S, I) = a(S)b(I) is studied in [13] for
discrete delay. The authors study an SIR system where the delay is included in
b(I), modelling vector transmission, and also an SEIR system where the delay
appears in both a(S) and b(I), modelling a fixed duration of latency. The work in
this paper extends their SIR analysis to distributed delay, while also allowing for
a more general class of incidence functions. Example 3 in Section 7 provides the
distributed delay version of their SIR analysis.

The approach here is to use a Lyapunov functional of the type used by Goh for
ODE models in ecology [7]. Earlier work [17, 19, 20, 21, 22] which used a similar
Lyapunov functional relied on knowing a priori that the system was uniformly
persistent. This is important because the Lyapunov functional is not defined if any
of the state variables are zero.

In this paper, we note that if the delay is bounded, then solutions for which
the disease is initially present will move to the interior of the state space and so
the Lyapunov function becomes defined. This approach greatly simplifies the work
(given that the delay is bounded) since it does not require uniform persistence to be
shown; rather, uniform persistence follows from the global stability. Issues related
to infinite delay are mentioned briefly in a remark at the end of Section 6.

The paper is organized as follows. The model is described in Section 2. In
Section 3, the basic reproduction number R0 is determined and the equilibria are
found. Local stability of the equilibria is studied in Section 4. The global dynamics
are resolved for R0 ≤ 1 in Section 5 and for R0 > 1 in Section 6. In Section 7,
examples are given of incidence functions that satisfy the assumptions that are used
throughout the paper.

2. The model. A population is divided into susceptible, infectious and recovered
(or removed) classes with sizes S, I and R, respectively. Recruitment of new in-
dividuals is into the susceptible class, at constant rate Λ. The death rates for the
classes are µS , µI and µR, respectively. The average time spent in class I before
recovery (or removal) is 1/γ. Thus, the total exit rate for infectives is µI+γ, which,
for biological reasons we assume is at least as large as µS ; that is, µI + γ ≥ µS .
Transmission of the disease is through vectors which undergo fast dynamics. Fol-
lowing [4] and [23], the vectors can be omitted from the equations by including
a distributed delay τ in the incidence term up to a maximum delay h > 0. The

incidence at time t is β
∫ h

0
k(τ)f(S(t), I(t− τ))dτ where k is a Lebesgue integrable

function which gives the relative infectivity of vectors of different infection ages. We

choose β so that
∫ h

0
k(τ)dτ = 1. It is assumed that the support of k has positive

measure in any open interval having supremum h so that the interval of integration
is not artificially extended by concluding with an interval for which the integral is
automatically zero.

The form of the function f is of fundamental importance. In this paper we
want to work with a function that is as general as possible, but still possesses the
properties necessary for conclusions to be made through mathematical analysis.
Because of this, we will introduce conditions on f which may appear technical.
However, as shown in Section 7, many commonly used incidence functions satisfy
these conditions. For now, we assume only the following.

(H1) f is a non-negative differentiable function on the non-negative quadrant.
Furthermore, f is positive if and only if both arguments are positive.



AN SIR MODEL WITH DELAY AND NONLINEAR INCIDENCE 839

The partial derivatives of f are denoted by f1 and f2. In Sections 4, 5 and 6, it will
be shown how extra conditions on f imply the local and global stability of either a
disease-free equilibrium or an endemic equilibrium.

In order to avoid excessive use of parentheses in some of the later calcuations,
we use the notation S = S(t), I = I(t) and Iτ = I(t− τ). The model equations are

dS

dt
= Λ− µSS − β

∫ h

0

k(τ)f(S, Iτ )dτ

dI

dt
= β

∫ h

0

k(τ)f(S, Iτ )dτ − (µI + γ)I

(1)

and
dR

dt
= γI − µRR.

