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Hereditary factors are associated primarily
with early-onset premenopausal breast can-
cer. During the 1990s genetic analysis of
breast cancer–prone families identified the
BRCA1 and BRCA2 genes. Women with
mutations in either BRCA1 or BRCA2 (over
250 mutations have been identified) are at a
significantly elevated lifetime risk (55–85%
compared with 12% for the general popula-
tion) for developing breast or ovarian cancer
(16). Approximately 5–10% of breast cancer
cases can be attributed to germline muta-
tions in BRCA1 or BRCA2. Recent evidence
suggests that BRCA1 and BRCA2 may have
important but distinct roles in sporadic
breast cancer (17,18). BRCA1 and BRCA2
encode multifunctional protein products
implicated in transcriptional regulation, cell
cycle control, apoptosis, and DNA-repair
pathways (19). The detection of the protein
products of the BRCA1 and BRCA2 genes in
milk fat globules also suggests a possible role
in lactation (20).

Polymorphisms of Drug-
Metabolizing Enzymes That
May Influence the Risk of
Breast Cancer

Polymorphisms have been identified in the
genes encoding many enzymes involved in
the bioactivation and detoxication of envi-
ronmental chemicals, dietary agents, and
endogenous steroids. A mutation may give
rise to a bioactivating enzyme with increased
activity or to a detoxifying enzyme with
decreased activity; either scenario could
increase susceptibility to mammary carcino-
genesis. Most of the major families of drug-
metabolizing enzymes have been examined
in this regard, including cytochrome
P450 (CYP), glutathione S-transferase
(GST), arylamine N-acetyltransferase (NAT),
catechol-O-methyltransferase (COMT), sul-
fotransferase (SULT), and uridine diphos-
phate-glucuronyltransferase (UGT). These
results will now be discussed briefly. 

CYP enzymes catalyze reactions involved
in the oxidative metabolism of xenobiotics
and steroids. Many classes of chemical car-
cinogens are bioactivated to DNA-reactive
species by P450 enzymes. Potential mam-
mary carcinogens such as polycyclic aromatic
hydrocarbons (PAHs) and aromatic amines
are activated to reactive species by P450
1A1. Several CYP1A1 variants have been
studied. For example, the MspI polymor-
phism may be a significant risk factor for
breast cancer in Chinese women in Taiwan
(21). However, in a case–control study
nested within the Nurses’ Health Study,
no increase was associated with variant
CYP1A1 genotypes (22). CYP1A1 expres-
sion is highly variable, independent of the

genetic polymorphism: over a 400-fold
difference was noted in 58 samples of non-
tumor breast tissue (23).

P450 1B1 bioactivates carcinogens and
hydroxylates 17β-estradiol at the C-4 posi-
tion, forming genotoxic 4-hydroxyestradiol
(24). Identified polymorphisms of human
CYP1B1 include codon 119 Ala→Ser and
codon 432 Val→Leu. Epidemiologic associ-
ations of these variants with breast cancer are
still controversial (25),(26).

GST enzymes, which inactivate reactive
electrophilic intermediates by catalyzing glu-
tathione conjugation, are important enzymes
in the detoxication of chemical carcinogens.
In humans, the GST gene superfamily is
divided into at least four classes: alpha
(GSTA), mu (GSTM), pi (GSTP), and theta
(GSTT). Only about half the population car-
ries the GSTM1 gene (27). The GSTM1 null
genotype has been associated with increased
risk of breast cancer in a South Korean study
population (28) but not in an Australian
Caucasian population (29). Meta-analysis of
46 studies found a slight increase in risk of
breast cancer among postmenopausal women
with the GSTP1 Ile→Val polymorphism and
the GSTM1 deletion (30).

COMT catalyzes the methylation of
endogenous catechol compounds such as
biogenic amines (dopamine) and catechol
estrogens (2- and 4-hydroxyestrogens).
Variations in COMT activity will affect the
bioavailability of endogenous estrogens. The
low-activity COMT allele may contribute to
both the risk (31) and progression (32) of
breast cancer.

N-Acetyltransferases (encoded by the
human NAT1 and NAT2 genes) are
involved in both the bioactivation and the
detoxication of aromatic amines (33). These
enzymes possess three activities: N-acetyla-
tion, O-acetylation, and N,O-acetyltransfer
activity. The O-acetylation and N,O-acetyl-
transfer activities can lead to formation of
unstable acetoxy compounds that decom-
pose to DNA-reactive nitrenium ions. The
classic NAT2 polymorphism accounts for
slow versus fast acetylation of drugs such as
isoniazid. About half of individuals in
Caucasian populations are slow acetylators;
Inuit and Oriental populations are predomi-
nantly fast acetylators (up to 90%). The
controversial question of NAT1 and NAT2
associations with breast cancer will be dis-
cussed later in this review.

SULT and UGT catalyze conjugation of
endogenous compounds and xenobiotics to
form sulfates and glucuronides, respectively.
Human mammary tissue expresses SULT
(34) and UGT (35) activities, and the roles
of polymorphisms of the genes encoding
these enzymes in breast cancer are now
under investigation (35,36).

