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Abstract
Total and intra-mitochondrial gonadal cholesterol concentrations are decreased in fish exposed to
the phytoestrogen beta-sitosterol (beta-sit). The present study examined the potential for beta-sit
to disrupt de novo cholesterol synthesis in the gonads of goldfish exposed to 200 microgram/g
beta-sit and 10 microgram/g 17beta-estradiol (E2; estrogenic control) by intra-peritoneal Silastic®

implants for 21 days. The de novo cholesterol synthetic capacity was estimated by incubating
gonadal tissue with 14C-acetate for a period of 18 hours, followed by chloroform/methanol lipid
extraction and thin layer chromatography (TLC) lipid separation. Lipid classes were confirmed
using infrared spectroscopy. Plasma testosterone (T) and total cholesterol concentration were
measured and gonadosomatic index (GSI) was calculated. Plasma T was significantly reduced in
male beta-sit-treated fish compared to control and E2-treated fish (p < 0.001). 14C-Acetate
incorporation into cholesterol and cholesterol esters was not significantly different among
treatment groups for male and female fish, however, 14C-enrichment was higher than expected in
both triglycerides (TG) and free fatty acids (FFA). FFA incorporation was significantly higher in male
control fish than either beta-sit or E2 treatments (p = 0.005). Plasma cholesterol concentration was
significantly increased in the male beta-sit treatment group compared to controls (p = 0.027).
These results indicate gonadal de novo cholesterol biosynthetic capacity is not disrupted by beta-
sit or E2 treatment in early recrudescing male or female goldfish, while plasma cholesterol and
steroid concentrations are sensitive to beta-sit exposure.

Background
Cholesterol is the precursor to all steroid hormones, such
as estrogens, androgens, and corticosteroids [1]. In fish, as
in other vertebrate species, cholesterol is obtained by die-
tary intake, release from intracellular stores or by de novo
synthesis [2]. Cholesterol absorbed at the intestines is
esterified with free fatty acids to form hydrophobic cho-

lesterol esters (CEs), which are transported in the plasma
in association with lipoproteins to sites of metabolism or
storage [3,4]. At the tissues, receptor-mediated lipoprotein
endocytosis delivers cholesterol to the intracellular envi-
ronment for immediate use or re-esterification for intrac-
ellular storage [5]. While exogenous cholesterol is
obtained in this way by most steroidogenic tissues (such
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as the adrenal and ovary), some tissues (such as the testis)
differentially utilize de novo synthesized cholesterol as a
substrate for steroid biosynthesis [2,6]. The definitive
mechanisms of cholesterol metabolism in fish are
believed to be highly similar to mammals, although com-
prehensive information on lipid dynamics in teleost spe-
cies is limited. Cholesterol biosynthesis is believed to
proceed by the same pathway in fish as in higher verte-
brates [7]. A number of reviews on animal [6,8,9] and fish
[10] lipoprotein dynamics indicate structure is similar,
although TG content is elevated at the expense of choles-
terol esters in teleost lipoproteins. Fish plasma is consid-
ered hypercholesterolemic relative to higher vertebrates,
with 2–6× higher circulating cholesterol concentrations a
normal physiological condition in fish species [11]. The
traditional detrimental affects associated with high
plasma cholesterol such as coronary lesions and plaque
formation are notably absent in fish species, presenting an
interesting and stark contrast to the human condition.