Since R does not appear in the equations for dS
dt

and dI
dt
, it is sufficient to analyze

the behaviour of solutions to (1). The initial condition for (1) is

S(0) ∈ R≥0 and I(θ) = φ(θ) for θ ∈ [−h, 0],

where φ ∈ C = C([−h, 0],R≥0), the space of continuous functions from [−h, 0] to
R≥0, equipped with the sup norm: ‖φ‖ = supθ∈[−h,0] φ(θ). Standard theory of

functional differential equations [8] can be used to show that solutions of (1) exist
and are differentiable for all t > 0. Furthermore, the state space R≥0×C is positively
invariant.

Note that d
dt
(S + I) = Λ− µSS − (µI + γ)I ≤ Λ− µS(S + I), and so

lim sup
t→∞

(S + I) ≤
Λ

µS

.

It follows that the system is point dissipative. Without loss of generality, we assume
that S(t) + I(t) ≤ 2Λ

µS
for all t ≥ −h. A consequence of this is that we may assume

I is bounded above, which in turn implies dS
dt

is positive for small S, and so S is
positive for t > 0.

We say that disease is initially present if the initial condition satisfies I(θ0) > 0
for some θ0 ∈ [−h, 0]; since the initial condition is continuous, this means that
I is positive on some interval about θ0. Then, either I(t) is positive for some
t ∈ [0, θ0 + h] or dI

dt
(θ0 + h) > 0, and so I becomes positive. In either case, there

exists t1 ≥ 0 such that I(t1) > 0. Then for t ∈ [t1, t1+h], we have dI
dt

≥ −(µI+γ)I(t)
and so I is strictly positive on this interval. Furthermore, I(t) will remain bounded
below by the exponential, I(t1)e

−(µI+γ)(t−t1) for t ≥ t1.
Therefore, without loss of generality, we assume that any initial condition for

which the disease is initially present satisfies I(θ) > 0 for all θ ∈ [−h, 0]. Further-
more, we assume that for any t ≥ 0, we have I(t + θ) bounded away from 0 for
all θ ∈ [−h, 0]. This is useful in Section 6 when evaluating a Lyapunov functional
along solutions.

3. Equilibria and R0. For any values of the parameters, the disease-free equilib-
rium is given by

E0 = (S0, 0) where S0 =
Λ

µS

.
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The basic reproduction number [5] for the model is

R0 =
β

µI + γ
f2 (E0) . (2)

The presence and number of endemic equilibria depend on the form of the nonlin-
earity f , as well as the values of the parameters. In searching for equilibria, we note
that the equilibria of Equation (1) are the same as the equilibria of the correspond-
ing ordinary differential equation system. Sufficient conditions for the existence of
an endemic equilibrium are given in [6, 14, 15]. Here, we give the following result.

Theorem 3.1. If R0 > 1, then there exists an endemic equilibrium.

Proof. We look for solutions (S∗, I∗) of the equations dS
dt

= 0, dI
dt

= 0. We first note

that dS
dt

+ dI
dt

= 0 implies Λ− µSS
∗ − (µI + γ)I∗ = 0, and so S∗ = Λ−(µI+γ)I∗

µS
. Let

H(I∗) = βf

(

Λ− (µI + γ)I∗

µS

, I∗
)

− (µI + γ)I∗.

Then dI
dt

= 0 whenever H(I∗) = 0. Thus, any zero of H in the interval
(

0, Λ
µI+γ

)

corresponds to an equilibrium with S∗, I∗ > 0, that is, an endemic equilibrium.

Since f(0, I) = f(S, 0) = 0, it follows that H(0) = 0 and H
(

Λ
µI+γ

)

< 0. The

function H is continuous and so a sufficient condition for H to have a zero in
(

0, Λ
µI+γ

)

, is that H is increasing at 0. Thus, there is an endemic equilibrium if

0 <
dH

dI
(0) = −

µI + γ

µS

βf1(E0) + βf2(E0)− (µI + γ). (3)

Since f(S, 0) = 0 for all S, it follows that f1(E0) = 0 and so (3) is equivalent to
R0 > 1.

4. Local stability of the equilibria.

Theorem 4.1. If R0 < 1, then E0 is locally asymptotically stable.

