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TABLE 1. Leaf characteristics for high (L) and low (l) light and high (N) and low (n) nutrient treatments of five temperate deciduous tree species.
Means and standard errors of untransformed data are shown (N 5 3–5).

Variable Treatment

Species

A. rubrum A. saccharum F. americana P. serotina Q. rubra

Reflectance (%) Ln 9.82 6 0.66 7.86 6 0.74 8.92 6 0.66 7.69 6 0.64 9.58 6 0.80
LN 8.59 6 0.85 7.27 6 0.66 8.14 6 0.69 7.88 6 0.85 6.96 6 1.04
ln 9.31 6 0.66 7.05 6 0.67 8.46 6 7.24 7.24 6 0.89 6.74 6 0.74
lN 9.87 6 0.81 6.61 6 0.59 6.68 6 0.66 7.07 6 0.81 7.28 6 0.95

Transmittance (%) Ln 11.01 6 1.31 7.28 6 1.46 9.06 6 1.31 8.98 6 1.69 11.36 6 1.57
LN 9.17 6 1.68 7.04 6 1.37 8.07 6 1.20 7.39 6 1.72 4.47 6 2.07
ln 12.24 6 1.21 6.84 6 1.30 10.30 6 1.48 9.53 6 1.60 4.99 6 1.45
lN 14.28 6 1.69 5.06 6 1.29 6.45 6 1.31 7.58 6 1.69 4.04 6 2.01

Absorptance (%) Ln 79.17 6 1.92 84.86 6 2.15 82.03 6 1.94 83.12 6 2.48 79.06 6 2.50
LN 82.25 6 2.48 85.69 6 1.92 83.78 6 1.97 84.73 6 2.38 88.57 6 3.04
ln 78.46 6 1.82 86.11 6 1.90 81.24 6 2.20 83.22 6 2.50 88.27 6 2.45
lN 75.85 6 2.49 88.33 6 1.87 86.87 6 1.93 85.35 6 2.44 88.68 6 3.10

Abs/Chl (%/mg) Ln 15.98 6 1.06 14.76 6 1.22 16.88 6 1.06 15.04 6 1.25 18.70 6 1.49
LN 13.86 6 1.22 15.95 6 1.06 15.70 6 1.10 15.11 6 1.50 13.08 6 1.45
ln 16.52 6 0.94 13.50 6 0.90 16.47 6 1.03 15.64 6 1.22 12.93 6 1.00
lN 16.38 6 1.20 12.27 6 0.97 14.36 6 0.89 11.76 6 1.49 11.50 6 1.55

Abs/Biomass (%/g) Ln 86.66 6 4.73 103.86 6 4.97 124.63 6 14.48 91.74 6 2.11 85.29 6 1.57
LN 97.09 6 6.54 105.73 6 7.11 113.10 6 9.94 96.84 6 17.28 78.43 6 1.56
ln 127.92 6 5.58 127.45 6 5.57 169.28 6 9.95 146.44 6 10.61 105.23 6 4.71
lN 136.07 6 18.36 127.82 6 5.00 150.89 6 6.22 138.44 6 12.65 110.93 6 3.47

LMA (mg/cm2) Ln 11.73 6 0.37 10.78 6 0.35 8.85 6 0.58 11.79 6 0.45 12.13 6 0.46
LN 10.92 6 0.48 10.54 6 0.55 9.60 6 0.57 11.95 6 0.87 14.37 6 0.12
ln 7.84 6 0.30 8.65 6 0.27 6.16 6 0.19 7.31 6 0.31 10.75 6 0.37
lN 7.36 6 0.54 9.23 6 0.37 7.38 6 0.28 7.88 6 0.64 10.18 6 0.55

Tissue Density (g/cm3) Ln 1.24 6 0.06 0.99 6 0.05 1.31 6 0.18 2.04 6 0.08 1.18 6 0.10
LN 1.27 6 0.10 0.96 6 0.08 1.12 6 0.07 1.86 6 0.24 1.18 6 0.06
ln 0.62 6 0.01 0.76 6 0.05 0.67 6 0.06 0.94 6 0.09 1.06 6 0.06
lN 0.91 6 0.13 0.78 6 0.04 0.78 6 0.03 1.23 6 0.12 1.13 6 0.01

