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Abstract

Our recent paper [5] provides extensions to two classical determinantal results
of Bressoud and Wei, and of Koike. The proofs in that paper were algebraic. The
present paper contains combinatorial lattice path proofs.

Keywords: Schur functions, lattice paths

1 Introduction

Our recent paper [5] provides proofs of certain generalizations of two classical determinan-
tal identities, one by Bressoud and Wei [1] and one by Koike [8]. Both of these identities
are extensions of the Jacobi-Trudi identity, an identity that provides a determinantal rep-
resentation of the Schur function. Here we provide lattice path proofs of these generalized
idetities.

We give the barest of background details and notation, referring the reader instead to
our earlier paper [5], and to Macdonald [10] or Stanley [11] for general symmetric function
background knowledge.

∗e-mail: ahamel@wlu.ca
†e-mail: r.c.king@soton.ac.uk
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Let P be the set of all partitions including the zero partition. Recall that in Frobenius
notation each partition λ = (λ1, λ2, . . . ) ∈ P is written in the form

λ =

(

a1 a2 · · · ar

b1 b2 · · · br

)

, (1)

with a1 > a2 > · · · > ar ≥ 0 and b1 > b2 > · · · > br ≥ 0, where ai = λk−k and bk = λ′
k−k

for k = 1, 2, . . . , r with λ′ the partition conjugate to λ. Here r = r(λ), the rank of λ, which
is defined to be the maximum value of k such that λk ≥ k. The partition λ is said to have
length ℓ(λ) = λ′

1 = b1+1 and weight |λ| = λ1+λ2+· · · = a1+b1+a2+b2+· · ·+ar +br +r.
The case r = 0 corresponds to the zero partition λ = 0 = (0, 0, . . . ) of length ℓ(λ) = 0
and weight |λ| = 0.

For any integer t let

Pt =

{

λ =

(

a1 a2 · · · ar

b1 b2 · · · br

)

∈ P

∣

∣

∣

∣

ak − bk = t
for k = 1, 2, . . . , r
and r = 0, 1, . . .

}

. (2)

Here, as a matter of convention, it is to be assumed that the zero partition belongs to Pt

for all integer t.
Let m be a fixed positive integer and let x = (x1, x2, . . . , xm) be a sequence of m

indeterminates. Let λ and σ be partitions of lengths ℓ(λ), ℓ(σ) ≤ m such that σ ⊆ λ. We
use the standard notation hm(x) to denote the complete homogeneous symmetric function
of degree m for m > 0, with h0(x) = 1 and hm(x) = 0 for m < 0. Further, sλ(x) and
sλ/σ(x) denote the Schur function and skew Schur function specified by λ and the pair
λ, σ, respectively. Recall that the Jacobi-Trudi identity establishes the relationships:

sλ(x) = |hλi−i+j(x) | (3)

and
sλ/σ(x) =

∣

∣ hλi−σj−i+j(x)
∣

∣ , (4)

where the right-hand sides consist of m × m determinants, with 1 ≤ i, j ≤ m, and the
elements in the ith row and jth column have been displayed.

First Result: For all partitions λ of length ℓ(λ) ≤ m, for all integers t and
any indeterminate q we have

∣

∣ hλi−i+j(x) + q χ
j>−t

hλi−i−j+1−t(x)
∣

∣

=
∑

σ∈Pt

(−1)[|σ|−r(σ)(t+1)]/2 qr(σ) sλ/σ(x) , (5)

where the determinant on the left is an m × m determinant, χ
P

is the truth
function [2] defined to be 1 if the proposition P is true, and 0 otherwise, and
the sum is over all partitions σ in the set Pt with r(σ) ≤ m + χt<0 t .

This is a generalization of the following result of Bressoud and Wei [1]:
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For all partitions λ of length ℓ(λ) ≤ m and all integers t ≥ −1 one has

2(t−|t|)/2
∣

∣ hλi−i+j(x) + (−1)(t+|t|)/2 hλi−i−j+1−t(x)
∣

∣

=
∑

σ∈Pt

(−1)[|σ|+r(σ)(|t|−1)]/2 sλ/σ(x) , (6)

where the determinant on the left is again an m×m determinant, and on the
right the summation is over all partitions σ in the set Pt of rank r(σ) ≤ m.