Proof. We begin by linearizing Equation (1) at E0. In doing so, we note that
f(S, 0) = 0 for all S and so f1(E0) = 0. The linearization is

ds

dt
= −µSs(t)− β

∫ h

0

k(τ)f2(E0)i(t− τ)dτ

di

dt
= β

∫ h

0

k(τ)f2(E0)i(t− τ)dτ − (µI + γ)i(t).

(4)

Substituting the Ansatz (s(t), i(t)) = eλt(s0, i0) into (4) gives

s0λe
λt = −µSs0e

λt − β

∫ h

0

k(τ)f2(E0)i0e
λ(t−τ)dτ

i0λe
λt = β

∫ h

0

k(τ)f2(E0)i0e
λ(t−τ)dτ − (µI + γ)i0e

λt.

Cancelling eλt from each term and rearranging gives the homogeneous linear equa-
tion

0 = A0

[

s0
i0

]
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where

A0 =

[

− (λ+ µS) −βf2(E0)
∫ h

0 k(τ)e−λτdτ

0 βf2(E0)
∫ h

0
k(τ)e−λτdτ − (λ+ µI + γ)

]

.

There exist non-zero solutions if and only if det(A0) is zero. Thus, the characteristic
equation is

0 = (λ+ µS)

(

λ+ µI + γ − βf2(E0)

∫ h

0

k(τ)e−λτdτ

)

. (5)

We show that all solutions λ have negative real part. Suppose λ has non-negative
real part. Then, λ+ µS 6= 0. Also,

∣

∣

∣

∣

∣

βf2(E0)

∫ h

0

k(τ)e−λτdτ

∣

∣

∣

∣

∣

≤ βf2(E0)

∫ h

0

k(τ)
∣

∣e−λτ
∣

∣ dτ

≤ βf2(E0)

= R0 (µI + γ)

< (µI + γ)

≤ |λ+ µI + γ| ,

and so λ cannot be a solution of (5). Hence, all characteristic roots have negative
real part and therefore E0 is locally asymptotically stable [16, Chapter 2, Theorem
4.2].

We now give conditions on f that are used here to show that an endemic equi-
librium is locally asymptotically stable, and in Section 6 to show that it is globally
asymptotically stable. As a precondition, we assume that R0 > 1, guaranteeing the
existence of an endemic equilibrium E∗ = (S∗, I∗) (see Theorem 3.1).

(H2) sgn (f(S, I∗)− f(S∗, I∗)) = sgn (S − S∗) for all S > 0.

(H3) For all S, I > 0, f(S,I)
f(S,I∗) is in the closed interval with endpoints at 1 and I

I∗
.

(H4) Either f1(S
∗, I∗) > 0 or f2(S

∗, I∗) < f(S∗,I∗)
I∗

.

In order to appreciate that the hypothesis (H4) is not very restrictive, we consider
(H2) in a neighbourhood of S = S∗, deducing

0 ≤ f1(S
∗, I∗). (6)

Similarly, considering (H3) at S = S∗ and in a neighbourhood of I = I∗, we deduce

0 ≤ f2(S
∗, I∗) ≤

f(S∗, I∗)

I∗
. (7)

We can now see that (H4) is merely requiring that at least one of (H2) and (H3)
leads to a strict inequality. On the other hand if (H4) fails to be satisfied, then
the endemic equilibrium is still globally attractive (see Section 6) but is not locally
asymptotically stable, as the characteristic equation of the linearization at E∗ will
have λ = 0 as a root.
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Theorem 4.2. If R0 > 1, and (H2), (H3) and (H4) hold, then any endemic

equilibrium which exists is locally asymptotically stable.

Proof. The linearization of Equation (1) at an endemic equilibrium E∗ = (S∗, I∗)
is

ds

dt
= −µSs(t)− β

∫ h

0

k(τ)
[

f1(E
∗)s(t) + f2(E

∗)i(t− τ)
]

dτ

di

dt
= β

∫ h

0

k(τ)
[

f1(E
∗)s(t) + f2(E

∗)i(t− τ)
]

dτ − (µI + γ)i(t).