Leaf Thickness (mm) Ln 100.64 6 6.83 96.07 6 0.50 111.57 6 9.58 170.25 6 11.81 111.05 6 9.12
LN 120.47 6 6.46 93.59 6 6.50 116.13 6 6.06 156.70 6 12.26 134.72 6 3.76
ln 82.72 6 1.87 81.00 6 5.04 114.39 6 6.28 127.31 6 1.95 102.75 6 8.83
lN 103.23 6 10.14 87.35 6 2.65 102.50 6 3.42 150.63 6 18.02 93.58 6 10.19

Cuticle Thickness (mm) Ln 2.54 6 0.44 2.39 6 0.15 1.70 6 0.23 4.36 6 0.43 3.37 6 0.56
LN 2.64 6 0.15 2.05 6 0.12 2.54 6 0.24 4.57 6 0.76 4.14 6 0.26
ln 1.83 6 0.05 1.88 6 0.12 1.99 6 0.06 3.44 6 0.13 3.07 6 0.35
lN 2.50 6 0.93 1.91 6 0.13 2.12 6 0.30 2.81 6 0.01 2.82 6 0.02

Upper Epidermis Thickness (mm) Ln 13.68 6 0.83 11.79 6 0.83 11.04 6 0.96 14.30 6 0.91 16.59 6 1.28
LN 16.54 6 1.17 10.91 6 0.80 10.12 6 1.02 13.52 6 1.17 16.97 6 1.02
ln 12.85 6 1.09 11.19 6 0.87 10.54 6 1.02 14.00 6 1.17 16.83 6 0.77
lN 10.50 6 1.44 10.66 6 0.87 10.41 6 0.64 11.39 6 1.44 14.31 6 2.03

Palisade Thickness (mm) Ln 40.50 6 4.23 35.98 6 1.98 44.98 6 5.14 51.66 6 6.14 32.80 6 6.16
LN 50.49 6 4.55 37.32 6 4.09 38.82 6 2.07 53.65 6 13.63 49.53 6 2.51
ln 30.05 6 3.07 30.48 6 2.57 32.59 6 1.82 26.28 6 3.66 31.79 6 2.59
lN 31.11 6 0.81 34.52 6 4.83 33.19 6 2.90 37.77 6 6.91 34.11 6 3.83

Spongy Mesophyll Thickness (mm) Ln 34.99 6 2.13 32.88 6 3.01 49.14 6 5.31 87.53 6 8.32 46.00 6 5.23
LN 43.02 6 5.71 33.81 6 2.41 55.47 6 4.73 75.87 6 2.01 58.92 6 3.15
ln 26.60 6 1.63 32.91 6 3.93 56.75 6 4.78 70.97 6 0.48 41.54 6 4.21
lN 46.42 6 12.01 34.25 6 3.09 49.09 6 3.41 76.47 6 8.56 35.95 6 6.06

Chltot (mg/cm2) Ln 63.01 6 6.01 76.07 6 6.94 61.78 6 6.01 71.63 6 6.94 59.55 6 5.80
LN 75.85 6 6.94 68.71 6 6.01 69.01 6 6.01 70.27 6 8.50 87.00 6 8.53
ln 62.09 6 5.38 82.81 6 5.38 63.75 6 6.34 67.78 6 6.94 87.72 6 4.91
lN 61.32 6 6.94 93.61 6 5.38 77.90 6 5.38 93.20 6 8.50 100.89 6 12.03

Chla (mg/cm2) Ln 30.02 6 4.66 41.44 6 4.66 31.55 6 4.04 40.20 6 4.70 33.59 6 5.71
LN 42.28 6 3.01 37.70 6 4.04 36.48 6 4.04 39.43 6 5.70 54.78 6 5.70
ln 32.14 6 4.60 46.84 6 3.61 35.26 6 4.24 35.63 6 4.66 53.56 6 3.30
lN 32.31 6 4.66 54.11 6 3.61 44.46 6 3.01 56.17 6 5.71 59.89 6 8.08

Chlb (mg/cm2) Ln 32.99 6 2.89 34.62 6 3.52 30.23 6 1.95 31.84 6 2.63 25.96 6 2.68
LN 33.56 6 1.42 31.01 6 1.19 32.53 6 2.21 30.84 6 2.26 31.98 6 0.87
ln 29.95 6 2.16 35.97 6 1.81 28.49 6 1.30 32.15 6 2.29 34.59 6 1.04
lN 29.01 6 2.23 39.50 6 2.20 33.74 6 1.21 37.03 6 3.08 41.00 6 2.83