De novo cholesterol synthesis begins with the production
of acetyl CoA via acetate or citrate. Acetyl CoA is subse-
quently transformed to 3-hydroxy-3-methylglutaryl-CoA
(HMG CoA), mevalonate, squalene, lanosterol and ulti-
mately cholesterol via a number of enzymatic transforma-
tions (for a detailed summary see [12]). The newly
synthesized cholesterol (Figure 1A) can then enter tissue-
specific biosynthetic pathways such as steroidogenesis, or
be incorporated into plasma membranes or esterified for
intracellular storage. The relative contribution of de novo
cholesterol synthesis to the total cholesterol pool in endo-
crine organs such as the gonads is generally not known.
Ovarian tissue in mammals has been shown to utilize de
novo TG and cholesterol synthesis during the pre-ovula-
tory phase of gonadal development, doing so preferen-
tially over lipoprotein uptake [2,13]. Testis cholesterol is
preferentially sourced from de novo synthesis, while the
adrenal and ovary appear to revert to endogenous synthe-
sis only if circulating concentrations are limiting [2]. Pref-
erences of lipoprotein-derived or de novo synthesized
cholesterol by fish endocrine tissues are presumably sim-
ilar to mammalian tissues, however, direct studies on fish
species are lacking.

The phytosterol β-sitosterol (β-sit) very closely resembles
cholesterol, differing only by an ethyl group on carbon 24
(Figure 1B). β-sit disrupts normal endocrine system func-
tion in fish by decreasing steroidogenic biosynthetic
capacity [14] and disrupting plasma cholesterol concen-
trations and mitochondrial translocation to the steroidog-
enic pathway [15,16]. β-Sit has estrogenic properties as
evidenced by the induction of the normally quiescent
vitellogenin gene in male fish [17]. The capacity for plant
sterols to affect de novo cholesterol synthesis is known to
occur in the human disorder sitosterolemia, a condition

where abnormally high concentrations of plant sterols
accumulate in the plasma and tissues. Sitosterolemic
patients experience impaired whole body de novo choles-
terol synthesis by down-regulation of key synthetic
enzymes [18,19], and this sensitivity suggests de novo cho-
lesterol synthesis in other species may also be impaired by
phytosterol exposure. Previous studies have identified
changes in cholesterol availability following phytosterol
exposure [12], however, a lack of information on pre-
ferred substrate (exogenous or de novo synthesized choles-
terol) in the gonads impedes further studies to determine
mechanisms of endocrine disruption.

The present study examined endogenous cholesterol syn-
thesis in the gonads of male and female goldfish exposed
to β-sit and 17β-estradiol (an estrogenic control; Figure
1C) to determine if de novo cholesterol synthetic capacity
was impaired relative to non-exposed fish. Further, the
relative contribution of de novo cholesterol synthesis to
the reproductive steroidogenic pathway is unknown in
fish; therefore, this study also aimed to assess the contri-
bution of de novo synthesis to the total cholesterol sub-
strate pool.

Methods
All chemicals were purchased from Sigma-Aldrich
(Oakville, ON, Canada) unless otherwise specified.

Fish
Goldfish (Carassius auratus) were purchased from Aleong
International (Mississauga, ON, Canada) and acclimated
to lab conditions in 66-L flow-through tanks (10–16°C
de-chlorinated City of Saint John water). During holding,
fish were held on a 12:12 light:dark photoperiod and fed
commercial trout pellets ad libitum (Corey Feed Mills, Fre-
dericton, NB, Canada) every other day. Fish were trans-
ferred to experimental tanks two weeks prior to the start of
the experiment.

Implants
Fish were exposed to 200 μg/g β-sit (97% pure synthetic
β-sitosterol, catalogue # S1270) or 10 μg/g 17β-estradiol
(E2; catalogue # E8875) via Silastic® implants. This mode
of in vivo dose delivery has been established as an effective
exposure route for goldfish [15,16] and implants have
been shown to continuously release consistent doses over
time [20,21].

Exposures
Fish were allocated among the tanks such that there were
12 fish per tank during the exposure, with a random sex
ratio (tubercles were not visible for sexing at the time of
implanting). Fish were anaesthetized in 0.05% TMS (tric-
aine methane sulfonate; Syndel International, Vancouver,
BC, Canada). Fish weights and lengths were recorded fol-
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Chemical structures of (A) cholesterol (B) β-sitosterol (β-sit), and (C) 17β-estradiol (E2)Figure 1
Chemical structures of (A) cholesterol (B) β-sitosterol (β-sit), and (C) 17β-estradiol (E2).
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lowed by intra-peritoneal implanting of the Silastic® pel-
lets containing either 0 μg/g (control), 200 μg/g β-sit or 10
μg/g E2.