(8)

We demonstrate that all zeros of the characteristic equation have negative real part.
In order to find the characteristic equation, we substitute the Ansatz (s(t), i(t)) =
eλt(s0, i0) into (8) to get

s0λe
λt = −µSs0e

λt − β

∫ h

0

k(τ)
[

f1(E
∗)s0e

λt + f2(E
∗)i0e

λ(t−τ)
]

dτ

i0λe
λt = β

∫ h

0

k(τ)
[

f1(E
∗)s0e

λt + f2(E
∗)i0e

λ(t−τ)
]

dτ − (µI + γ)i0e
λt.

(9)

Cancelling eλt from each term and rearranging gives the homogeneous linear equa-
tion

0 = A

[

s0
i0

]

where

A =

[

− (λ+ µS + βf1(E
∗)) −βf2(E

∗)
∫ h

0 k(τ)e−λτdτ

βf1(E
∗) βf2(E

∗)
∫ h

0
k(τ)e−λτdτ − (λ+ µI + γ)

]

.

There exist non-zero solutions if and only if det(A) is zero. Thus, the characteristic
equation is

0 = (λ+ µS + βf1(E
∗)) (λ+ µI + γ)− (λ+ µS)βf2(E

∗)

∫ h

0

k(τ)e−λτdτ. (10)

Since (H2) and (H3) hold, the inequalities (6) and (7) are satisfied. Using the
equilibrium equation to replace f(E∗) in (7), it follows that

0 ≤ βf2(E
∗) ≤ µI + γ. (11)

Suppose λ is a solution of (10) with non-negative real part. Then, using (6) and
(11), we deduce
∣

∣

∣

∣

∣

(λ+ µS)βf2(E
∗)

∫ h

0

k(τ)e−λτdτ

∣

∣

∣

∣

∣

≤ |λ+ µS |βf2(E
∗)

∫ h

0

k(τ)
∣

∣e−λτ
∣

∣ dτ

≤ |λ+ µS |βf2(E
∗)

≤ |λ+ µS | (µI + γ)

≤ |(λ+ µS + βf1(E
∗)) (λ+ µI + γ)| ,

(12)

and so the characteristic equation (10) has solutions λ with non-negative real part
only if all of the inequalities in (12) are in fact equality. The final inequality is
strict unless f1(E

∗) = 0 (and λ = 0). The second last inequality is strict unless
f2(E

∗) = f(E∗)/I∗. Assumption (H4) implies at least one is strict and therefore
solutions to (10) must have negative real part. Thus, the endemic equilibrium E∗

is locally asymptotically stable.
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5. Global asymptotic stability for R0 ≤ 1. The expression for R0 given in
Equation (2) depends on the behaviour of f near the disease-free equilibrium E0,
which is locally asymptotically stable for R0 < 1. Results on the global dynamics
for R0 less than one will necessarily require further assumptions on the form of f .

(H5) 0 ≤ (S − S0) (f2(S, 0)− f2(S0, 0)) for all S > 0.

(H6) f(S, I) ≤ If2(S, 0) for all S, I > 0.

(H7.1) 0 ≤ (S − S0) (f2(S, 0)− f2(S0, 0)) for all S > 0 with equality only if
S = S0.

(H7.2) f(S, I) < If2(S, 0) for all S, I > 0.

Theorem 5.1. Suppose (H5) and (H6) hold. If R0 < 1, then the disease-free

equilibrium E0 is globally asymptotically stable. If R0 = 1, and one of (H7.1) and

(H7.2) holds, then E0 is globally attracting.

Proof. We begin by defining and differentiating the function U+(t), which will be
one of the terms involved in a Lyapunov functional U . Let

U+(t) =

∫ h

0

ν(τ)I(t − τ)dτ,

where

ν(τ) = β

∫ h

τ

k(s)ds. (13)

Note that ν(τ) > 0 for 0 ≤ τ < h since the support of k has positive measure near
h, and therefore, I ≥ 0 implies U+(t) ≥ 0 with equality if and only if I is identically
zero on the interval [t− h, t].

We now find the time-derivative of U+.

dU+

dt
=

d

dt

∫ h

0

ν(τ)I(t − τ)dτ

=

∫ h

0

ν(τ)
d

dt
I(t− τ)dτ

= −

∫ h

0

ν(τ)
d

dτ
I(t− τ)dτ.