Cartot (mg/cm2) Ln 9.51 6 0.41 12.42 6 0.65 10.15 6 0.27 11.73 6 0.53 10.27 6 1.26
LN 12.04 6 0.69 11.32 6 0.26 11.27 6 0.53 11.75 6 0.36 14.50 6 0.89
ln 9.92 6 0.46 13.11 6 0.54 10.71 6 0.39 10.79 6 0.47 14.41 6 0.26
lN 9.86 6 0.74 14.20 6 0.55 12.44 6 0.36 15.14 6 1.78 15.53 6 0.68
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TABLE 2. F values (P values) for the three-way ANOVA on each leaf characteristic for five temperate deciduous tree species. Variables include
percent absorbance, reflectance and transmittance (%A, %R or %T), absorption efficiency on a cholophyll (Abs/Chl) and biomass (Abs/biomass)
basis, total, a and b chlorophyll (Chltot, Chla, Chlb), carotenoids, anatomical characteristics, leaf mass per area (LMA) and tissue density.

Variable Spp Light Fert Spp 3 Light Spp 3 Fert Light 3 Fert Spp 3 Light 3 Fert

Sqrt Arcsine %A 6.46 (,0.0001) 0.42 (ns) 4.66 (0.0351) 1.52 (ns) 0.50 (ns) 0.57 (ns) 1.03 (ns)
Log %Rtotal 5.18 (0.0012) 4.52 (0.0378) 3.59 (0.0631) 0.71 (ns) 0.49 (ns) 1.72 (ns) 1.38 (ns)
Log %T 9.51 (,0.0001) 0.46 (ns) 9.38 (0.0034) 2.08 (0.0948) 1.10 (ns) 0.48 (ns) 1.54 (ns)
Abs/Chl 2.42 (0.0608) 6.53 (0.0137) 9.36 (0.0036) 2.69 (0.0419) 1.07 (ns) 0.05 (ns) 1.63 (ns)
Abs/Biomass 10.32 (,0.0001) 61.74 (,0.0001) 0.16 (ns) 1.54 (ns) 1.00 (ns) 0.13 (ns) 0.16 (ns)
Chltot 5.14 (0.0015) 7.81 (0.0073) 10.36 (0.0023) 2.55 (0.0503) 0.89 (ns) 0.58 (ns) 1.63 (ns)
Chla 7.31 (,0.0001) 8.91 (0.0044) 13.24 (0.0006) 2.04 (ns) 0.82 (ns) 0.19 (ns) 2.39 (0.0630)
Chlb 1.99 (ns) 4.12 (0.0478) 3.97 (0.0519) 2.93 (0.0299) 0.98 (ns) 1.41 (ns) 0.47 (ns)
Carotenoids 8.70 (,0.0001) 6.06 (0.0124) 14.31 (0.0004) 1.93 (ns) 1.40 (ns) 0.06 (ns) 2.82 (0.0344)
Log Leaf Thickness 30.26 (,0.0001) 23.24 (,0.0001) 2.69 (ns) 0.74 (ns) 1.91 (ns) 0.00 (ns) 1.88 (ns)
Log Cuticle 19.63 (,0.0001) 11.74 (0.0013) 1.21 (ns) 0.93 (ns) 1.30 (ns) 0.83 (ns) 1.21 (ns)
Log Upper Epidermis 15.26 (,0.0001) 0.03 (ns) 1.30 (ns) 0.87 (ns) 2.50 (ns) 0.99 (ns) 1.55 (ns)
Log Palisade Mesophyll 0.95 (ns) 29.02 (,0.0001) 4.42 (,0.0410) 1.49 (ns) 1.09 (ns) 0.01 (ns) 1.19 (ns)
Log Spongy Mesophyll 36.69 (,0.0001) 3.97 (0.0523) 2.68 (ns) 1.30 (ns) 1.89 (ns) 0.04 (ns) 1.85 (ns)
Log Lower Epidermis 11.85 (,0.0001) 1.14 (ns) 0.00 (ns) 1.97 (ns) 0.75 (ns) 1.44 (ns) 1.91 (ns)
LMA 23.44 (,0.0001) 163.8 (,0.0001) 2.16 (ns) 4.74 (0.0011) 1.85 (ns) 0.11 (ns) 1.30 (ns)
Tissue Density 9.98 (,0.0001) 36.68 (,0.0001) 2.06 (ns) 1.64 (ns) 0.49 (ns) 0.28 (ns) 0.67 (ns)

