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Abstract
Background: The Toc159 family of proteins serve as receptors for chloroplast-destined
preproteins. They directly bind to transit peptides, and exhibit preprotein substrate selectivity
conferred by an unknown mechanism. The Toc159 receptors each include three domains: C-
terminal membrane, central GTPase, and N-terminal acidic (A-) domains. Although the function(s)
of the A-domain remains largely unknown, the amino acid sequences are most variable within these
domains, suggesting they may contribute to the functional specificity of the receptors.

Results: The physicochemical properties of the A-domains are characteristic of intrinsically
disordered proteins (IDPs). Using CD spectroscopy we show that the A-domains of two
Arabidopsis Toc159 family members (atToc132 and atToc159) are disordered at physiological pH
and temperature and undergo conformational changes at temperature and pH extremes that are
characteristic of IDPs.

Conclusions: Identification of the A-domains as IDPs will be important for determining their
precise function(s), and suggests a role in protein-protein interactions, which may explain how
these proteins serve as receptors for such a wide variety of preprotein substrates.

Background
Most chloroplast proteins are encoded in the nucleus and
translated in the cytosol with an N-terminal transit pep-
tide that facilitates recognition by receptors of the Toc
complex. In Arabidopsis, two families of GTPases are
responsible for preprotein recognition; the Toc34 and
Toc159 receptors [1-6]. Toc159 interacts with transit pep-
tides [6] at early stages of import [2,7], suggesting that it is
the primary preprotein receptor. However, it is unknown
precisely how this receptor recognizes preproteins, and its

function in subsequent preprotein translocation remains
unclear. There are four Toc159-related proteins in Arabi-
dopsis: atToc159, -132, -120 and -90 [8,9]. These receptors
are able to distinguish between semi-distinct classes of
substrates; atToc159 is implicated in the import of photo-
synthetic proteins, while atToc132 and atToc120 appear
to be functionally redundant, and are primarily involved
in the import of non-photosynthetic proteins [6,8,10-12].
The Toc159 receptors have three distinguishable regions:
an N-terminal acidic (A-) domain and a central GTPase
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(G-) domain, which extend into the cytosol, and a C-ter-
minal membrane (M-) domain that anchors the protein
to the outer chloroplast membrane [8,13]. The G- and M-
domains of the Arabidopsis family members share ~65%
sequence identity [8,10]. The G-domain is involved in tar-
geting Toc159 to the chloroplast during initial Toc com-
plex assembly [14-16], comprises at least part of a transit
peptide binding site [6], and acts as part of a GTP-regu-
lated switch for preprotein recognition [7,17]. Less infor-
mation is available regarding the A- and M-domains. The
A-domain is highly variable in amino acid sequence
between species and among the Toc159 family members
in Arabidopsis (~20% identity) and has no known con-
served functional motifs [8,10]. Although it appears to be
non-essential for Toc159 function [13,17,18], the A-
domain has been hypothesized to confer differential sub-
strate recognition, owing to the variability in amino acid
sequence among family members [8], and evidence has
recently been presented that the Toc159 A-domain inter-
acts with actin [19]. Despite reports on its dispensability
for Toc159 function, the size of the A-domain (it accounts
for almost 50% of the length of Toc159) suggests that it is
likely to confer some important function(s) to the recep-
tor.

Based on hydrophobic cluster analysis of its A-domain,
Toc159 has been proposed to belong to a growing class of
natively unstructured or intrinsically disordered proteins
(IDPs) [20], which show lack of globular structure over
their entire length or contain large unstructured regions
[21], and have been estimated to account for up to ~30%
of all proteins in higher eukaryotes [21,22]. Several nota-
ble characteristics of the Toc159 family A-domains are
consistent with their classification as IDPs. They possess a
high number of charged (acidic) amino acid residues,
have a repetitive amino acid sequence, demonstrate aber-
rant mobility during SDS-PAGE and are highly sensitive to
proteolysis [4,13,20,23-26]. In addition, IDPs are known
to undergo extensive post-translational modification, and
in particular, are enriched in phosphorylation sites [21].
Consistent with this observation, the A-domain of Toc159
was recently identified in a proteomic survey of phospho-
rylated Arabidopsis proteins [27].