Using integration by parts, we obtain

dU+

dt
= −ν(τ)I(t − τ)

∣

∣

∣

h

0
+

∫ h

0

dν

dτ
(τ)I(t − τ)dτ

From (13), it follows that ν(h) = 0 and dν
dτ

= −βk(τ). Using these, as well as the
expression for ν(0), we find

dU+

dt
= β

∫ h

0

k(τ) (I(t)− I(t− τ)) dτ. (14)

Next, recall that (H1) requires that f(S, I) be positive if S and I are both positive.
Combined with (H6), this implies f2(S, 0) > 0 for S > 0, which allows us to make



844 C. CONNELL MCCLUSKEY

the following definition without fear of division by zero. Let

G(x) = x− S0 −

∫ x

S0

f2(S0, 0)

f2(σ, 0)
dσ.

Then dG
dx

= 1 − f2(S0,0)
f2(x,0)

which (H5) implies changes from non-positive to non-

negative as x increases through S0. Thus, G is minimized at S0 with G(S0) = 0.
Thus, G(x) ≥ 0 for all x > 0.

Let

U(t) = G(S(t)) + I(t) + f2(S0, 0)U+(t).

Then U(t) is non-negative for S > 0 and I ≥ 0.
Using (14) and Λ = µSS0, we obtain

dU

dt
=

(

1−
f2(S0, 0)

f2(S, 0)

)

dS

dt
+

dI

dt
+ f2(S0, 0)

dU+

dt

=

(

1−
f2(S0, 0)

f2(S, 0)

)

(

µS(S0 − S)− β

∫ h

0

k(τ)f(S, Iτ )dτ

)

+
(

β

∫ h

0

k(τ)f(S, Iτ )dτ − (µI + γ)I
)

+ βf2(S0, 0)

∫ h

0

k(τ) (I − Iτ ) dτ

= −µS(S − S0)

(

1−
f2(S0, 0)

f2(S, 0)

)

− (µI + γ)I

+ f2(S0, 0)β

∫ h

0

k(τ)

(

f(S, Iτ )

f2(S, 0)
+ I − Iτ

)

dτ

= −µS(S − S0)

(

1−
f2(S0, 0)

f2(S, 0)

)

+ (µI + γ)I (R0 − 1)

+ f2(S0, 0)β

∫ h

0

k(τ)

(

f(S, Iτ )

f2(S, 0)
− Iτ

)

dτ.

Recalling that lim sup(S + I) ≤ Λ
µS

, we let A0 = {(S, I) ∈ (0, Λ
µS

]× C : dU
dt

= 0}

and let M0 be the largest invariant subset of A0. If dU
dt

is non-positive, then the
Lyapunov-LaSalle Theorem [8, Theorem 5.3.1] implies every omega limit point is
contained in M0.

Case 1: R0 < 1. By (H5) and (H6), we deduce

dU

dt
≤ (µI + γ)I(t) (R0 − 1) ≤ 0

with equality only if I(t) = 0. So, I is zero at each point in A0. Within the set A0,
we have dS

dt
= Λ − µSS, and so M0 consists of just the point (S0, 0). Thus, E0 is

globally attracting. By Theorem 4.1, E0 is locally asymptotically stable, and so we
may conclude that it is globally asymptotically stable.

Case 2: R0 = 1 and (H7.1) holds. Then (H6) and (H7.1) imply

dU

dt
≤ −µS(S − S0)

(

1−
f2(S0, 0)

f2(S, 0)

)

≤ 0
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with equality only if S = S0. Thus, we must have dS
dt

= 0 at each point in M0,
giving

0 = Λ− µSS0 − β

∫ h

0

k(τ)f(S0, Iτ )dτ

= −β

∫ h

0

k(τ)f(S0, I(t− τ))dτ.

Recalling that the support of k has positive measure near h, that solutions are
continuous and that f is positive when its arguments are positive, we must have
I(t − τ) = 0 for τ near h. Since dS

dt
= 0 must hold for all t, this implies I is

identically zero in M0. Thus, M0 consists of only the point (S0, 0). Thus, E0 is
globally attracting.