Note Spp, species; fert, fertilizer; ns, not significant.

except A. rubrum for which it decreased. Fertilization gener-
ally increased Chltot across species and light treatments. There
were also large interspecific differences in chlorophyll a and
total carotenoid concentrations but no significant differences
in chlorophyll b (Table 2). Chlorophyll a (Chl a) concentration
increased under low light across species with the exception of
A. rubrum for which Chl a decreased slightly. Fertilization
also resulted in increased Chl a concentration across species.
The three-way interaction term was marginally significant.
Fertilization did not affect A. rubrum under low light, whereas
P. serotina failed to respond to fertilization under high light.
Chl a increased in the other three species with fertilization,
regardless of light environment. Chlorophyll b (Chl b) con-
centrations also increased under both the low light and high
nutrient treatments (Table 1). Species differed in their response
to light; both A. rubrum and F. americana had slight decreases
in Chl b, while the other three species had higher Chl b under
low light. Total carotenoid (Cartot) concentrations were greater
for saplings in low light (Table 2) and with fertilization. Spe-
cies response to fertilization differed substantially across light
treatments (P 5 0.0344, Table 2).

Chlorophyll concentration and spectral absorptance had a
strong asymptotic relationship (P , 0.0001, Fig. 3A). At low
Chltot, absorptance increased fairly rapidly, then saturated at
greater concentrations. Species positions were distinct along
the curve with A. rubrum and P. serotina at the lower end, F.
americana in the middle and A. saccharum and Q. rubra at
the saturating portion of the relationship (Fig. 3A). The reverse
pattern held for reflectance (P , 0.0001, Fig. 3B). In an anal-
ysis of covariance on data that had been transformed to line-
arize relationships, species differed significantly in their rela-
tionships between both absorptance (P , 0.0001) and reflec-
tance (P , 0.0001) as a function of chlorophyll concentration.
The light treatment still strongly affected leaf reflectance when
the influence of chlorophyll was removed (P , 0.0001), as
did fertilization but to a lesser extent (P 5 0.0016). Indepen-
dent of chlorophyll, light was still nonsignificant (P 5
0.1738), whereas fertilization substantially influenced spectral
absorptance (P , 0.0001). The interaction term between chlo-
rophyll and light treatment was significant (P 5 0.0005),

which could explain the nonsignificant trend toward increased
absorptance in the low light treatment (Table 1).

Saplings in the high light treatment generally had greater
absorption efficiency on a chorophyll basis (Abs/chl), but this
differed across species (Fig. 4A, Table 2). For example, A.
rubrum had greater Abs/Chl in low light, while F. americana
shifted its Abs/Chl very little with light environment (Fig. 4A).
Fertilization generally decreased Abs/Chl across species and
treatments although this decrease was fairly small in some cas-
es (Table 1). On a biomass basis, however, absorption effi-
ciency increased by approximately 40% in the low light treat-
ment, while fertilization had no effect on Abs/Biomass (Fig.
4B, Table 1). Acer saccharum had the least plasticity in its
Abs/Biomass, similar to many of the other optical and anatom-
ical traits measured for this species (Table 1). Abs/Biomass
increased the most in P. serotina and A. rubrum with increased
light availability (Fig. 4B, Table 1).

Spectral reflectance patterns—In all species except for Q.
rubra, light and fertilization resulted in an additive optical re-
sponse. For P. serotina, A. saccharum and F. americana,
plants grown in the high light–low nutrient combination had
the greatest leaf reflectance and those in the low light–high
nutrient combination the least. Plants grown in high light–high
nutrient and low light–low nutrient environments were most
similar in their reflectance response across wavelengths (Fig.
2). Acer rubrum showed the reverse pattern. Across species,
reflectance differences were most obvious in the green spec-
trum near 550 nm and the red spectrum near 700 nm and were
fairly small between 400–450 nm and near the 680 nm chlo-
rophyll peak (Fig. 2).

Leaf anatomy—With the exception of the palisade meso-
phyll, all leaf anatomical characteristics varied substantially
across species (Fig. 5, Tables 1 and 2). Treatment effects were
variable with light availability affecting several anatomical
characteristics, whereas fertilization only significantly affected
palisade mesophyll thickness. Total leaf thickness varied sub-
stantially from 90–140 mm across species, with P. serotina
having the thickest leaves and A. saccharum the thinnest (Fig.
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potentially important role of nutrient availability to low light
carbon balance.

