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We propose a core-offset small core diameter dispersion compensation fiber (DCF) interferometer and
investigate its applications in fiber sensors. If the transverse force is applied to a short section of the
DCF, there is almost no crosstalk on the transmission spectrum between the extinction ratio variation
induced by the transverse force and the wavelength shift caused by the longitudinal strain or ambient
temperature, which can be applied to measure both transverse and longitudinal strain, or both trans-
verse strain and temperature, simultaneously. The proposed sensors have the advantages of low cost,
simple and compact structure, and good reproducibility. © 2009 Optical Society of America

OCIS codes: 060.2310, 060.2370.

1. Introduction

Multimode fiber interferometers (MMIs) based on
intermodal interference have attracted much atten-
tion for their advantages of low cost and simple
structure. Several MMI sensors [1–5], focusing on
one-directional (longitudinal [1–4] or transverse
[5]) strain sensing, have been reported. However, it
is highly desirable to measure more than one-
directional strain for modern structural applications.
Several multidirectional strain sensors [6,7] have
been reported, such as using a planar fiber optic sen-
sor array [6], or forming a single mode fiber (SMF)
Mach–Zehnder interferometer (MZI) [7] where three
sensing arms are needed. However, each of them has
to use more than two sensing heads and has a very
complex structure, which increases the cost of the
system and limits the real world application. More-
over, it is also highly desirable to realize multipara-
meter measurement in today’s industry, but most of

the reported MMI sensors [1–3,5] are focused on one-
parameter measurement. Although simultaneous
measurement of strain and temperature with an
MMI [4] has been achieved, the MMI has to be
connected a fiber Bragg grating, which leads to a
complex structure and high cost. So a simple and
compact sensor with only one sensing head to realize
multidirectional strain measurement andmultipara-
meter measurement is highly attractive.

In this paper, we propose a core-offset small-
core-diameter dispersion compensation fiber (DCF)
interferometer and investigate its applications in fi-
ber sensors. We found that this type of inter-
ferometer can be effectively used as a simple and
compact sensor with only one sensing head to realize
simultaneous measurement of transverse and long-
itudinal strain or simultaneous measurement of
transverse strain and temperature. The DCF in the
interferometer was originally designed for dispersion
compensation applications, with a core/cladding dia-
meter of 1:9 μm=115:7 μm, a large dispersion para-
meter of −270ps=nm=km at 1550nm, and a cutoff
wavelength of 1663nm. It is claimed as a multimode
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fiber because the fact of the cutoff wavelength at
1663nm makes it naturally a multimode fiber at
wavelengths shorter than 1663nm. By core offset-
ting a splice between the DCF and a SMF, an inter-
ferometer with a high extinction ratio can be
obtained. This extinction ratio will change with
the variations of the transverse force applied to a
short section of the DCF, while the interference
phase will remain almost constant. Moreover, it is al-
most independent of the longitudinal strain varia-
tion applied to the whole DCF or temperature
variations, which can be applied to measure both
transverse and longitudinal strain, or both trans-
verse strain and temperature, simultaneously. The
sensors have the advantages of low cost, simple and
compact structure, and good reproducibility.

2. Principle

A. Structure and Characteristics of the Interferometer

Figure 1 shows the experimental setup. A C-band un-
polarized broadband source (BBS) was used as the
light source. The transmission spectrum of the inter-
ferometer is measured by an optical spectrum analy-
zer (OSA). The interferometer is formed by about a
22:5 cm DCF sandwiched between two SMFs (SMF-
28 type), which serves as a Mach–Zehdner interfe-
rometer based on intermodal interference. The ex-
tinction ratio for the DCF interferometer without
core offset is generally small. In order to obtain a
high extinction ratio, we slightly offset a splice be-
tween the DCF and the SMF. The extinction ratio
of typical interference spectrum shown in Fig. 1 is
more than 9dB. It can be seen that the interference
is mainly produced by two dominant interference
modes, which indicates that other existing modes
are carrying less power compared to the two interfer-
ence modes.
In order to study the interference modes’ type, sev-

eral core-offset DCF interferometers were fabricated
with the cladding layer of the DCF being stripped.
After the bare DCFs were immersed in the index-
match liquid, the transmission spectra remain un-
changed, which confirmed that the interference
modes are core modes. The extinction ratio of the in-
terferometer can be approximately expressed as

extinction ratio ¼ 10 lg½ð1þ ffiffiffiffiffiffiffiffiffiffiffi
I2=I1

p Þ=ð1 −

ffiffiffiffiffiffiffiffiffiffiffi
I2=I1

p Þ�2,
where I1 and I2 are the power distributed in the low-
er-order and the higher-order interference modes,
respectively, with I2 < I1. The extinction ratio is re-
lated to the power ratio I2=I1 of the two modes and
decreases with the reduction of the power ratio [5].
Note that rotation or twist of the DCF will lead to
the variation of the interference spectrum, which is
mainly because part of the power in the dominant in-
terference modes is coupled into other weak modes.
In order to avoid the influence of rotation or twist of
the DCF on the measurement result, the DCF is
supported on an optical table by a fiber holder and
a translation stage, which provides the longitudinal
strain to the sensor head; moreover, the sensing DCF
and a supporting DCF (identical to the sensing DCF)
are fixed between two aluminum flakes with smooth
surfaces, which provide the transverse strain to the
sensor head, as shown in Fig. 1. The width of the alu-
minum flake is about 1 cm.