IDP domains are involved in highly dynamic protein-pro-
tein interactions [21,22], often of high specificity and low
affinity, and may interact with many different binding
partners, including IDP regions of other proteins. During
such interactions, IDPs often undergo induced folding,
which has been proposed to explain how they are able to
achieve specific, yet low affinity interactions with multiple
binding partners [21,28]. In the current study, CD spec-
troscopy was used to demonstrate that the A-domain of
two members of the Arabidopsis Toc159 family, atToc159
and atToc132, are IDPs. This represents the first investiga-

tion into the structure of the A-domains of the Toc159
family, and has implications for future studies aimed at
understanding the function of these domains, and the
role of Toc159 receptors in general, in chloroplast protein
import.

Results
A-domains are predicted to be natively unfolded
A recent study led to the suggestion that the A-domain of
atToc159 may be natively unfolded [20]. In the current
study, disorder within atToc132 (AGI# At2g16640) and
atToc159 (AGI# At4g02510) was predicted using FoldIn-
dex [29] and IUPred [30]. Delineation of the A-domains
was designated as previously described [10]. Both pro-
grams predict the A-domains of atToc132 and atToc159
(residues 1-455 and 1-727, respectively) to be mainly
unfolded (Figure 1). The A-domains of atToc120 (AGI#

The A-domains of atToc159 and atToc132 are predicted to be largely disorderedFigure 1
The A-domains of atToc159 and atToc132 are pre-
dicted to be largely disordered. IUPred [30] (top panels) 
and FoldIndex [29] (lower panels) were used for disorder 
predictions of full-length atToc132 (A) and atToc159 (B). 
The amino acid numbers of the A-, G- and M- domain bound-
aries are indicated. The regions predicted to be disordered 
are shaded in dark grey.
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At3g16620) and Toc159 from Pisum sativum (psToc159)
(Accession AAF75761) are also predicted to be largely dis-
ordered (data not shown). A-domains of atToc159 and
atToc132 were selected as representatives for further
examination.

Expression and purification of 132AHis and 159AHis
E. coli-expressed A-domains of atToc132 and atToc159
possessing N-terminal His6 tags (132AHis and 159AHis)
were purified using Ni2+-charged resin (Figure 2A, lanes 2
and 5). To gain a level of purity suitable for CD spectros-
copy, the proteins were further purified by ion exchange
(Figure 2A, lanes 3 and 6), and the identities of the ion-
exchange purified proteins were confirmed by Western
blotting (Figure 2B). The theoretical molecular weights of
132AHis and 159AHis are ~50 kDa and ~76 kDa, respec-
tively; however, these proteins migrate at an apparent
molecular weight approximately 50 kDa larger than
expected during SDS-PAGE (Figure 2A). The same phe-
nomenon has been observed for full-length Toc159

[13,18]; however, when the A-domain is proteolytically
degraded, the remainder of the protein (G+M domains)
migrates as expected [13,18]. Aberrant electrophoretic
mobility is characteristic of acidic proteins [31], and is a
common property of IDPs [26].

Structural analysis of 132AHis and 159AHis using CD 
spectroscopy
CD spectroscopy was used to assess the secondary struc-
ture content of 132AHis and 159AHis. Under non-denatur-
ing conditions both proteins show far-UV spectra typical
of unfolded proteins, characterized by the presence of a
deep minimum in the vicinity of 200 nm and a relatively
low ellipticity at ~220 nm (Figure 3A) [32]. Spectra were
deconvoluted, revealing the presence of 76% and 63%
random coil secondary structure in 132AHis and 159AHis,
respectively (Table 1). This indicates that at physiological
temperature and pH, 132AHis and 159AHis are mainly dis-
ordered, supporting the hypothesis that the A-domains
are IDPs.