To go from (5) to (6), set q = (−1)t for all t ≥ 0 and q = 1 for t = −1. The factor
2(t−|t|)/2 = 2−1 when t = −1 compensates for the doubling of the entries in the first column
of the determinant in (6) as compared to those in the corresponding column of (5).

If we allow two sets of variables, x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn), then we
can present our second result:

Second Result: First, let m and n be fixed positive integers, and let x =
(x1, . . . , xm) and y = (y1, . . . , yn). Then for all partitions λ and µ of lengths
ℓ(λ) ≤ m and ℓ(µ) ≤ n, for all integers p and q, and any indeterminates u
and v, we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

hµn+1−i+i−j(y)
... χ

j>n−q
u hµn+1−i+i−j−q(y)

· · · · · ·

χ
j≤n+p

v hλi−n−i+j−p(x)
... hλi−n−i+j(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

ζ⊆nm

(−1)|ζ| (u v)r sλ/(ζ+pr)(x) sµ/(ζ′+qr)(y) (7)

where r = r(ζ), 1 ≤ i, j ≤ n + m, and the (n + m) × (n + m) determinant is
partitioned immediately after the nth row and nth column, and σ + τ , for any
pair of partitions σ and τ , signifies the partition whose kth part is σk + τk for
all k [10, p5].

It generalizes Koike’s theorem [8]:

∣

∣

∣

∣

∣

∣

hµn+1−i+i−j(y)
· · ·

hλi−n−i+j(x)

∣

∣

∣

∣

∣

∣

=
∑

ζ⊆nm

(−1)|ζ| sλ/ζ(x) sµ/ζ′(y) , (8)

For the two results (5) and (7) we will give combinatorial proofs based on lattice paths.
In this connection, it is worth pointing out that the original Jacobi-Trudi identity can
be given a very simple lattice path derivation as will be explained below. The lattice
path technique was introduced by Gessel and Viennot [3, 4], finds full expression in
Stembridge [12], and actually dates back to Karlin and McGregor [6, 7], and Lindström [9].
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2 Lattice Paths

It is well–known that Schur functions can be defined using semistandard Young tableaux
and in turn, all semistandard Young tableaux can be given a lattice path realisation (see,
for example, [11, p. 343]). To this end, consider a square lattice and m-tuples of paths
on this lattice, with the ith path taking (m− 1 + λi) successive unit steps either north or
east from Pi = (m+1− i, 1) to Qi = (m+1+λi− i, m) for i = 1, 2, . . . , m. Let T λ(m) be
the set of semistandard Young tableaux of shape λ and, similarly, T λ/σ(m) be the set of
semistandard Young tableaux of skew shape λ/σ. For each T ∈ T λ(m) the corresponding
m-tuple of paths is obtained by letting the entries read from left to right across the ith
row specify the heights of succesive eastward steps on the ith path. It is not difficult to
see that the semistandard nature of T provides the necessary and sufficient conditions for
the m paths to be non-intersecting. The extension to the case of T ∈ T λ/σ(m) is effected
merely by defining new starting points Pi = (m + 1 + σi − i, 1) for the ith lattice path for
i = 1, 2, . . . , m.

For example, for λ = (5, 4, 2) and σ = (3, 1) we have as possible examples of semis-
tandard Young tableaux the following:

1 1 1 2 3
2 3 4 4
3 4

and
2 4

1 3 3
2 3

. (9)

For m = 4, the m-tuples of paths corresponding to the tableaux in (9) take the form

1 2 3 4 5 6 8 9 10 1170

x1 x1 x1

x2x2

x3

x4x4 x4

x3 x3

Q1Q2Q3Q4

P4 P3 P2 P1

1

2

3

4

(10)

and

1 2 3 4 5 6 8 9 10 1170

Q1Q2Q4

P4 P3

1

2

3

4

x2

x3

x1

x3 x3

P2

x2

x4

P1

Q3

(11)

We denote the sets of all m-tuples of non-intersecting north-east lattice paths L reach-
ing a height no greater than m by LPλ(m) and LPλ/σ(m), as appropriate. We now let
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each step east at height k carry a weight xk, with the total weight, x(L) of each m-tuple
L defined to be the product of the weights of all eastward steps. Thus our two 4-tuples
illustrated in (10) and (11) are of weights x3

1x
2
2x

3
3x

3
4 and x1x

2
2x

3
3x4, respectively.