Demographics of
Breast Cancer
Studies of migrant populations and geo-
graphic variations in incidence of breast can-
cer suggest that lifestyle and environmental
influences are involved in the etiology of the
disease. The rates of breast cancer in Asian
and Mediterranean countries are signifi-
cantly lower than in North America (37),
yet, within several generations, the rate of
breast cancer in female offspring of Asian
immigrants to the United States approaches
the American rate (38). Recent studies indi-
cate that the rate of breast cancer in Japan is
increasing, coincident with the westerniza-
tion of the Japanese lifestyle (39). Generally,
the incidence of breast cancer in American
Indian and Alaskan Native women has been
lower than in most of the other racial/ethnic
groups in the United States. Migration of
these Native American families has led to an
increase in the breast cancer rates. An ele-
vated incidence of breast cancer has been
noted in the U.S. northeast, especially the
New York–New Jersey–Pennsylvania area
(40), which is among the most heavily pol-
luted regions on the continent in terms of
industrial and vehicular emissions. An
increased risk of breast cancer was also
reported for postmenopausal women who
lived for more than 10 years near an indus-
trial facility in Long Island, New York (41).

Cigarette Smoking and 
Breast Cancer
Tobacco smoke is the major causative agent
in the development of lung cancer (42). In
contrast, the possible role of smoking in
breast cancer has remained controversial. A
large number of epidemiologic studies were
conducted during the 1980s and early
1990s. Several found a weak association of
smoking with breast cancer, many found no
difference in risk, and a few even noted
reduced risk. Reduced risk might be
accounted for on the basis of an antiestro-
genic effect of smoking, lowering the age of
menopause and total exposure to estrogen.
In these early studies, analyses were generally
conducted with respect to never-smoker and
ever-smoker categories.

During the last 10 years, the effect of
environmental tobacco smoke (ETS) (also
referred to as secondhand smoke or side-
stream smoke) on human health has become
an important public health issue. Some
recent epidemiologic studies have divided
never smokers into unexposed nonsmokers
and passive smokers (individuals exposed to
ETS). A groundbreaking Swiss study care-
fully examined the relationship between
tobacco smoke exposure and breast cancer
(43). In the population-based case–control
study, women were categorized as active
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smokers, passive smokers, or unexposed
nonsmokers. An active smoker was defined
as a woman who had smoked at least 100
cigarettes in her lifetime, whereas a passive
smoker was any woman exposed to passive
smoke for at least 1 hr per day for at least 12
consecutive months during her lifetime.
Among ex-active and current active smokers,
an increase in the risk of breast cancer was
associated with the number of cigarettes
smoked per day. The odds ratio (OR) of
breast cancer in current active smokers
ranged from 1.5 (95% [confidence interval]
CI 0.6–3.9) for women who smoked 1–9
cigarettes per day and 2.1 (95% CI 0.9–4.8)
for women who smoked 10–19 cigarettes
per day, to 5.1 (95% CI 2.1–12.6) for
women who smoked more than 20 cigarettes
per day. The OR of breast cancer in passive
smokers was 3.2 (95% CI 1.7–5.9). It was
estimated that exposure to passive smoke for
2 hr per day for 25 years was equivalent to
actively smoking 20 cigarettes per day for 20
years. A similar contribution of ETS to dis-
ease development has also been observed in
heart disease (44).

In a recent Canadian study, data from
2,317 cases of breast cancer (25% pre-
menopausal and 75% postmenopausal
women) and 2,438 population controls were
analyzed for risk of breast cancer with passive
and active (current and ex-) smoking (45).
When the data were analyzed without con-
trolling for passive smoke exposure, with
never smokers as the referent group, the OR
values for breast cancer were 1.0 (95% CI
0.8–1.3) and 1.2 (95% CI 1.0–1.4) for
ex-smokers/current smokers in premeno-
pausal and postmenopausal women, respec-
tively. When the referent group included only
women who never actively smoked, never
lived with a regular smoker for at least 1 year,
and never worked for at least 1 year with reg-
ular smokers, the results were very significant.
For the same cohort of premenopausal
women, the OR values were 2.3 (95% CI
1.2–4.6) for passive smokers, 2.6 (95% CI
1.3–5.3) for ex-smokers and 1.9 (95% CI
0.9–3.8) for active smokers. For post-
menopausal women, the effects of ETS were
also observed; the OR values were 1.2 (95%
CI 0.8–1.8) for passive smokers, 1.4 (95% CI
0.9–2.1) for ex-smokers, and 1.6 (95% CI
1.0–2.5) for active smokers.