Expression and purification of recombinant A-domains of atToc159 and atToc132Figure 2
Expression and purification of recombinant A-
domains of atToc159 and atToc132. (A) N-terminally 
His6-tagged versions of atToc132 (132AHis) and atToc159 
(159AHis) were expressed in E. coli, purified using Ni2+-NTA 
chromatography (Ni2+, lanes 2 & 5) and ion exchange (IE, 
lanes 3 & 6), and analyzed using SDS-PAGE stained with 
Coomassie blue. Molecular weight markers (kD) are indi-
cated (lanes 1 & 4). (B) Identity of the purified proteins was 
confirmed by Western blotting with antibodies against the A-
domains of atToc132 (α-132A) and atToc159 (α-159A).

Purified recombinant A-domains of atToc159 and atToc132 were analysed using circular dichroism (CD) and fluores-cence spectroscopyFigure 3
Purified recombinant A-domains of atToc159 and 
atToc132 were analysed using circular dichroism 
(CD) and fluorescence spectroscopy. (A) Far-UV CD 
spectra of 132AHis and 159AHis at 25°C and pH 8.0. Tempera-
ture-dependent and pH-dependent far-UV CD spectra of 
132AHis (B and C) and 159AHis (D and E) are also shown. 
Summary of the deconvoluted data is shown in Table 1. 
Intrinsic fluorescence of 132AHis excited at 295 nm was 
measured at pH 3.2 and 7.5 (inset, panel C).
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Effects of temperature and pH on A-domain structure
To further characterize the structural properties of the A-
domains, the effects of temperature and pH on the confor-
mation of 132AHis and 159AHis were investigated. Both
132AHis and 159AHis exhibit a modest temperature-
induced gain in secondary structure, as shown by an
increase in negative ellipticity at ~220 nm with increasing
temperature (Figure 3B, D). Spectra deconvolution reveals
that the α-helical content of 159AHis increases from 5% to
7%, and β-sheet content increases from 32% to 38% at
65°C as compared to 25°C, coinciding with a decrease in
random coil content from 63% to 55% (Table 1). Ran-
dom coil content of 132AHis also decreases from 76% (at
25°C) to 49% (at 65°C), and again, there is a concomi-
tant gain in β-sheet content from 22% to 43%, and in α-
helical content from 3% to 7% (Table 1). Such gains in
secondary structure with increasing temperature are char-
acteristic of IDPs, and are in contrast to the typical loss of
structure associated with the heating of globular proteins
[26,32]. In addition, both proteins gain considerable
overall secondary structure at low pH (Figure 3C, E). Spe-
cifically, 159AHis contains 51% random coil, 8% α-helix
and 41% β-sheet at pH ~3, compared to 63% random
coil, 5% α-helix and 32% β-sheet at neutral pH. Likewise,
132AHis contains 55% random coil, 25% α-helix and 20%
β-sheet at pH ~3 compared to 76% random coil, 3% α-
helix and 22% β-sheet at neutral pH (Table 1). These
increases in secondary structure at low pH may be attrib-
uted to a decrease in net charge at a pH below their respec-
tive theoretical pI values of 4.25 (132AHis) and 4.0
(159AHis). Presumably, a decrease in net charge leads to a
decrease in electrostatic repulsion between negatively
charged residues, allowing for partial folding. An increase
in structure for 132AHis at low pH can also be detected

using fluorescence spectroscopy (Figure 3C, inset).
132AHis contains two Trp residues (residues 225 and 234)
that fluoresce when excited at 295 nm (159AHis does not
contain Trp, so was not analyzed using fluorescence spec-
troscopy). The fluorescence maximum of 132AHis shifts to
a lower wavelength at pH 3, suggesting that the Trp resi-
dues are less exposed to solvent as a result of partial fold-
ing at low pH - a commonly observed phenomenon of
acidic IDPs [26,32].

Trifluoroethanol induces structure of A-domains
In the presence of trifluoroethanol (TFE) both 132AHis
and 159AHis show a notable increase in secondary struc-
ture from ~3-5% α-helix, 22-32% β-sheet in the absence
of TFE to 28% α-helix, 28% β-sheet in 50% TFE (Figure 4,
Table 1). These results, as well as the behaviour of the pro-
teins at temperature and pH extremes, highlight the con-
formational flexibility of the A-domains and indicate they
have the ability to form secondary structure depending on
their environment. This conformational flexibility may
reflect an ability to undergo conformational changes as
part of their physiological function, for example during
ligand binding. Several IDPs are noted for their ability to
undergo significant conformational changes upon bind-
ing to their substrates (reviewed in [21]).