The one-to-one correspondence between semistandard Young tableaux and m-tuples
of non-intersecting north-east lattice paths implies that

sλ(x) =
∑

L∈LPλ(m)

x(L) and sλ/σ(x) =
∑

L∈LPλ/σ(m)

x(L) . (12)

3 Extended Bressoud-Wei identities

The main result to be established here is the following:

Theorem 1 Let m be a fixed positive integer, x = (x1, x2, . . . , xm) a sequence of indeter-
minates, and λ = (λ1, λ2, . . . , λm) a partition of length ℓ(λ) ≤ m. Then for all integers t
and any indeterminate q we have

∣

∣ hλi−i+j(x) + q χ
j>−t

hλi−i−j+1−t(x)
∣

∣

=
∑

σ∈Pt

(−1)[|σ|−r(σ)(t+1)]/2 qr(σ) sλ/σ(x) , (13)

where the determinant on the left is an m × m determinant.

Proof: We may write the expansion of the original determinant in the form

∣

∣ hλi−i+j(x) + q χ
j>−t

hλi−i−j+1−t(x)
∣

∣

=
∑

π∈Sn

(−1)π

m
∏

i=1

(

hλi−i+π(i)(x) + q χ
π(i)>−t

hλi−i−π(i)+1−t(x)
)

, (14)

where for each π the product on the right may be given a lattice path interpretation. To
this end, let:

Pi = (m + 1 − i, 1) for 1 ≤ i ≤ m;
P ′

i = (m + t + i, 1) for 1 − χ t<0t ≤ i ≤ m;
Qi = (m + 1 − i + λi, m) for 1 ≤ i ≤ m.

(15)

It should be noted that the presence of the truth function χ t<0 ensures that the primed
points P ′

i all lie strictly to the east of the unprimed points Pi.
The product over i on the right of (14) is then realised as a sum of contributions from

all possible sets of m-tuples of north-east paths for which the ith path goes from either
Pπ(i) = (m + 1 − π(i), 1) or P ′

π(i) = (m + t + π(i), 1) to Qi = (m + 1 + λi − i, m) for
i = 1, 2, . . . , m. Each step east at height k carries weight xk, and each path from P ′

π(i) to
Qi, rather than from Pπ(i) to Qi, carries an additional weight q. Each path from Pπ(i) to
Qi contributes a monomial equal to the weight of the path to hλi−i+π(i)(x), and each one
from P ′

π(i) to Qi contributes a monomial equal to its weight to hλi−i−π(i)+1−t(x).
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For example, if m = 4, t = 2, λ = (6, 4, 4, 2) and π =

(

1 2 3 4
3′ 1′ 2 4

)

, with the

primes indicating that the corresponding path starts from a P ′
j rather than a Pj, then a

possible 4-tuple of north-east paths takes the form

P1

1 2 3 4 5 6 8 9 10 1170

Q4

x1

x3

x4

x3x3

x2

Q3 Q2 Q1

P ′
1 P ′

2 P ′
3 P ′

4P3P4 P2

(16)

This gives a contribution (−1)2+0 (qx2) (q) (x1x
2
3) (x3x4) = q2 x1x2x

3
3x4 to the product

over i in (14).
As usual, in the expansion of the determinant, a sign changing involution removes

contributions from intersecting paths. For example, the following m-tuple involving in-
tersecting paths arises in the case m = 4, λ = (6, 6, 6, 4), t = 2 and r = 2:

P1

1 2 3 4 5 6 8 9 10 1170

P ′
1 P ′

2 P ′
3 P ′

4P3P4 P2

1

2

3

4

x1

x2x2x2x2x2x2

x3

Q4 Q3 Q2 Q1x4

x3 x3 x3

(17)

Such an m-tuple arises in the case of all four of the following permutations:

(

1 2 3 4
3′ 1′ 2 4

)

;

(

1 2 3 4
3′ 1′ 4 2

)

;

(

1 2 3 4
3′ 2 1′ 4

)

;

(

1 2 3 4
3′ 4 1′ 2

)

. (18)

As a matter of convention one may choose the sign changing involution to be the one
generated by the transposition (2, 4) associated with the left-most point of intersection.
Then contributions from the four permutations can be seen to cancel in pairs because of
the presence of the factor (−1)π in the expansion (14).