During the exposure, fish were held at 15–16°C and
14:10 light:dark photoperiod. The fish were fed 1.5%
body weight daily during the exposure.

At the time of sampling, fish had been implanted for 21
days. Fish were bled by caudal puncture and plasma was
separated by centrifugation and stored at -20°C until ster-
oids were extracted and cholesterol was measured.
Weights (0.1 g) and lengths (mm) were recorded and the
gonads were removed, weighed (0.01 g) and immediately
used in the de novo incubation. Following the incubation,
gonads were frozen at -80°C until the cholesterol assay
was performed. Gonadosomatic indices (GSI) were calcu-
lated as per the equation:

GSI (%) = [gonad weight (g)/body weight (g)] × 100.

Radioimmunoassay
Plasma hormones were extracted and testosterone (T)
concentrations were measured by radioimmunoassay
(RIA) [22]. A 45-minute incubation was performed at 4°C
after addition of 200 μL of charcoal solution and prior to
the 12-minute centrifugation at 1900 g. This extra step was
added to the protocol to stabilize and standardize counts
throughout the assay. Radio-labelled [1,2,6,7-3H]-testo-
sterone was purchased from Amersham-Pharmacia (Baie
d'Urfé, QC, Canada). Antibodies to T were purchased
from Medicorp (Montreal, QC, Canada) and cross-reac-
tivity is reported as 35% with dehydroepitestosterone and
<0.1% with other major steroids [23]. Both intra- and
inter-assay variability were within acceptable limits (<
10%).

De novo incubation
Approximately 25 mg of gonadal tissue were cut into two
pieces and placed in wells on a 24-well cell cluster plate
(performed in duplicate for each gonad; Fisher Scientific,
Nepean, ON, Canada). Each well received 1 mL of incuba-
tion solution which consisted of Medium 199 (M199;
Sigma catalogue #M2520) containing 5 μCi of acetic acid-
UL-14C (catalogue #314641). The plates were incubated
for 18 hours at 18°C after which the incubation solution
was removed and counted for total radioactivity. The sam-
ples were washed with 1.5 mL of wash solution (M199
and 2 mM unlabelled sodium acetate) which was
removed and counted for total radioactivity. The tissue
samples were stored at -80°C until the cholesterol assay
was performed.

Cholesterol assay
Cholesterol was extracted from gonadal tissue using a
modified chloroform/methanol extraction method [24].
In brief, samples were homogenized in liquid N2 using a
mortar and pestle. Lipids were subsequently extracted by
adding 3.5 mL chloroform, 4.5 mL methanol and 2 × 104

dpm 1α, 2α [N]-3H-cholesterol (for recovery estimation;
#C8794) to each sample. The tubes were mixed and left to
settle before adding an additional 2 mL of chloroform.
The tubes were mixed and left to settle before adding 3 mL
of 2 M KCl with 5 mM EDTA. Once settled, the bottom
phase was transferred to a new test tube and washed twice
with a 1:2 mix of methanol: 0.9% NaCl. The chloroform
was evaporated under N2 gas and the samples were re-sus-
pended in 40 μl of chloroform for use in thin-layer chro-
matography (TLC).

Samples were spotted (10 μl) on Whatman LK5DK linear
plates (Fisher Scientific), with a chloroform-only and cho-
lesterol standard control run concurrently on each plate.
The plates were put through two phases of development
in separate chambers in a method modified from [25].
Phase 1 consisted of chloroform: methanol: acetic acid
(98:2:1) and was developed up to 17 cm. Phase 2 con-
sisted of hexane: ethyl ether: acetic acid (96:4:0.2) and
was developed to the top of the plate. Plates were left to
dry and areas corresponding to lipids were identified by
exposure to iodine vapour and marked. After 2–12 h
(when iodine disappeared) the spots corresponding to
lipids were scraped into scintillation vials and counted for
3H- and 14C-radioactivity.