Interestingly, the A-domains showed differences in the
amount and types of secondary structure gained at low pH
and in the presence of 50% TFE. In particular, 132AHis
gained more structure than 159AHis under these condi-
tions. These differences in conformational flexibility
could reflect functional differences between the A-
domains of atToc132 and atToc159.

Table 1: Secondary structure composition of 159AHis and 132AHis under different experimental conditionsa

Protein and experimental condition α-helix β-sheet Random coil

132A 25°C, pH 8 0.03 0.22 0.76
132A 5°C (pH 8) 0.04 0.33 0.63
132A 60°C (pH 8) 0.07 0.43 0.49
132A pH 3 (25°C) 0.25 0.20 0.55
132A pH 10 (25°C) 0.03 0.21 0.76
132A 10% TFE 0.04 0.30 0.66
132A 50% TFE 0.28 0.28 0.44

159A 25°C, pH 8 0.05 0.32 0.63
159A 5°C (pH 8) 0.04 0.31 0.65
159A 60°C (pH 8) 0.07 0.38 0.55
159A pH 3 (25°C) 0.08 0.41 0.51
159A pH 10 (25°C) 0.04 0.22 0.75
159A 10% TFE 0.08 0.40 0.52
159A 50% TFE 0.28 0.20 0.52

aDeconvolution of the far-UV CD spectra for 159AHis and 132AHis was performed using the K2D method. Values represent the proportion of 
secondary structure composition.



BMC Biochemistry 2009, 10:35 http://www.biomedcentral.com/1471-2091/10/35

Page 5 of 8
(page number not for citation purposes)

Discussion
As part of an evolutionary study into the origin of Toc159,
it was suggested that the A-domain of atToc159 might be
natively unfolded [20]. In the current study, we decided to
take a structural approach to investigate this possibility in
more detail, to gain insight into the function of the A-
domain. We started by using disorder prediction pro-
grams that strongly predicted the A-domains of atToc132
and atToc159 (as well as atToc120 and psToc159) to be
unstructured. In agreement with these predictions, the A-
domains were shown experimentally to be disordered
under non-denaturing conditions, and underwent struc-
tural changes characteristic of IDPs at extremes of temper-
ature and pH. Furthermore, in the presence of 50% TFE,
both A-domains gained considerable structure, which
together with the effects of extreme temperature and pH,

shows that the proteins have the propensity to shift to a
more ordered state under certain conditions, which could
include association with binding partners. Overall, the
data presented here are consistent with the classification
of the A-domains as intrinsically disordered protein
domains. To date, the function of the A-domains remains
largely unknown, with the exception of the recently sug-
gested role in binding to actin filaments [19], thus the
identification of the Toc159 family A-domains as IDPs
has several potential implications for its function. In gen-
eral, IDPs have a large surface area under physiological
conditions allowing them to interact with several binding
partners simultaneously [26]. Indeed, the A-domain
accounts for almost 50% of the total length of atToc159,
which represents a large surface area available for multiple
protein-protein interactions. While binding partners of
the A-domain other than actin have not yet been identi-
fied, several candidates exist. For example, the A-domain
may interact with other components of the Toc complex
(i.e. Toc33/34 and/or Toc75) to help facilitate complex
assembly, a function previously reported for IDPs [33].
This function is reminiscent of the proposed role for the
N-terminal unstructured domain of the yeast peroxisomal
import receptor Pex5p in stabilization of the import com-
plex [34]. Alternatively, the A-domain may not possess
intrinsic bioactivity, but be involved in the regulation of
the GTPase activity of the adjacent Toc159 G-domain, or
that of the other Toc GTPase, Toc33/34. Modulation and/
or regulation of adjacent, globular functional domains
has been previously observed for N-terminally located
IDP regions [35].