If the paths in an m-tuple are to be non-intersecting then π is necessarily such that:

m ≥ π(1) > π(2) > · · · > π(r) ≥ 1 − χ t>0t ;

1 ≤ π(r + 1) < π(r + 2) < · · · < π(m) ≤ m .
(19)
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To each such π there corresponds a unique partition σ ∈ Pt of rank r(σ) = r. To see this
it should be noted first that such permutations π are in one-to-one correspondence with
the partitions η ⊆ (rm−r) such that η′

r ≥ −χ t>0t. This correspondence is such that

π =

(

1 2 · · · r r + 1 r + 2 · · · m
r + η′

1 r − 1 + η′
2 · · · 1 + η′

r r + 1 − η1 r + 2 − ηr · · · m − ηm−r

)

. (20)

For given π, the partition η may be constructed, in the spirit of Macdonald [10, p. 3] by
labelling the consecutive boundary edges of F η ⊆ F (rm−r) with the integers j = 1, 2, . . . , m,
with the edge labelled j either horizontal or vertical according as π−1(j) is either ≤ r or
> r, as is illustrated later in (24) and (25).

Then the partitions η ⊆ (rm−r) with η′
r ≥ −χ t>0t are in one-to one correspondence

with the partitions σ ∈ Pt with r(σ) = r. This comes about because F σ may be con-
structed by appending F η and F η′+tr to the base and to the immediate right of F rr

, as
shown schematically by:

F σ =

t
F rr

F η′

t
t

F η
. (21)

The condition η′
r ≥ −χ t>0t is just what is required in order to ensure that σ is indeed a

partition for all t, including negative values.
It then follows that

π =

(

1 2 · · · r r+1 r+2 · · · m
σ1−t σ2+1−t · · · σr−r+1−t r+1−σr+1 r+2−σr+2 · · · m−σm

)

.

(22)
so that

π(i) =

{

σi − i + 1 − t for i = 1, 2, . . . , r;
i − σi for i = r + 1, r + 2, . . . , m.

(23)

For example, in the following two cases, both with r = 2 but the first with t = 2 and
the second with t = −2, we have

π =

(

1 2 3 4
3′ 1′ 2 4

)

⇐⇒ F η =
4

2 1′

3′
⇐⇒ F σ =

++
+ + (24)

and

π =

(

1 2 3 4 5 6
5′ 3′ 1 2 4 6

)

⇐⇒ F η = 4

6

2

1

3′

5′
⇐⇒ F σ =

−−
−−

(25)
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where the boxes containing + are to be included and those containing − are to be excluded.
Returning to our lattice paths, if we designate the eastward distance from X to Y by

|X Y |, then |Pi Qi| = λi for all i = 1, . . . , m, |Pi P
′
π(i)| = i+π(i)+t−1 = σi for i = 1, . . . , r

and |Pi Pπ(i)| = i − π(i) = σi for i = r + 1, . . . , m. Hence the number of horizontal steps
on the ith path from P ′

π(i) to Qi is λi − σi for i = 1, . . . , r and from Pπ(i) to Qi is λi − σi

for i = r + 1, . . . , m. The ith path monomial of degree λi − σi may then be interpreted as
the contribution arising from the ith row of an sλ/σ(x) skew semistandard tableau for all
i = 1, 2, . . . , m. It is the non-intersecting nature of the m-tuple of paths that guarantees
that the tableau is skew semistandard.

Moreover, in Frobenius notation

σ =

(

π(1) − 1 + t π(2) − 1 + t · · · π(r) − 1 + t
π(1) − 1 π(2) − 1 · · · π(r) − 1

)

(26)

so that σ ∈ Pt with |σ| = 2(π(1)+· · ·+π(r)−r)+r(t+1). Since (−1)π = (−1)π(1)+···+π(r)−r

we have, as required,

∣

∣ hλi−i+j(x) + q χ
j>−t

hλi−i−j+1−t(x)
∣

∣ =
∑

σ∈Pt

(−1)[|σ|−r(t+1)]/2 qr sλ/σ(x) . (27)

This completes the combinatorial proof of Theorem 1. QED

For example, if m = 4, t = 2, λ = (6, 4, 4, 2), r = 2 and π =

(

1 2 3 4
3′ 1′ 2 4

)