Stress vs. resource availability effects on leaf optics—Sev-
eral studies have provided strong evidence that plants respond
to acute stress with increased spectral reflectance (Bornman
and Vogelmann, 1991; Carter, 1993; Carter et al., 1995, 2000),
with the most predictable increases in the green (;550 nm)
and the red (;700 nm) wavelengths. Carter (1993) determined
that increased reflectance in these ranges was consistent across
a number of biotic and abiotic stress agents and species and
suggested that remote sensing within these spectrally narrow
ranges may allow detection of plant stress in densely vegetated
landscapes. Our data show, however, that unstressed plants ex-
posed to moderate changes in resource availability had large
optical responses, similar in magnitude and spectral range to
their responses to acute stress. The difference maxima in our
data were centered on 550 and 700 nm and the minima in the
violet region (400–450 nm) and around the chlorophyll peaks
(;670 nm), nearly identical responses to acute stress. In the
present study, reflectance differed by between 5% and 50%
across light and nutrient treatments at the sensitivity maxima.
Carter (1993) found differences ranging from 20% to 160%;
however, responses to five out of eight stress agents fell within
the range of changes reported in the present study. Only leaf
senescence, pathogen infection and inadequate mycorrhizal in-
oculation resulted in proportional reflectance changes greater
than 50%. Plants are likely to experience temporal and spatial
variation in light and nutrient availability similar in magnitude
to those used in the present study, which could result in sub-
stantial differences in spectral reflectance patterns between
vegetated areas similar to those produced by acute plant stress.
Our findings thus put into question the use of reflectance
changes in the visible spectrum as adequate indicators of abi-
otic stress factors in the absence of extrinsic information on
the stresses themselves.

Leaf pigments as predictors of leaf optical properties—
Patterns of both spectral reflectance and absorptance were pri-
marily driven by chlorophyll concentration, a pattern similar
to findings of several other studies (Thomas and Gausman,
1977; Agustı´ et al., 1994; Gitelson and Merzlyak, 1994). As
chlorophyll density increases, the efficiency of light capture
by any given chlorophyll molecule decreases. Agustı´ et al.
(1994) found this relationship held across a range of photo-
synthetic organisms from single-celled cyanobacteria to trees
and is due to effects of internal shading when chlorophyll con-
centrations are high within the leaf. In the present study,
changes in total reflectance with both increased light and nu-
trient availability were primarily a result of altered chlorophyll
concentration. However, when the effect of chlorophyll was
removed, both light and fertilization still predicted patterns of
spectral reflectance, and fertilization still explained variation
in the absorptance data, indicating that factors other than chlo-
rophyll were contributing to observed changes in leaf optical
properties.

Total carotenoid concentration also contributed significantly
to observed variation in both spectral absorptance and reflec-
tance, explaining 2.3% and 5.7% of the variation respectively.
Carotenoids strongly absorb light in the blue region of the
spectrum (Palett and Young, 1993), particularly in the 500–
520 nm region (Gitelson et al., 1966; Zur et al., 2000), and
their concentrations are generally second only to the cholo-

rophylls. Therefore once the influence of chlorophyll is re-
moved, the impact of carotenoid concentration on leaf optical
properties should be detectable, as was evident in the present
study.

While chlorophyll concentration was the main determinant
of both spectral reflectance and absorptance, species differed
substantially in their relationships of either reflectance or ab-
sorptance as a function of chlorophyll concentration. Leaf
anatomy is expected to contribute to variation in tissue optical
properties. We were not, however, able to detect a direct in-
fluence of the anatomical traits measured, despite large differ-
ences among treatments and species. It may be that we were
not measuring the right traits, either optical or anatomical, to
detect this relationship. Leaf optical properties may be indi-
rectly affected by changes in leaf anatomy through their im-
portant role in the determination of light distribution within
the leaf (Vogelmann et al., 1996). For example, convex epi-
dermal cells can act to collect and focus light, which may
increase the probability of interception of photons by chloro-
plasts (Bone et al., 1985; Myers et al., 1994); the convexity
of epidermal cells varied among species in the present study
(personal observation), which could alter the focusing prop-
erties without necessarily changing epidermal dimensions. Ad-
ditionally, palisade mesophyll cell shape may alter light pen-
etration within the leaf, changes in spongy mesophyll cell
shape can affect optical path length, and leaf anatomy influ-
ences chloroplast distribution; all of which could affect leaf
optical properties (Terashima and Saeki, 1983; Vogelmann and
Martin, 1993; DeLucia et al., 1996). Additionally, internal cel-
lular structure, specifically air-cell interfaces, are thought to be
particularly important in determining reflectance in the NIR
region (700–1300 nm) due to refractive differences between
hydrated cells and intercellular air spaces, which cause back-
scattering of light, in addition to the weak absorptance of NIR
by leaves (Knipling, 1970; Slaton et al., 2001). The large an-
atomical changes observed may therefore have a stronger in-
fluence on bulk leaf optical properties outside of the visible
range.