Finally, perhaps the most intriguing potential function for
the A-domain that emerges from the finding that it is an
IDP is a role in transit peptide recognition. Transit pep-
tides are variable in length (typically 50-70 amino acids)
and sequence, are rich in hydroxylated amino acids, scarce
in acidic amino acids, and lack a defined three-dimen-
sional structure in aqueous solution [36-39]. It is
unknown precisely how they are recognized by receptors
of the Toc complex; however, it has been shown that sub-
groups of transit peptides contain distinct motifs that
affect their import efficiency and receptor specificity
[12,40-43]. Therefore, it is interesting to speculate that the
disordered nature of the A-domains may facilitate interac-
tions with multiple motifs within transit peptides, allow-
ing for differential recognition of preproteins. The
differences in structural dynamics observed between
159AHis and 132AHis in this study may be reflective of such
an ability to discriminate between preproteins. In addi-
tion, it has been proposed that IDPs with large surface
area may act in a "fly-casting" mechanism to increase the
speed of low affinity protein-protein interactions [44],
which would allow for preproteins to be efficiently passed
to downstream components of the chloroplast protein

132AHis and 159AHis gain structure in the presence of trif-luoroethanol (TFE)Figure 4
132AHis and 159AHis gain structure in the presence of 
trifluoroethanol (TFE). Far-UV CD spectra of 159AHis (A) 
and 132AHis (B) in the absence (-TFE) and presence of 10% 
and 50% TFE at 25°C. A summary of the deconvoluted data 
is shown in Table 1.
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import apparatus. Such transient, low affinity interactions
would be consistent with the reversible, energy-independ-
ent binding of preproteins to chloroplasts at the initial
stages of import [2,5], and may also partially explain the
inability to detect A-domain-preprotein interactions in
vitro [6], as well as discrepancies observed in the order of
preprotein binding to Toc34 and Toc159 [1,45]. Analo-
gously, the Tom70 receptor of the yeast mitochondrial
protein import apparatus contains a disordered region
that possesses multiple interaction sites for its mitochon-
drial protein substrates [46,47].

While interactions between the Toc159 family A-domains
and transit peptides is an attractive mechanism for transit
peptide recognition, detection of transient protein-pro-
tein interactions is technically challenging, and it is not
yet clear whether the techniques employed here will be
sufficient to detect potential interactions between the A-
domain and transit peptides. CD may prove useful in this
regard if association is accompanied by a disorder-to-
order transition [26]; the acquisition of α-helical structure
in the presence of TFE suggests that the A-domain has a
propensity to do so (Figure 4). Techniques such as surface
plasmon resonance, isothermal titration calorimetry, and
nuclear magnetic resonance may also prove useful in
future attempts to test whether such (transient) interac-
tions take place; some of these techniques have been used
in studies on one of the best characterized IDPs, the phos-
phorylated kinase inducible activation domain (pKID),
and others [26,48,49].

Conclusions
In summary, the A-domain represents a large portion of
the Toc159 receptors and differs significantly among
members of this family. The function(s) of this domain,
however, has remained elusive. In this study, the structure
of the A-domains has been investigated for the first time.
The finding that the A-domains are intrinsically disor-
dered has implications for understanding their func-
tion(s), and future studies on the Toc159 receptors will be
aimed at identifying A-domain binding partners to help
elucidate the role of this domain in chloroplast protein
import.

Methods
Cloning, expression, and purification of 132AHis and 
159AHis
The first 1365 or 2181 basepairs of the atTOC132 and
atTOC159 cDNAs, which correspond to the A-domains of
atToc132 (132A) and atToc159 (159A), respectively, were
sub-cloned by PCR using cDNA clones as templates
[10,15]. Primer-adapters were used to incorporate an N-
terminal His6-tag, and 5'NheI/3'SacI (132A) or 5'NheI/
3'SalI (159A) restriction sites for sub-cloning into pET21b
(Novagen). Final constructs encode recombinant