, then

from (24) σ = (5, 4, 1) =

(

4 2
2 0

)

∈ P2. The correspondence between non-intersecting

4-tuples of lattice paths and skew semistandard tableaux is then exemplified by

1

2

333

4

P4 P3 P2 P1 P ′
1 P ′

2 P ′
3 P ′

4

Q1Q2Q3Q4

⇐⇒

∗ ∗ ∗ ∗ ∗ 2
∗ ∗ ∗ ∗
∗ 1 3 3
3 4

(28)

Similarly, if m = 6, t = −2, λ = (5, 4, 4, 3, 3, 2) and π =

(

1 2 3 4 5 6
5′ 3′ 1 2 4 6

)

,

then from (25) σ = (3, 2, 2, 2, 1) =

(

2 0
4 2

)

∈ P−2, and the one-to-one correspondence

between non-intersecting 6-tuples of lattice paths and skew semistandard tableaux is
illustrated by:
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Q1Q2Q3Q4Q5Q6

P ′
6P ′

5P ′
4P ′

3P1P2P3P4P5P6

3 33

2

11

4

1

5

6 6

⇐⇒

∗ ∗ ∗ 1 6
∗ ∗ 1 2
∗ ∗ 3 3
∗ ∗ 4
∗ 3 6
1 5

(29)

4 Skew extension of the Koike identity

Our second main result takes the form:

Theorem 2 For fixed positive integers m and n, let x = (x1, . . . , xm) and y = (y1, . . . , yn)
be two sequences of indeterminates, and let λ and µ be a pair of partitions of lengths
ℓ(λ) ≤ m and ℓ(µ) ≤ n. Then for each pair of integers p and q, and any indeterminates
u and v, we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

hµn+1−i+i−j(y)
... χ

j>n−q
u hµn+1−i+i−j−q(y)

· · · · · ·

χ
j≤n+p

v hλi−n−i+j−p(x)
... hλi−n−i+j(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

ζ⊆nm

(−1)|ζ| (u v)r sλ/(ζ+pr)(x) sµ/(ζ′+qr)(y) (30)

where r = r(ζ) and the (n + m) × (n + m) determinant is partitioned immediately
after the nth row and nth column. If ζ ⊆ (nm) is given in Frobenius notation by

ζ =

(

a1 a2 · · · ar

b1 b2 · · · br

)

, with n > a1 > a2 > · · · > ar and m > b1 > b2 > · · · > br, then:

ζ + pr =

(

a1 + p a2 + p · · · ar + p
b1 b2 · · · br

)

; (31)

and

ζ ′ + qr =

(

b1 + q b2 + q · · · br + q
a1 a2 · · · ar

)

, (32)

with ar ≥ max{0,−p} and br ≥ max{0,−q}.

Proof: The determinant that is the subject of Theorem 2 can be expressed in the
following form and expanded as shown
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∣

∣

∣

∣

∣

∣

∣

χ
j≤n

hµn+1−i+i−j−dj
(y)

... u χ
j>n−q

hµn+1−i+i−j−dj
(y)

· · · · · ·

v χ
j≤n+p

hλi−n−i+j−cj
(x)

... χ
j>n

hλi−n−i+j−cj
(x)

∣

∣

∣

∣

∣

∣

∣

=
∑

π∈Sn+m

(−1)π
n

∏

i=1

(

χ
π(i)≤n

+ u χ
π(i)>n−q

)

hµn+1−i+i−π(i)−dπ(i)
(y)

n+m
∏

i=n+1

(

v χ
π(i)≤n+p

+ χ
π(i)>n

)

hλi−n−i+π(i)−cπ(i)
(x) (33)

where

cj =

{

0 if j > n;
p if j ≤ n,

and dj =

{

0 if j ≤ n;
q if j > n.

(34)

In order to give each term on the right a lattice path interpretation it is convenient to
let:

Si = (1 − i, 1) for 1 ≤ i ≤ n;
S ′

i = (1 − i − q, 1) for n − χ q<0q < i ≤ m + n;
P ′

i = (m + n + 1 − i + p, 1) for 1 ≤ i ≤ n + χ
p<0

p;
Pi = (m + n + 1 − i, 1) for n < i ≤ m + n ,

(35)

and
Ri = (1 − i − µn+1−i, n) for 1 ≤ i ≤ n :
Qi = (m + n + 1 − i + λi−n, m) for n < i ≤ m + n.

