














The elasticity analysis indicated that transitions among the
various adult growth stages contributed the most to the over-
all population growth rate (Table 4). The three highest elas-
ticities were for the transitions from the 8+ to 8+ ramet
categories (0.213), the 2–4 to 2–4 ramet categories (0.125),
and the 1 to 2–4 ramet categories (0.093). The lowest elas-
ticity was for the seedling to juvenile transition (0.00019).
The reproductive transitions were also relatively low. The
elasticities for the adult to seed transitions ranged between
0.0323 and 0.0617, the value of the elasticity increasing as
the size of the plant increased.

The average transition probabilities used in model I
(unharvested) and model II (harvested) are presented in

Fig. 1. Harvesting resulted in both increases and decreases
in growth and (or) survivorship depending on the particular
growth stage examined. The population growth rate of
model I was slightly above 1 (1.007), indicating that the un-
harvested population was increasing slowly in size. Re-
ducing fecundities to zero in model I to simulate a 100%
harvest reduced the population growth rate to 0.916. The
population growth rate of model II, which also assumed a
100% harvest but used the transition probabilities of the
experimentally harvested plants, reduced the growth rate
to 0.908. In other words, the net effect of considering the
impact of flower removal on adult growth and (or)
survivorship was a further decrease in population growth,
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Dependent variable Source df
Sum of
squares

Level of
significance

Ramets 1997 Model 2 1936.12 0.0001
Ramets 1996 1 1930.13 0.0001
Treatment 1 5.98 0.2828
Error 147 756.58

Ramets 1998 Model 2 2024.17 0.0001
Ramets 1997 1 2019.55 0.0001
Treatment 1 4.62 0.4545
Error 199 1635.71

Ramets 1999 Model 2 2523.56 0.0001
Ramets 1998 1 2506.87 0.0001
Treatment 1 16.70 0.1826
Error 186 1735.08

Table 2. Analysis of covariance for the relationship between plant size (num-
ber of ramets) in year t and plant size in year t – 1 as affected by treatment
(harvested versus unharvested) for Limonium carolinianum for the period from
1996 to 1999.

Seed Seedling Juvenile 1 ramet 2–4 ramets 5–7 ramets 8+ ramets

Seed — — — 5.17 × 10–6 6.65 × 10–6 3.09 × 10–6 4.21 × 10–6

Seedling 1.71119 — — — — — —
Juvenile — 0.00082 0.1031 — — — —
1 ramet — — 16.3624 0.103543 0.13301 0.061932 0.084236
2–4 ramets — — — 0.246181 0.229793 0.106996 0.145529
5–7 ramets — — — 0.334349 0.155679 0.211744
8+ ramets — — — — 0.458643 0.213552 0.29046

Note: Values represent the impact of small changes in a transition probability on population growth rate of Limonium
carolinianum.

Table 3. Results of sensitivity analysis on model I.

Seed Seedling Juvenile 1 ramet 2–4 ramets 5–7 ramets 8+ ramets

Seed — — — 0.00281 0.01491 0.01168 0.032315
Seedling 0.058729 — — — — — —
Juvenile — 0.00019 0.0444 — — — —
1 ramet — — 0.05873 0.03319 0.00924 0.00151 0.000837
2–4 ramets — — — 0.09305 0.12548 0.02668 0.008795
5–7 ramets — — — 0.07492 0.05134 0.034708
8+ ramets — — — — 0.00889 0.06452 0.213887

Note: Values represent the proportional contribution of a transition probability to population growth rate of Limonium
carolinianum.

Table 4. Results of elasticity analysis on model I.
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their offspring are ready to reproduce. Further, as small one-
ramet adults, their fecundity will be relatively low until they
increase in size and enter the large size classes. It must also
be remembered that there was a great deal of year-to-year
variation in the survivorship of seeds and seedlings and in
the growth of the smallest adult size class. Therefore, recov-
ery could be further delayed by normal environmental fluc-
tuation.

Although the model suggests that the levels of flower har-
vesting that have been observed in Nova Scotia (Baltzer et
al. 2002) will not drive L. carolinianum populations to ex-
tinction in the foreseeable future, this does not mean that ac-
tive management of the resource is unnecessary. The model
predicts that the maximum sustainable harvest is 16%. The
average observed harvest level on easily accessible marshes
on the Bay of Fundy is about twice this value. It is true that
the model also predicts that a 30% harvest would result in a
relatively slow decline that could easily be overwhelmed by
natural fluctuations in growth, survivorship, and fecundity.
However, the extremely long recovery times dictate that pop-
ulation size be monitored closely and harvest levels adjusted
accordingly to prevent any significant decline. Our results
suggest that a 25% decline in population size could occur in
as few as 7 years, while it would take 34 years on average
to recover from this decline assuming all harvesting was
banned. If for no other reason than to maximize the number
of flower stalks harvested, it makes sense to prevent such
population declines. It should also be noted that although the
average levels of harvesting that have been observed in Nova
Scotia may not drive populations to extinction, the actual
harvest level in a particular marsh may differ substantially
from this average value. In our earlier study (Baltzer et al.
2002), the highest harvest level was observed on the marsh
closest to the province’s major urban center and in one year
approached 100% removal. In more heavily populated areas,
high harvest levels might occur more frequently than would
be the case on the Bay of Fundy. In Rhode Island, for exam-
ple, L. carolinianum has received protected status, which
would suggest that harvest levels in this area were high
enough to cause serious population declines.

The harvesting of native wild flowers is a significant in-
dustry that could be used to help preserve shrinking areas of
natural habitat (IUCN 2000). In Australia, for example, the
estimated size of the native flower harvest is $85 million
(FECA 1995). It is vital, however, that this resource is man-
aged in a sustainable fashion. Our study demonstrates that
we cannot simply assume on the basis of the presumed
trade-off between seed production and growth that flower
harvesting in perennial plants is a low-impact use. However,
it also demonstrates that this resource can be managed in a
sustainable fashion.
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Appendix

Sensitivity formula:

Sij = ∂λ/∂aij = viwj/<w,v>

where ∂λ/∂aij is the the change in population growth rate (λ)
with the matrix element in row i and column j, viwj is the
product of the ith element of the reproductive value vector
(vi) and the jth element of the stable stage vector (wj), and
<w,v> is the the scalar product of the reproductive value
vector (v) and the stable stage distribution vector (w).

Elasticity formula:

eij = (aij/λ)(∂λ/∂aij)

where eij is the elasticity value for the matrix element in row
i and column j, aij is the matrix element in row i and column
j, λ is the population growth rate (dominant eigenvalue of
projection matrix), and ∂λ/∂aij = Sij.
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