Lipid classification
The spot corresponding to cholesterol (chol) was first
identified by co-migration with the cholesterol standard,
and subsequently confirmed by infrared spectroscopy
(IR). Lipids were classified using IR; spots corresponding
to free fatty acid (FFA), triglyceride (TG), and cholesterol
ester (CE) were examined using IR and confirmed by com-
parison to the separation of simple lipids by similar sol-
vent systems [26].

Plasma cholesterol
Total plasma cholesterol concentration was measured
using a commercially available spectrophotometric assay
(CIMA Scientific, De Soto, TX, USA). A 10 μl volume of
plasma was added to 1 mL of colour reagent and incu-
bated at 37°C for 10 min. The absorbance was read at 515
nm and the concentration of the unknown samples was
calculated in comparison with a calibration standard.

Statistical analysis
Treatment differences were tested using a nested analysis
of variance (ANOVA; done manually using Microsoft
Office Excel 2003) with tank as the nesting factor. If treat-
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ment differences were present (p < 0.05) and the data
were parametric, Holm-Sidak tests were performed using
Sigmastat 3.0 (SPSS Corp, Chicago, IL) to identify the dif-
ferent treatment groups. If the data were non-normal or
had unequal variances, non-parametric Dunn's tests were
performed. Systat 10.2 (SPSS Inc, Chicago, IL) was used to
perform analysis of covariance (ANCOVA) on gonad and
body weight data to determine if there were differences in
gonad size among treatment groups.

Results
GSI
Male and female fish had developing gonads at the early
to mid-recrudescence stage, as evidenced by the state of
the gonads at the time of sampling. There were no differ-
ences in gonad weight relative to body weight as com-
pared to controls in male and female fish. Male GSI
values, mean ± SEM (N), were 1.10 ± 0.2 (9), 0.7 ± 0.3
(11) and 1.78 ± 0.3 (11) for control, β-sit and E2 treatment
groups, respectively. Male β-sit-treated fish had signifi-
cantly smaller gonads than the E2 treatment group (p =
0.032). The GSI values for female control, β-sit and E2
treated-fish were 2.80 ± 0.8 (15), 1.9 ± 0.5 (13) and 2.46
± 0.4 (13), respectively.

Plasma testosterone
β-Sit significantly reduced plasma T concentrations in
male fish relative to controls (p < 0.001; Figure 2), while
plasma T concentrations of β-sit-exposed females were
not different from those of control fish. The β-sit treated
females had significantly lower plasma T than the E2 treat-
ment group (p = 0.034).

De novo cholesterol assay
The cholesterol extraction protocol recovered 90.7 ± 0.6%
of the 3H-cholesterol, indicating a high extraction effi-
ciency. There were no differences in 14C-acetate incorpora-
tion into cholesterol or CE in male (Figure 3) or female
(Figure 4) fish. There was significantly higher 14C-acetate
incorporation into FFAs in male control fish than in either
β-sit or E2 treatment groups. There were no treatment dif-
ferences for either sex in cholesterol: CE or cholesterol: TG
ratio (data not shown).

Plasma cholesterol
Male β-sit-treated fish had significantly higher total
plasma cholesterol concentrations than control fish (p =
0.027; Figure 5). There were no differences in female
plasma cholesterol concentrations.