(36)

Now we return to the sum over π ∈ Sn+m in (33). Each π defines a set of (n, m)-tuples
of lattice paths. For i = n + 1, n + 2, . . . , n + m the ith north-east path goes from either
P ′

π(i) = (m+n+1+p−π(i), 1) or Pπ(i) = (m+n+1−π(i), 1) to Qi = (m+n+1−i+λi−n, m).
Each step east at height k carries weight xk, with an additional factor of u if the path
starts from P ′

π(i) as opposed to Pπ(i). For i = 1, 2, . . . , n the ith north-west path goes from

either Sπ(i) = (1 − π(i), 1) or S ′
π(i) = (1 − q − π(i), 1) to Ri = (1 − i − µn+1−i, n). In this

case each step west at height k carries weight yk, with an additional factor of v if the path
starts from S ′

π(i) as opposed to Sπ(i).

Typically, in the case, m = 3, n = 4, p = −2, q = −1, λ = (5, 3, 2), µ = (4, 3, 2, 2) and

π =

(

1 2 3 4 5 6 7
2 3 4 7 1 5 6

)

(37)

one such (n, m)-tuple of lattice paths takes the form
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-3 -2 -1 1 4 63-7 5-6 -4-5 2 7 8

x1

x2

x3

x2x2

x3

S2 S1S3S4S ′
6S ′

7 P7 P6 P5 P ′
2 P ′

1

y1

y2y2y2

y4

y3

1

2

3

4

0

R4 R3 R2 R1

Q7 Q6 Q5

(38)
This owes its origin to the fact that π specifies both the pairings of the end points of

the paths:
(

R1 R2 R3 R4 Q5 Q6 Q7

S2 S3 S4 S ′
7 P ′

1 P5 P6

)

, (39)

and the positions of the corresponding boldface elements hi(x) and hj(y) in the determi-
nant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h2(y) h1(y) 1 0
... 0 0 0

h3(y) h2(y) h1(y) 1
... 0 0 0

h5(y) h4(y) h3(y) h2(y)
... 0 vh1(y) v

h7(y) h6(y) h5(y) h4(y)
... 0 vh3(y) vh2(y)

· · · · · · · · · · · · · · · · · · · · ·

uh3(x) uh4(x) 0 0
... h5(x) h6(x) h7(x)

u uh1(x) 0 0
... h2(x) h3(x) h4(x)

0 0 0 0
... 1 h1(x) h2(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (40)

The subscripts i and j of hi(x) and hj(y) determine the number of horizontal steps east
and west, respectively, of the corresponding lattice paths. The north-east paths Pπ(i)Qi

and P ′
π(i)Qi contribute to hλi−n−i+π(i)−cπ(i)

(x) with cπ(i) = 0 and p, respectively, while the

north-west paths Sπ(i)Ri and S ′
π(i)Ri contribute to hµm+n+1−i+i−π(i)−dπ(i)

(y) with dπ(i) = 0
and q, respectively.

In this particular example the chosen paths are non-intersecting. More generally,
even for the same π some of the paths contributing monomials to hi(x) and hj(y) will
intersect. However, these will be cancelled by means of the usual sign changing involution
that removes contributions from all intersecting paths.
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For example, consider the following (n, m)-tuple exhibiting an intersection of lattice
paths:

-3 -2 -1 1 4 63-7 5-6 -4-5 2 7 8

x1

x2

x3

S2 S1S3S4S ′
6S ′

7 P7 P6 P5 P ′
2 P ′

1

y1

y2y2y2

y4

y3

1

2

3

4

0

R4 R3 R2 R1

Q7 Q6 Q5x3

x2 x2

(41)
The sign changing involution, which may be identified in general from the left-most pair
of intersecting paths, is provided in this case by the transposition (5, 6). The (n, m)-tuple
contributes mutually cancelling monomials associated with the two permutations

(

1 2 3 4 5 6 7
2 3 4 7 1 5 6

)

and

(

1 2 3 4 5 6 7
2 3 4 7 1 6 5

)