Case 3: R0 = 1 and (H7.2) holds. Then (H5) implies

dU

dt
≤ f2(S0, 0)β

∫ h

0

k(τ)

(

f(S, Iτ )

f2(S, 0)
− Iτ

)

dτ

and then (H7.2) implies dU
dt

≤ 0 with equality only if I(t−τ) is zero on the support
of k. Since the support of k includes a neighbourhood of h and I is continuous, we
have I(t−h) = 0 for all points in M0. Thus I is identically zero in M0. Thus, M0

consists of only the point (S0, 0) and so E0 is globally attracting.

6. Global asymptotic stability for R0 > 1. In this section, we resolve the global
dynamics for R0 > 1, given that certain assumptions on f are satisfied. We recall
that Theorem 3.1 implies an endemic equilibrium E∗ exists if R0 > 1.

Theorem 6.1. Suppose R0 > 1, and (H2) and (H3) hold. Then the endemic

equilibrium E∗ is unique and all solutions for which the disease is initially present

tend to E∗. If (H4) also holds, then E∗ is globally asymptotically stable.

Proof. The uniqueness of E∗ will follow from the fact that it is globally attracting.
We now work towards demonstrating the attractivity of E∗. Evaluating both sides
of (1) at E∗ gives

Λ = µSS
∗ + β

∫ h

0

k(τ)f(S∗, I∗)dτ (15)

and

(µI + γ)I∗ = β

∫ h

0

k(τ)f(S∗, I∗)dτ, (16)

which will be used as substitutions in the calculations below. Let

g(x) = x− 1− lnx and VS(t) = S(t)− S∗ −

∫ S(t)

S∗

f(S∗, I∗)

f(σ, I∗)
dσ

VI(t) = I∗g

(

I(t)

I∗

)

V+(t) =

∫ h

0

α(τ)g

(

I(t− τ)

I∗

)

dτ,

(17)

where

α(τ) = β

∫ h

τ

k(s)f(S∗, I∗)ds. (18)

We note that (H2) implies VS ≥ 0 with equality if and only if S = S∗. Also,
g : R>0 → R≥0 has the strict global minimum g(1) = 0. Thus, VI(t) ≥ 0 with
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equality if and only if I = I∗. Similarly, since α is positive on [0, h) and I(t) is
continuous for t ≥ −h, it follows that V+ ≥ 0 with equality if and only if I(t−τ) = I∗

for all τ ∈ [0, h]. We will study the behaviour of the Lyapunov functional

V (t) = VS + VI + V+ (19)

which satisfies V (t) ≥ 0 with equality if and only if S(t)
S∗

= I(t)
I∗

= 1 and I(t−τ)
I∗

= 1
for all τ ∈ [0, h]. For clarity, the derivatives of VS , VI and V+ will be calculated
separately and then combined to obtain dV

dt
.

dVS

dt
=

(

1−
f(S∗, I∗)

f(S, I∗)

)

dS

dt

=

(

1−
f(S∗, I∗)

f(S, I∗)

)

(

Λ − µSS − β

∫ h

0

k(τ)f(S, Iτ )dτ
)

.

Using (15) to replace Λ gives

dVS

dt
=

(

1−
f(S∗, I∗)

f(S, I∗)

)

(

µS(S
∗ − S) + β

∫ h

0

k(τ)
(

f(S∗, I∗)− f(S, Iτ )
)

dτ
)

= −µS(S − S∗)

(

1−
f(S∗, I∗)

f(S, I∗)

)

+ β

∫ h

0

k(τ)f(S∗, I∗)

(

1−
f(S∗, I∗)

f(S, I∗)

)(

1−
f(S, Iτ )

f(S∗, I∗)

)

dτ

= −µS(S − S∗)

(

1−
f(S∗, I∗)

f(S, I∗)

)

+ β

∫ h

0

k(τ)f(S∗, I∗)

(

1−
f(S∗, I∗)

f(S, I∗)
−

f(S, Iτ )

f(S∗, I∗)
+

f(S, Iτ )

f(S, I∗)

)

dτ.