Discussion
The de novo cholesterol biosynthetic pathway begins with
the acquisition of acetyl-CoA, but commitment to choles-
terol synthesis occurs subsequent to acetyl-CoA produc-
tion. TG biosynthesis also utilizes acetyl-CoA as a

substrate, potentially diverting substrate from the de novo
cholesterol synthetic pathway [27]. TG is the primary met-
abolic energy storage molecule in fish where upwards of
80% of total body lipid composition is present as TG [7].
The current study suggests acetyl-CoA is preferentially
directed towards TG synthesis over cholesterol in early to
mid-recrudescing gonads of male and female goldfish.
Ovarian tissue preferentially uses lipoprotein-derived
cholesterol as a steroidogenic substrate [6], therefore, a
large de novo cholesterol biosynthetic capacity was not
expected in female gonads. The higher 14C-TG enrichment
in ovarian tissue is consistent with an increased TG
demand during reproductive development; growing
oocytes incorporate high concentrations of TG to provide
metabolic fuel for developing embryos [28]. Similar stud-
ies on trout (Salmo gairdneri) have shown high acetate
incorporation towards TG synthesis during later gonadal
development [45]. In testicular tissue it is believed that de
novo-derived cholesterol is the primary substrate for ster-
oidogenesis [2], therefore, more substantial 14C-acetate
incorporation towards cholesterol was predicted. In con-
trast, 14C was enriched 6-fold and 3-fold higher towards
TG and FFA than towards cholesterol and CEs. This higher
level of de novo TG synthesis was consistent in all male
treatment groups.

While fish testes generally have low lipid content that var-
ies with season and reproductive stage [7], the high
plasma T concentrations in male control fish suggest T
synthesis (and thus steroidogenic substrate) was not
impaired at the reproductive stage in the present study.
The 14C-acetate incorporation data suggest testis tissue
may direct acetyl-coA towards TG formation when choles-
terol availability to steroidogenesis is not limiting. Plasma
cholesterol concentrations were above 200 mg/dL for
both sexes in all treatment groups, suggesting cholesterol
and steroidogenic capacity were not limited at the point of
circulatory uptake or de novo synthesis of cholesterol. The
absence of a reduction in plasma T in the E2 treated fish
and its significant decrease in β-sit exposed animals pro-
vides evidence of a unique, non-estrogenic mechanism of
β-sit endocrine effects. Additionally, the depression of FFA
synthesis by both β-sit and E2 treatment demonstrates
common effects on lipid dynamics in exposed fish. Previ-
ous studies have established that β-sit changes plasma
cholesterol dynamics and has endocrine effects distinct
from E2 [29]. The regulation of steroidogenesis is a multi-
faceted feedback system among the hypothalamus, pitui-
tary and the gonads, known as the HPG axis, therefore
impairment of function can occur at multiple levels.
MacLatchy et al. [28] demonstrated that β-sit does not
alter plasma luteinising hormone (LH) concentration,
while E2 interacts with the HPG axis extensively [30-32].
In particular, E2 and FSH are involved in regulating lipid
accumulation in the ovaries of salmon (Oncorhynchus kis-
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utch), thereby demonstrating a potential for E2 lipidemic
effects [33]. The increase in plasma cholesterol seen cur-
rently in the male β-sit treatment group and an absence in
the E2 treatment group, demonstrates independent effects
of β-sit on plasma cholesterol concentration, likely caused
by a mechanism distinct from an E2 feedback system. Evi-
dence of β-sit interacting with lipid synthetic enzymes in
humans [18] would suggest disruption likely occurs at the
level of cholesterol biosynthesis. Further studies examin-
ing lipid synthetic enzyme kinetics will provide good
insight towards understanding the interaction of β-sit and
E2 with the cholesterol synthetic pathway.