, (42)

where these two permutations, differing only by the transposition (5, 6), have parities ±1.
Of course the north-east and north-west paths never intersect one another. In order to

ensure that an (n, m)-tuple consists wholly of non-intersecting paths it is necessary that
the corresponding permutation π satisfies the constraints:

π(1) < π(2) < · · · < π(n) and π(n + 1) < π(n + 2) < · · · < π(n + m) . (43)

Each such permutation π may be written in the form

π =

(

1 · · · n − 1 n n + 1 n + 2 · · · n + m
1 + ζ ′

n · · · n − 1 + ζ ′
2 n + ζ ′

1 n + 1 − ζ1 n + 2 − ζ2 · · · n + m − ζm

)

(44)
for some partition ζ ⊆ (nm). Indeed, every such ζ ⊆ (nm) arises in this way since there
exists a bijective map from those permutations π satisfying (44) to the partitions ζ ⊆ (nm).
This is constructed by labelling the consecutive boundary edges of F ζ ⊆ F (nm) with
integers j = 1, 2, . . . , n+m, with the edge labelled j either horizontal or vertical according
as π−1(j) is either ≤ n or > n, respectively. Moreover, the rank r(ζ) of ζ is the maximum
k such that π(n + k) = n + k − ζk ≤ n, or equivalently π(n− k + 1) = n− k + 1 + ζ ′

k > n,
and by counting descents

(−1)π = (−1)ζ′n+···+ζ′2+ζ′1 = (−1)|ζ|. (45)

By way of illustration, in the case of our example (39) for which

π =

(

1 2 3 4 5 6 7
2 3 4 7 1 5 6

)

, (46)
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the differences in the entries in each column give ζ = (4, 1, 1) and ζ ′ = (3, 1, 1, 1), with
r = r(ζ) = 1.

Quite generally, using the ζ and ζ ′ obtained in this way, each (n, m)-tuple of non-
intersecting lattice paths defines a pair of skew semistandard tableaux of shapes λ/σ
and µ/τ with σ = (ζ + pr) and τ = (ζ ′ + qr). To be precise each σi is the horizontal
distance from Pn+i to P ′

π(n+i) for i = 1, . . . , r and to Pπ(n+i) for i = r + 1, . . . , m, and

for each particular (n, m)-tuple of non-intersecting lattice paths the entries in the ith
row of the skew semistandard tableau of shape λ/σ are given by the consecutive heights
k of the horizontal steps of the lattice path from P ′

π(n+i) or Pπ(n+i), as appropriate, to
Qn+i for i = 1, . . . , m. Similarly, τi is the horizontal distance from Sn−i+1 to S ′

π(n−i+1)

for i = 1, . . . , r and to Sπ(n−i+1) for i = r + 1, . . . , n, and the entries in the ith row of
the skew semistandard tableau of shape µ/τ are given by the consecutive heights k of the
horizontal steps of the lattice path from S ′

π(n−i+1) or Sπ(n−i+1), as appropriate, to Rn−i+1

for i = 1, . . . , n.
The fact that sλ/σ(x) and sµ/τ (y) can be defined by means of such skew semistandard

tableaux then completes the combinatorial proof of (33). QED
In the case m = 3, n = 4, p = −2, q = −1, λ = (5, 3, 2) and µ = (4, 3, 2, 2), our

non-intersecting lattice path example, for which ζ = (4, 1, 1), ζ ′ = (3, 1, 1, 1) and r = 1,
is such that the above is illustrated for the north-east paths by:

1

2

P7 P6 P5 P ′
2 P ′

1

Q7 Q6 Q5

2 2

3 3

⇐⇒
∗ ∗ 1 2 3
∗ 2 2
∗ 3

(47)

with

σ = (2, 1, 1) =

(

1
2

)

=

(

3 − 2
2

)

= (4, 1, 1) + (−2, 0, 0) = (ζ + pr) , (48)

and for the north-west paths by

S2 S1S3S4S ′
6S ′

7

1

222

4

3

R4 R3 R2 R1

⇐⇒

∗ ∗ 2 2
∗ 1 4
∗ 2
∗ 3

(49)

with

τ = (2, 1, 1, 1) =

(

1
3

)

=

(

2 − 1
3

)

= (3, 1, 1, 1) + (−1, 0, 0, 0) = (ζ ′ + qr) . (50)
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