B. Sensing Principle

When a transverse force applied to a short section of
the DCF, the extinction ratio will decrease with the
increase of the transverse force [5]. The transverse
strain induced by the transverse force can be ex-
pressed as [8]

fεx; εyg ¼
�ð1þ 3γ þ 2γ2Þ

πEbl F;
ð2γ2 − γ − 3Þ

πEbl F

�
; ð1Þ

where εx and εy are the x and y components of the
strain induced by the transverse force; F is the force
acting on the short section of DCF l; and γ, b, and
E are the Poisson’s coefficient, outer radius, and
Young’s modulus of the fiber, respectively. For fused
silica fiber, E and γ are about 6:5 × 10−4 N=mm2 and
0.17, respectively. It can be seen that the transverse
strain is proportional to the transverse force and can
be indirectly applied by the transverse force.

When a longitudinal strain is applied to the DCF,
the transmission spectrum of the DCF interferom-
eter will shift, which is related to only the Poisson’s
ratio and effective strain-optic coefficient of the fiber
[1–4]. The transverse force is applied to only a short
section of DCF, which is much shorter than the whole
length of the DCF. As the elongation of the DCF in-
duced by the transverse force is far less than the
short section, the resultant longitudinal strain in
the short section is negligible; therefore, the interfer-
ence spectrum produced by the whole DCF will not
shift due to the applied transverse strain. Although
the extinction ratio varies with the applied trans-
verse force, it almost does not change with the varia-
tion of the longitudinal strain. This feature can be
used to measure the transverse and longitudinal
strain simultaneously.

The response of DCF interferometer to tempera-
ture is only related to the thermal expansion and
thermo-optic coefficients of the fiber material [2–4].
The extinction ratio only varies with the applied

Fig. 1. Experimental setup and transmission spectrum of the in-
terferometer (the inset shows the transverse sensing structure).
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lateral force, while it does not change with the tem-
perature variation [5]. This feature can be applied to
realize simultaneous measurement of transverse
strain and temperature.

3. Experimental Validation and Discussion

A. Response to Transverse and Longitudinal Strain

Figure 2 shows the transmission power spectra of the
sensor under different longitudinal strain at fixed
transverse force of 0N and 2:94N. When the longitu-
dinal strain increases, the transmission spectrum of
the sensor has a blueshift. It can be seen that the
longitudinal strain only leads to the wavelength shift
of the transmission spectra of the sensor and almost
does not affect the extinction ratio. Figure 3 shows
the relationship between the measured wavelength
(marked with an arrow in Fig. 2) and the longitudinal
strain under fixed transverse force of 0N and 2:94N.
It can be seen that there is a good linear relationship
between the wavelength and the longitudinal strain
under 0N transverse force, and the correlation coef-
ficient square and the longitudinal strain sensitivity
are 0.9987 and 0:82 × 10−3 nm=με, respectively. The
longitudinal strain resolution is about 12 με for the
OSA with a 10pm resolution. The response for non-
zero transverse force also has a good linear relation-
ship. For the same longitudinal strain, the measured
wavelengths at different fixed transverse forces are
slightly different; the maximum wavelength devia-
tion is less than 0:02nm at zero longitudinal strain.
Experimental results show that when the longitudi-
nal strain is larger than 108 με, the maximum slope
difference under different transverse forces is less
than 1 × 10−5 nm=με, and the wavelength deviation
induced by the transverse force becomes negligible,
as shown in Fig. 3. Such a small crosstalk can be re-
lieved by using a preapplied longitudinal strain.
Figure 4 shows the transmission spectral response

to different transverse forces at a fixed longitudinal
strain of 0 με and 432 με. It can be seen that when the
transverse force increases, the extinction ratio de-

creases accordingly, and the interference phase of
the DCF interferometer is almost unaffected. Fig-
ure 5 shows the relationships between the measured
extinction ratio (between the two marked arrows
shown in Fig. 4) and the transverse strain εx and
εy induced by the transverse force at a fixed longitu-
dinal strain of 0 με and 432 με, respectively. There is a
good quadratic relationship between the extinction
ratio and the transverse strain under zero longitudi-
nal strain. The response for nonzero longitudinal
strain also has a good quadratic relationship. For the
same transverse strain, the measured extinction ra-
tios at different fixed longitudinal strains are slightly
different; the maximum extinction ratio deviation is
less than 0:1dB, which has negligible influence on
the measured quadratic relationship shown in Fig. 5.
Note that the transverse strain resolution is related
to amplitude noise, which might arise from the fluc-
tuation of the BBS or the accuracy of the power mea-
sured by the OSA. In addition, the transverse strain
sensitivity increases with an increase of the trans-
verse strain; thus, the resolution is different at

Fig. 2. Transmission spectral response to different longitudinal
strains at a fixed transverse force of (a) 0N and (b) 2:94N.