The goldfish used in the current study were undergoing
early to mid-recrudescence, based on preceding acclima-
tion conditions, observations during sampling, GSI values
and plasma T concentrations. Reproductive development
in goldfish is highly regulated by changes in environmen-

tal parameters such as photoperiod and water tempera-
ture [34] and the laboratory environmental conditions for
this study were designed to initiate recrudescence (15–
16°C; 14 h L:10 h D). Fish experience low circulating cho-
lesterol concentrations during sexual maturation, and it is
known plasma lipids are variable and influenced by
reproductive state [10]. Testis lipid content varies with
season and, therefore, reproductive development [7]. It is
thus likely that sensitivity to lipid-altering chemicals may
also vary with reproductive state, presenting contradicting
results dependent on the specific physiology and lipid
metabolism of the particular gonadal stage at the time of
exposure. This appears to be the case with β-sit, which
affects endocrine endpoints such as plasma T and choles-
terol concentration differently in males and females at dif-
ferent reproductive states and exposure durations. For
example, in a long-term β-sit exposure covering a 5-
month period of gonadal development and starting prior

Plasma testosterone concentration (ng/mL) in male and female goldfish exposed to control, β-sit (200 μg/g) and E2 (10 μg/g) via Silastic® implants for 21 daysFigure 2
Plasma testosterone concentration (ng/mL) in male and female goldfish exposed to control, β-sit (200 μg/g) and E2 (10 μg/g) via 
Silastic® implants for 21 days. Bars represent means ± SE. Different letters indicate treatments that are significantly different (p 
< 0.05).
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to the initiation of recrudescence, there were no effects on
plasma T or cholesterol concentration by β-sit during
recrudescence [35]. However, at the initiation of a subse-
quent cycle of gonadal development, in the same 5-
month exposure, male fish experienced significant reduc-
tions in plasma T [36]. In the current study, plasma cho-
lesterol concentrations increased in the β-sit treatment
group, an effect in contrast to previous reports [14,15],
indicating β-sit can also have variable effects on plasma
lipids. It is, therefore, critical to interpret endocrine effects
of β-sit exposure with conscience to the reproductive stage
at the time of exposure and sampling. Further, the com-
plex and intricate nature of the regulation of steroidogen-
esis by the HPG axis makes the interpretation of plasma
hormone data challenging. The reduction in plasma T in
male fish exposed to β-sit but not E2 likely results from dif-
ferent sensitivities of the HPG axis to estrogenic control at
different stages of the reproductive cycle; male and female

fish were not sensitive to down-regulation of T synthesis
by E2 in the present study. The impact of β-sit exposure on
plasma T would, therefore, appear to be caused by non-
estrogenic mechanisms, likely related to limited choles-
terol availability to the steroidogenic pathway [16]. Ster-
oidogenic acute regulatory protein (StAR) has been
identified as a mitochondrial cholesterol transporter [37],
and β-sit has been shown to reduce StAR mRNA abun-
dance in male goldfish [36]. Given that de novo cholesterol
synthesis was unaffected by β-sit exposure and plasma
cholesterol concentrations were not decreased, it is highly
possible that cholesterol delivery to the steroidogenic
pathway is impaired rather than intracellular cholesterol
availability.

Male and female goldfish responded differently to β-sit
and E2 exposure; plasma testosterone and cholesterol con-
centrations were unchanged by β-sit in female fish. Few

Gonad lipid 14C-acetate incorporation (μmol/g bw) toward cholesterol (chol), free fatty acid (FFA), triglyceride (TG) and cho-lesterol ester (CE) in male goldfish exposed to control, β-sit (200 μg/g) and E2 (10 μg/g) via Silastic® implants for 21 daysFigure 3
Gonad lipid 14C-acetate incorporation (μmol/g bw) toward cholesterol (chol), free fatty acid (FFA), triglyceride (TG) and cho-
lesterol ester (CE) in male goldfish exposed to control, β-sit (200 μg/g) and E2 (10 μg/g) via Silastic® implants for 21 days. Val-
ues are presented as means ± SE. Different letters indicate treatments that are significantly different (p < 0.05).
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studies have examined the responses of both male and
female fish to E2 or β-sit exposures. Similar steroid
responses in male and female goldfish (male GSI = 3.9 –
4.9%, female GSI = 4.5 – 6.2%) to varying concentrations
of sitosterol have been reported [29]; both sexes experi-
ence significant reductions in circulating T in response to
β-sit, but not E2. In contrast, the present research found
male fish to be more sensitive to reductions in plasma T
following β-sit exposure than females. These differences
in plasma hormone response between studies is likely at
least partly due to differences in gonadal stage at the time
of the exposures (current experiments, male GSI = 0.7–
1.78%, female GSI = 1.9 – 2.8%) and, therefore, a differ-
ent physiological environment in which exogenous chem-
icals interact with gonadal tissue. Further, circulating E2 is
a normal physiological reproductive stage-dependent
phenomenon in female fish [38], therefore feedback sys-
tems and metabolic responses to exogenous E2 exist in