We did find that cuticle thickness significantly influenced
the amount of light reflected at an angle complementary to the
angle of incidence. It has been previously suggested that in-
creased cuticle thickness, under high light conditions, may be
influential in the reception and redistribution of radiant energy
through reflection away from plant tissue at the air-cuticle in-
terface (Cameron, 1970; Baker, 1982; Grant, 1987; Grant et
al., 1993). Our multiple regression analysis showed that leaf
cuticle thickness was able to predict a significant amount of
variation in the complementarily reflected light across species
and treatments, providing further evidence for the importance
of the leaf cuticle in determining leaf reflectance patterns. Cu-
ticle thickness was thus the only anatomical characteristic
measured that significantly correlated with leaf optical param-
eters in the visible range.

Efficiency of light capture—Absorptance was not strongly
affected by light availability but increased greatly in response
to fertilization. This contradicts the hypothesis that shade
leaves should be capable of absorbing a higher proportion of
incident radiation as a response to light limitation (Björkman,
1981; Givnish, 1984). Several other studies have shown sim-
ilar patterns: Poorter et al. (2000) found slightly higher spec-
tral absorptance in sun than shade leaves of five tropical spe-
cies. Survey studies of both tropical (Lee and Graham, 1986;
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Cao, 2000) and temperate (Knapp and Carter, 1998) species
found no relationship between light environment and leaf ab-
sorptance. In the present study, although there was a nonsig-
nificant trend toward increased absorptance in the low light
treatment, differences between sun and shade plants only be-
came apparent when absorptance was expressed on a biomass
basis, which reflects the cost-efficiency of the investment in
photosynthetic tissue (Agustı´ et al., 1994). Per unit biomass
investment, plants in the low light environment absorbed 20–
50% more incident radiation than did high light grown plants.
Efficient light capture per unit biomass should contribute to
positive carbon balances at lower irradiances given the reduc-
tion in metabolic costs compared to thicker tissues as well as
the reduced investment in photosynthetic tissue construction.
Plants in the high light treatment generally had thicker leaves
and greater LMA, a pattern that is well documented in the
literature (Boardman, 1977; Björkman, 1981) in addition to
greater tissue density. Shifts in absorption efficiency were pri-
marily being driven by changes in LMA, providing additional
evidence for the importance of LMA in plant responses to the
light environment.

The observed response of leaf absorptance to fertilization,
which was particularly evident under low light conditions, may
be of consequence to whole-plant carbon gain. Fertilization
increased leaf spectral absorptance by as much as 7% in the
low light treatment, a substantial contribution to light capture.
This was achieved primarily through additional allocation of
resources to chlorophyll when nutrients were more readily
available. In low light environments, it is generally assumed
that plants are most strongly limited by and responsive to light
availability and that they will respond strongly to belowground
resources only once light limitation is removed. However, var-
ious measures of the efficiency of light use, such as quantum
yield and spectral absorptance, have both been shown to be
fairly consistent between high and low light environments
(Björkman, 1981; Lee et al., 1990; Knapp and Carter, 1998;
Poorter et al., 2000); our study similarly found no absorptance
response to light availability. The present findings suggest,
however, that plant responses to nutrient availability may play
a greater role in light limited environments than previously
acknowledged through their contribution to light harvesting
capabilities. Temporal and spatial heterogeneity in nutrient
availability in light limited environments, such as the forest
understory, may thus contribute to sapling survival because an
increase in absorptance capacity could make the difference be-
tween a positive or negative carbon balance for a plant oc-
curring in a light environment near its whole plant compen-
sation point. Differential species responses to fertilization sug-
gest that certain species may be better able to take advantage
of changes in nutrient availability, which could also play an
important role in regeneration dynamics in the forest under-
story as species better able to utilize moderate increases in
nutrient availability to enhance spectral absorptance may more
frequently achieve a positive carbon balance in light limited
environments.
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