atToc132A and atToc159A including N-terminal hexahis-
tidine tags and are denoted 132AHis and 159AHis. The pro-
teins were overexpressed in E. coli BL21(DE3) using
standard conditions. Cells were lysed in lysis buffer (10
mM Tris-HCl pH 8.0, 50 mM NaCl, 20 mM imidazole)
using a French press. Total soluble protein was applied to
a Ni2+-NTA column (Novagen) at 4°C. The resin was
washed with lysis buffer containing 30 mM imidazole,
and proteins were eluted with lysis buffer containing 250
mM imidazole. 132AHis and 159AHis were further purified
using a batch method of ion exchange. Briefly, Ni2+-puri-
fied protein was diluted 1:1 in ion exchange buffer (20
mM piperazine, pH 4.5, 200 mM NaCl) and incubated
with 1.5 mL of a strong-anion exchange resin (Q-Sepha-
rose Fast Flow Ion Exchange Media, GE Health Sciences)
for 10 min at room temperature on a rotating mixer. Pro-
tein was eluted with a 20 mM piperazine solution at pH
4.5, containing 550 mM NaCl. The purified protein was
concentrated and exchanged into CD Buffer (10 mM Tris-
HCl, pH 8.0, 50 mM NaCl) using centrifugal diafiltration
(Ultracel-10, Millipore). Recombinant 132AHis and
159AHis were analyzed by SDS-PAGE (10% resolving gels)
stained with Coomassie, or probed on Western blots
using antibodies against the A-domain of atToc132 or
atToc159 (see below). Protein concentration was deter-
mined using the Bradford assay [50], according to the
manufacturer's instructions (Bio-Rad).

Western blots
SDS-PAGE-resolved 132AHis (~1 μg) and 159AHis (~10 ng)
were transferred to nitrocellulose by first soaking the gel
in transfer buffer (12.5 mM Tris, 96 mM glycine, 0.05%
(w/v) SDS, and 10% (w/v) methanol). Transfer to nitro-
cellulose was achieved using a Semi-Dry transfer cell (Bio-
Rad Laboratories Inc.) at 15 volts for 90 min. The nitrocel-
lulose was stained with amido black (45% [v/v] metha-
nol, 10% [v/v] acetic acid, 0.1% [w/v] amido black) to
confirm successful transfer, and the membrane was
blocked by incubating with 5% (w/v) powdered milk in
TBS containing 0.1% Tween-20 (TBS-T; 20 mM Tris-HCl
pH 7.5, 150 mM NaCl, 0.1% (v/v) Tween-20). The mem-
brane was washed with TBS-T and incubated with primary
antibody at room temperature for 2 h. Primary antibodies
used were rabbit antibodies raised against the A-domain
of atToc159 (α-159A) diluted 1:2000, or the A-domain of
atToc132 (α-132A) diluted 1:5000 [10] (gifts from Dr.
Danny Schnell, University of Massachusetts). Peroxidase
conjugated goat anti-rabbit IgG (Rockland) diluted
1:5000 was used to facilitate chemiluminescent detection.
Signal was captured using a Bio-Rad Fluor-S MultiImager
in high sensitivity mode, equipped with a Nikkor AF 50
mm lens (Nikon), using an f-stop of 1.4 and an exposure
time of 2 to 4 min. The images were analyzed using Quan-
tity One 1-D Analysis software v4.6 (Bio-Rad Laboratories
Inc.).
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CD measurements and analysis
Far-UV CD spectra were measured on an Aviv 215 spec-
tropolarimeter (Aviv Biomedical). Measurements were
performed using rectangular quartz cells with 0.1 cm
pathlength. 132AHis and 159AHis were measured at con-
centrations of 5 μM or 2.5 μM in CD buffer. Samples were
equilibrated at the indicated temperature for 10 min prior
to measurements, and pH was adjusted immediately prior
to measurement for pH-dependent experiments. Spectra
of protein samples and the buffer baseline were measured
with a 0.5 nm/s scanning speed at 0.5 nm intervals, and
were an average of four scans. Averaged buffer baseline
spectra were subtracted from averaged protein sample
spectra and the resultant corrected spectra were converted
to mean residue ellipticity. Spectra were deconvoluted on
the Dichroweb website [51] using the K2D method [52].
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