females that are not normally activated or required in
male fish. In the present study, however, male fish were
more sensitive to β-sit than female fish, and generally nei-
ther plasma T or cholesterol were sensitive to E2 in either
sex. It appears there are sex differences in sensitivity to β-
sit with regard to plasma hormones and cholesterol and
these varying sensitivities are likely related to reproductive
stage and the associated endogenous regulation of
gonadal development.

A quantitative, physiologically-relevant indication of ster-
oidogenic output can be determined using gonadal in vitro
incubation methods that measure steroidogenic output
by gonadal tissue [39]. Reported rates of T production in
goldfish testis range from 1 pg/g (unknown GSI) [40] to
20 pg/mg (GSI 2.2%), with the latter corresponding to a
plasma T concentration of 3.0 ng/mL [14]. In vitro steroid
biosynthetic capacity was not measured in the current

Gonad lipid 14C-acetate incorporation (μmol/g bw) towards cholesterol (chol), free fatty acid (FFA), triglyceride (TG) and cho-lesterol ester (CE) in female goldfish exposed to control, β-sit (200 μg/g) and E2 (10 μg/g) via Silastic® implants for 21 daysFigure 4
Gonad lipid 14C-acetate incorporation (μmol/g bw) towards cholesterol (chol), free fatty acid (FFA), triglyceride (TG) and cho-
lesterol ester (CE) in female goldfish exposed to control, β-sit (200 μg/g) and E2 (10 μg/g) via Silastic® implants for 21 days. Val-
ues are presented as means ± SE. There are no treatment differences (p > 0.05).
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study due to limited gonadal tissue availability; however,
control male plasma T concentrations were comparable to
those reported by MacLatchy & Van Der Kraak [28]. There-
fore, an estimate of the cholesterol requirements for T pro-
duction in the male control group of the present study can
be calculated using the in vitro biosynthetic capacity
reported by MacLatchy and Van Der Kraak (20 pg/mg over
an 18-h period). Cholesterol is used for additional cellular
functions in the testis (storage, plasma membrane integ-
rity, synthesis of other steroid hormones), therefore, any
estimation of cholesterol requirements based solely on T
production will be highly underestimated. Given this lim-
itation, an estimate of 2.9 × 10-10 moles of cholesterol
were required to produce 20 pg of T (using a 1:1 testoster-

one: cholesterol stoichiometry). In the current study, con-
trol male fish incorporated 1.47 × 10-9 moles of acetate, or
8.8 × 1014 molecules towards cholesterol synthesis during
the 18-h incubation period. Given an 18:1 stoichiometry
(18 molecules of acetate for each cholesterol synthesized)
[41], this equates to 8.2 × 10-11 moles of cholesterol syn-
thesized de novo. Additional studies have measured
gonadal tissue cholesterol concentrations from recrudesc-
ing male goldfish and report 22.6 mg cholesterol/g tissue
[35]. This equates to 5.8 × 10-5 mol/g, which if corrected
to 25 mg of testis tissue as used in the current study, esti-
mates 1.5 × 10-6 mol of endogenous cholesterol is present
in each de novo testis sample. Therefore, the de novo contri-
bution (8.2 × 10-11) is very small relative to the total cho-