(20)

Next, we calculate dVI

dt
.

dVI

dt
=

(

1−
I∗

I

)

dI

dt

=

(

1−
I∗

I

)

(

β

∫ h

0

k(τ)f(S, Iτ )dτ − (µI + γ)I

)

=

(

1−
I∗

I

)

(

β

∫ h

0

k(τ)f(S∗, I∗)
f(S, Iτ )

f(S∗, I∗)
dτ − (µI + γ)I∗

I

I∗

)

.

Using (16) to replace (µI + γ)I∗ gives

dVI

dt
=

(

1−
I∗

I

)

β

∫ h

0

k(τ)f(S∗, I∗)

(

f(S, Iτ )

f(S∗, I∗)
−

I

I∗

)

dτ

= β

∫ h

0

k(τ)f(S∗, I∗)

(

f(S, Iτ )

f(S∗, I∗)
−

I

I∗
−

I∗

I

f(S, Iτ )

f(S∗, I∗)
+ 1

)

dτ.

(21)
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We now calculate the derivative of V+(t).

dV+

dt
=

d

dt

∫ h

0

α(τ)g

(

I(t− τ)

I∗

)

dτ

=

∫ h

0

α(τ)
d

dt
g

(

I(t− τ)

I∗

)

dτ

= −

∫ h

0

α(τ)
d

dτ
g

(

I(t− τ)

I∗

)

dτ

Using integration by parts we obtain

dV+

dt
= −α(τ)g

(

I(t− τ)

I∗

)∣

∣

∣

∣

h

τ=0

+

∫ h

0

dα

dτ
(τ)g

(

I(t− τ)

I∗

)

dτ.

From (18), it follows that α(h) = 0 and dα
dτ

(τ) = −βk(τ)f(S∗, I∗). Filling in for
these and for α(0), we get

dV+

dt
= β

∫ h

0

k(τ)f(S∗, I∗)

(

g

(

I(t)

I∗

)

− g

(

I(t− τ)

I∗

))

dτ

= β

∫ h

0

k(τ)f(S∗, I∗)

(

I

I∗
−

Iτ
I∗

+ ln

(

Iτ
I∗

)

− ln

(

I

I∗

))

dτ.

(22)

Combining Equations (20), (21) and (22), we obtain

dV

dt
= −µS(S − S∗)

(

1−
f(S∗, I∗)

f(S, I∗)

)

+ β

∫ h

0

k(τ)f(S∗, I∗)C(τ)dτ,

where

C(τ) = 2−
f(S∗, I∗)

f(S, I∗)
+

f(S, Iτ )

f(S, I∗)
−

I∗

I

f(S, Iτ )

f(S∗, I∗)
−

Iτ
I∗

+ ln

(

Iτ
I∗

)

− ln

(

I

I∗

)

By adding and subtracting the quantity 1 + ln f(S,Iτ )
f(S∗,I∗) + ln f(S∗,I∗)

f(S,I∗) , we obtain

C(τ) =

(

1−
f(S∗, I∗)

f(S, I∗)
+ ln

f(S∗, I∗)

f(S, I∗)

)

+

(

1−
I∗

I

f(S, Iτ )

f(S∗, I∗)
+ ln

(

I∗

I

f(S, Iτ )

f(S∗, I∗)

))

+

(

1−
Iτ
I∗

+ ln
Iτ
I∗

)

+

(

f(S, Iτ )

f(S, I∗)
− 1− ln

f(S, Iτ )

f(S, I∗)

)

= −g

(

f(S∗, I∗)

f(S, I∗)

)

− g

(

I∗

I

f(S, Iτ )

f(S∗, I∗)

)

− g

(

Iτ
I∗

)

+ g

(

f(S, Iτ )

f(S, I∗)

)

Since the function g is monotone on each side of 1 and is minimized at 1, (H3)

implies g
(

f(S,Iτ )
f(S,I∗)

)

≤ g
(

Iτ
I∗

)

. Since g ≥ 0, we have C(τ) ≤ 0. Then, (H2) implies
dV
dt

≤ 0. By Theorem 5.3.1 of [8], solutions tend to M, the largest invariant subset

of
{

dV
dt

= 0
}

.