The gene–environment interaction for
tobacco smoke has also been investigated. In
1996 it was reported that postmenopausal
women who were slow acetylators and
smoked have a significantly elevated risk of
breast cancer (OR up to 4.4) (46). This
result could not be confirmed in a nested
case–control study in the Nurses’ Health
Study (47). On the other hand, Millikan et
al. (48) reported that postmenopausal

women who smoked within the past 3 years
and possessed the rapid NAT2 genotype
(OR = 7.4; 95% CI 1.6–32.6) had a greater
risk of breast cancer than women with the
slow NAT2 genotype (OR = 2.8; 95% CI
0.4–8.0). Morabia and colleagues (49) inves-
tigated the role of active and passive smok-
ing, this time including the interaction of
the NAT2 genotype. The increased risk of
breast cancer was observed only in post-
menopausal women, not premenopausal
women. Fast acetylators who passively
smoked had a greater risk (OR = 11.6; 95%
CI 2.2–62.2) than fast acetylators who
actively smoked (OR = 8.2; 95% CI
1.4–46.0). The effect of smoking was
observed with slow acetylators, but the asso-
ciation was weaker: passive smokers (OR =
1.1; 95% CI 0.3–4.3), active smokers (OR =
2.9; 95% CI 0.8–11.2). The previously
mentioned nested case–control study in the
Nurses’ Health Study also analyzed two
genetic variants of CYP1A1 (22). A modest
increase of risk was observed among women
who started smoking before the age of 18
and possessed the CYP1A1 MspI variant
(T´C transition at nucleotide 6235) or
another CYP1A1 variant, the exon 7 poly-
morphism (A´G transition at nucleotide
4889). No more than a small percentage
(<5%) of all cases of breast cancer can be
attributed to these two risk factors. 

Breast Cancer and Lifestyle
Factors Other Than Smoking;
Dietary Factors
The relationship of alcohol consumption to
risk of breast cancer has been studied for
many decades (50,51). Low consumption
levels (1–3 drinks per week) were not found
to increase risk of breast cancer (52). The
only significant increase of relative risk
(1.41–1.70) compared with nondrinkers is
associated with high levels of intake, at least
60 g/day (approximately 2–5 drinks) (53,54).
Alcohol consumption may increase levels of
plasma estrogen and insulinlike growth fac-
tors (55,56). An increased risk of breast can-
cer was observed recently in postmenopausal
women who consumed alcoholic beverages
and had low folate intake (57,58).

Dietary fat has often been examined as a
risk factor for breast cancer (59). Although
the question remains controversial, the con-
sensus indicates that there is not a strong
association between fat intake during adult-
hood and risk of breast cancer. The roles of
dietary fat intake during childhood and ado-
lescence, and of different types of dietary
fatty acids, remain unclear.

Meat consumption is a major source of
dietary fat. In addition, genotoxic substances
are formed during the cooking or processing
of meat. A case–control study in Uruguay in

1996 found an increased risk of breast cancer
with intake of red meat (60). A later study
found a positive correlation between con-
sumption of well-done meat and risk of
breast cancer (61). Two classes of carcino-
genic compounds can be formed in the
grilling of meats: PAHs and heterocyclic aro-
matic amines (62). PAHs are formed from
the pyrolysis of fats during charcoal grilling
and are deposited on the meat by smoke
from the fat dripping onto the coals of the
grill. The presence of PAH–DNA adducts in
human breast tissue (63) is consistent with
involvement of these compounds in breast
cancer, but epidemiologic evidence in this
regard is very limited. Mutagenic heterocyclic
aromatic amines (discussed in more detail
later in this chapter) are formed by various
high-temperature cooking methods, includ-
ing broiling, frying, roasting, and barbecuing. 

Diets with five or more daily servings of
fruits and vegetables may be protective
against breast cancer (64), but a later study
did not support a protective role for dietary
fruits and vegetables in adulthood (65). An
inverse association between dietary folate
intake and breast cancer risk was observed in
the Shanghai Breast Cancer Study (66).
Consumption of fruits and vegetables rich in
α-carotene, β-carotene, vitamin A, vitamin
C, and lutein/zeaxanthin is a protective fac-
tor reducing risk of breast cancer in pre-
menopausal women, including women with
family history of breast cancer (67). In an
earlier study, another vitamin, α-tocopherol,
was suggested to be a protective factor for
premenopausal women with family histories
of breast cancer (68).

Occupation and Risk of
Breast Cancer
The participation of women in the work
force has increased steadily since the 1950s.
Research on occupational exposure to car-
cinogens has focused predominantly on the
male worker. Only recently has there been
special interest in occupational exposure to
hazardous agents as a factor in the risk of
breast cancer in women (69,70). Women
exposed to benzidine or β-naphthylamine
while employed in a dye factory in Moscow
had approximately double the risk of breast
cancer (71). Labreche and Goldberg (72)
have examined occupational exposure to
organic solvents. The solvents benzene, 1,1-
dichloroethane, 1,2-dichloroethane, 1,2-
dichloropropane, and dichloromethane are
rodent mammary carcinogens and may be
encountered in the petrochemical, dry clean-
ing, shoe manufacturing, and chemical
industries. There is evidence for a positive
association of several occupations with risk
of breast cancer, including nurses, teachers,
laboratory technicians, dental hygienists,
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