Plasma cholesterol concentrations (mg/dL) in male and female goldfish exposed to control, β-sit (200 μg/g) and E2 (10 μg/g) via Silastic implants for 21 daysFigure 5
Plasma cholesterol concentrations (mg/dL) in male and female goldfish exposed to control, β-sit (200 μg/g) and E2 (10 μg/g) via 
Silastic implants for 21 days. Bars represent means ± SE. Different letters indicate treatments that are significantly different (p 
< 0.05).
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lesterol pool (1.5 × 10-6). However, the estimated de novo
synthetic capacity is within an order of magnitude of the
estimated steroidogenic needs for T synthesis (2.9 × 10-10)
and could make a significant contribution to the ster-
oidogenic substrate pool.

Identification of lipid classes was limited to cholesterol,
TG, FFA and CE; it is highly likely that 14C-acetate was
incorporated to phospholipids and monoacyl- and diacyl-
glycerols as well [26]. Weigand and Idler [45] examined
acetate incorporation to various lipid classes in ovarian
tissue of trout and found that while polar lipids were
favoured when GSI was small, TG was preferentially syn-
thesized in fish with larger GSI. In catfish (Heteropneustes
fossilis), plasma and ovarian phospholipid concentrations
followed the same trends as cholesterol and TG through-
out the reproductive cycle [42] and high plasma phos-
pholipid concentrations have been documented during
maturation in goldfish [43]. Given such indications that
dominant gonadal lipid classes can vary throughout the
reproductive cycle, it should be noted that broad conclu-
sions on gonadal lipid synthesis are limited to only the
neutral lipid classes in the current study.

The high 14C-acetate incorporation towards FFA in control
fish was absent in the corresponding male β-sit and E2
treatment groups. Phytosterols detrimentally affect cho-
lesterol metabolism in the human disease sitosterolemia
by inhibiting endogenous cholesterol biosynthesis [19],
therefore, inhibitory impacts of sitosterol exposure on fish
were expected. The first enzyme subsequent to the forma-
tion of acetyl Co-A in the cholesterol biosynthetic path-
way, acetoacetyl CoA thiolase, is down-regulated in
sitosterolemic patients [18] and phytosterols have been
shown to down-regulate numerous other cholesterol bio-
synthetic enzymes in mammals [44]. The current study
did not examine enzyme kinetics. The three week β-sit
exposure prior to gonadal tissue incubation with 14C-ace-
tate would serve to establish physiological conditions
similar to those in sitosterolemia, where tissues were
exposed to higher than normal concentrations of plant
sterols. Surprisingly, there were no differences in 14C-
enrichment of cholesterol or CEs in male or female fish,
indicating no changes in de novo cholesterol synthetic
capacity among treatment groups. The lower 14C-acetate
incorporation to FFA in male β-sit- and E2-treated gonads
suggests both substances have the capacity to down-regu-
late endogenous FFA synthesis in gonadal tissue. Further,
the similar effect by both substances demonstrates the
capacity of β-sit to act with estrogenic properties in vivo.
Therefore, while the current study provides evidence that
β-sit has non-estrogenic endocrine disrupting behaviour,
as evidenced by decreased plasma T, it also has effects sim-
ilar to estrogen in terms of its effects on FFA synthesis in
the gonads. There is no evidence in the present study to

suggest β-sit has effects on de novo cholesterol biosynthesis
at this reproductive stage for either sex; there is no varia-
tion in cholesterol synthesis in the gonads of fish exposed
to β-sit or E2.

Conclusion
The present study clearly demonstrates that ovarian and
testicular tissues have comparable capacities for de novo
cholesterol synthesis at early to mid-recrudescence, and
neither β-sit nor E2 treatment disrupts gonadal cholesterol
biosynthesis in goldfish at this reproductive stage. Further,
differences between β-sit and E2 exposure effects were
demonstrated, suggesting the mechanisms of action of β-
sit occur at points outside the HPG axis to yield effects on
steroid biosynthesis and lipid metabolism.
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