To have dV
dt

equal zero it is necessary to have S = S∗ and k(τ)g
(

I∗

I

f(S,Iτ )
f(S∗,I∗)

)

= 0

for almost every τ ∈ [0, h]; that is, either k(τ) = 0 or f(S∗, Iτ ) = f(S∗, I∗) I
I∗

almost
everywhere.
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Since S = S∗ in M, we have dS
dt

= 0 at each point in M. That is,

0 = Λ − µSS
∗ − β

∫ h

0

k(τ)f(S∗, Iτ )dτ

= Λ − µSS
∗ − β

∫ h

0

k(τ)f(S∗, I∗)
I

I∗
dτ

= Λ − µSS
∗ −

I

I∗
β

∫ h

0

k(τ)f(S∗, I∗)dτ.

This determines I to be a constant, and in fact gives I = I∗ for all t. Thus, each
element of M satisfies S(t) = S∗ and I(t) = I∗ for all t. We may now conclude
that limt→∞(S(t), I(t)) = (S∗, I∗) = E∗.

By Theorem 4.2, if (H4) also holds, then E∗ is locally asymptotically stable,
and so it now follows that it is globally asymptotically stable.

Remark 1. If Equation (1) is modified to have infinite delay, then the basic Lya-
punov calculation still works, as long as the delay kernal k is bounded above by a
decaying exponential function and the phase space is chosen to be an appropriate
fading memory space [1, 9, 12]. However, it becomes necessary to prove uniform
persistence. Even then, since initial conditions could involve I(·) being zero on
sets of positive measure, the Lyapunov functional would not be defined for these
initial conditions. Since the delay is infinite, the problem would persist for all time.
Thus, it becomes necessary to do the Lyapunov calculation for solutions lying in
the omega limit sets (or attractor), which by uniform persistence are bounded away
from zero. This would show that solutions in the attractor limit to the endemic
equilibrium E∗. Then, one argues that other solutions must also limit to E∗. See
[20] for an example of this approach.

7. Examples. We now give examples of incidence functions for which the required
hypotheses are satisfied.
Example 1: Mass Action Let f(S, I) = SI. Then hypotheses (H1)-(H6) and
(H7.1) are satisfied and so the global dynamics are determined by the magnitude
of R0. The global behaviour of this model was previously studied in [2, 18, 23] and
was fully resolved in [21].

Example 2: Saturating Incidence Let f(S, I) = S I
1+cI

for some constant c > 0.

Then hypotheses (H1)-(H6), as well as both of (H7.1) and (H7.2), are satisfied
and so the global dynamics are determined by the magnitude of R0. The discrete
delay version of this model was previously studied in [24] with the global dynamics
being resolved in [22].

Example 3: Separable Incidence Functions Let f(S, I) = a(S)b(I) where a, b :
R≥0 → R≥0 are differentiable strictly increasing functions satisfying a(0) = b(0) =
0. Sufficient conditions for hypotheses (H1)-(H6) and (H7.1) to be satisfied are
that b′(0) is positive (but finite) and b′′ exists and is non-positive, in which case the
global dynamics are determined by the magnitude of R0. (Examples 1 and 2 both
satisfy b′(0) > 0 and b′′(I) ≤ 0.) The discrete delay version of separable incidence
is studied in [13].

Example 4: Standard Incidence For this example, it is necessary to interpret
the R class as removed. Then, the total population is S + I. In this case, standard
incidence is given by using f(S, I) = SI

S+I
. Hypothesis (H1) is not satisfied since
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f is not defined at (0, 0). However, since {S = 0} is repelling, we may relax (H1),
requiring only that f ∈ C1 (R>0 × R≥0 → R≥0), with f(S, I) = 0 if and only if
I = 0. This condition is satisfied, as are hypotheses (H2)-(H6) and (H7.2) and
so the global dynamics are determined by the magnitude of R0.
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