Fig. 3. Relationship between the wavelength and the longitudi-
nal strain under fixed transverse force of (a) 0N and (b) 2:94N.

Fig. 4. Transmission spectral response to different transverse
forces at a fixed longitudinal strain of (a) 0 με and (b) 432 με.
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different transverse strain. Experimental results
show that an extinction ratio response can be ob-
served by applying a minimum transverse strain of
3:18 με. In order to avoid breaking the DCF, the ap-
plied transverse force is controlled in the range of
0 − 4:41N, resulting in transverse strain εx and εy in
the range of 0 − 57:3 με and 0 − 114:66 με, respec-
tively. The applied longitudinal strain is controlled
in the range of 0 − 864 με. The measurement ranges
of εx, εy, and εz can be increased by encapsulating the
DCF sensing head in materials with a high Young’s
modulus for practical applications.

B. Response to the Temperature and Transverse Force

If only the transverse force is applied to the short sec-
tion of the DCF, the spectrum of the interferometer
will have a redshift with an increase of the ambient
temperature, as shown in Fig. 6. There is a good lin-
ear relationship between the wavelength and tem-
perature, as shown in Fig. 7. The sensitivity
reaches 0:058nm=°C. However, the measured extinc-
tion ratio (between the two arrow marks in Fig. 6) is

almost unaffected, and the extinction ratio fluc-
tuation is less than 0:05dB for a given transverse
force, as shown in Fig. 8. The above phenomenon
can be used to realize simultaneous measurement
of transverse strain and temperature. Additional
experiment results show that the extinction ratio re-
sponse to temperature has variations without apply-
ing transverse strain when the temperature is over
60 °C. This is because the core diameter and the
length of the DCF will have a relatively large varia-
tion under higher temperature, which will have
corresponding influences on the coupling of the inter-
ference modes.

The above experimental results just agree with our
theoretical predictions. The DCF interferometer can
be used to measure both transverse and longitudinal
strains, or both transverse strain and temperature,
simultaneously with low crosstalk. In addition, if it
is used as a two-directional (transverse and longitu-
dinal) strains sensor, the sensing head can be encap-
sulated in temperature compensation materials with
negative temperature coefficient in order to reduce
the temperature–strain cross effect.

Fig. 5. Relationship between the extinction ratio and the trans-
verse strain at a fixed longitudinal strain of (a) 0 με and (b) 432 με.

Fig. 6. Transmission spectral response to temperature under
transverse force of 2:94N.

Fig. 7. Relationship between the wavelength and temperature
under transverse force of 2:94N.

Fig. 8. Measured extinction ratio response to temperature.
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4. Conclusions

We propose a novel core-offset DCF inter-
ferometer and investigate its application in fiber sen-
sors. Due to the little crosstalk between the extinc-
tion ratio change induced by the transverse force
and the wavelength shift induced by the longitudinal
strain variations or temperature variations, which
can be used to realize simultaneous measurement
of transverse and longitudinal strain or simul-
taneous measurement of transverse strain and
temperature. The proposed sensors have the advan-
tages of low cost, simple and compact structure, and
good reproducibility.

This work is supported by the Natural Science and
Engineering Research Council of Canada (NSERC).
The authors thank Sumitomo Electric Industries,
Ltd., for providing the 1:9 μm=115:7 μm DCF.

References
1. C. Belleville and G. Duplain, “White-light interferometric

multimode fiber-optic strain sensor,” Opt. Lett. 18, 78–80
(1993).

2. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and tem-
perature sensing using graded-index multimode fibers,” Appl.
Opt. 46, 2516–2519 (2007).

3. E. Li, “Sensitivity-enhanced fiber-optic strain sensor based on
interference of higher order modes in circular fibers,” IEEE
Photon. Tech. Lett. 19, 1266–1268 (2007).

4. D.-P. Zhou, L. Wei, W. K. Liu, Y. Liu, and J. W. Y. Lit, “Simul-
taneous measurement for strain and temperature using
fiber Bragg gratings and multimode fibers,” Appl. Opt. 47,
1668–1672 (2008).

5. B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Tem-
perature- and phase-independent lateral force sensor based
on a core-offset multi-mode fiber interferometer,”Opt. Express
16, 19291–19296 (2008).

6. B. G. Grossmann and L.-T. Huang, “Fiber optic sensor array
for multi-dimensional strain measurement,” Smart Mater.
Struct. 7, 159–165 (1998).

7. L. Yuan, Q. Li, Y. Liang, J. Yang, and Z. Liu, “Fiber optic 2-D
sensor for measuring the strain inside the concrete specimen,”
Sens. Actuators A, Phys. 94, 25–31 (2001).

8. R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis,
“Effects of diametric load on fibre Bragg gratings fabricated
in low birefringent fibre,” Electron. Lett. 32, 1223–1224
(1996).

10 August 2009 / Vol. 48, No. 23 / APPLIED OPTICS 4581


	Core-Offset Small-Core-Diameter Dispersion Compensation Fiber Interferometer and its Applications in Fiber Sensors
	Recommended Citation

	untitled

